PHY 564

Advanced Accelerator Physics

 Lecture 3:Review of Linear Algebra

Gang Wang
Vladimir N. Litvinenko
Yichao Jing
CENTER for ACCELERATOR SCIENCE AND EDUCATION
Department of Physics \& Astronomy, Stony Brook University
Collider-Accelerator Department, Brookhaven National Laboratory

Matrix: definition and properties

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right)
$$

Addition: $A+B=C \Leftrightarrow a_{i j}+b_{i j}=c_{i j}$
Multiplied by a constant: $k A=B \Leftrightarrow k a_{i j}=b_{i j}$
Equality: $\quad A=B \Leftrightarrow a_{i j}=b_{i j}$
Multiplication (inner product): $\quad A B=C \Leftrightarrow \sum_{k} a_{i k} b_{k j}=c_{i j}$

$$
(A B) C=A(B C), \quad A(B+C)=A B+A C
$$

In general $A B \neq B A$
Multiplication demands that A has the same number of columns as B has rows.

Matrix: special cases I

- Diagonal matrix:

$$
a_{i j}=0 \text { for } i \neq j
$$

$$
A=\left(\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\ldots & 0 & \ldots & \ldots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right) \quad \begin{array}{r}
\text { If } \mathrm{A} \text { and } \mathrm{B} \text { are bot } \\
\text { matrix, they are } \mathrm{c}
\end{array} \quad A B=B A
$$

If A and B are both diagonal matrix, they are commutative:

- Identity matrix:

$$
A I=I A=A \quad \text { for } \quad \forall \mathrm{A}
$$

$$
I=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots & 0 & \ldots & \ldots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

$$
I_{i j}=\delta_{i j}= \begin{cases}1 & \text { for } i=j \\ 0 & \text { for } i \neq j\end{cases}
$$

Matrix: special cases II

- Block diagonal matrix: A and A_{i} are square matrix.

$$
A=\left[\begin{array}{lll|l|ll}
1 & 3 & 2 & 0 & 0 & 0 \\
7 & 0 & 2 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 6 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 3 & 3
\end{array}\right]
$$

- Triangular matrix:

Upper diagonal matrix: elements below diagonal are all zero

$$
U=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
0 & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right)
$$

$$
L=\left(\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
a_{21} & a_{22} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

Matrix V: transpose matrix

- A matrix, B , is called the transpose matrix of a matrix A if

$$
A_{i j}=B_{j i}
$$

The transpose matrix is often denoted as A^{T}, i.e.

$$
A_{i j}=\left(A^{T}\right)_{j i}
$$

- A square matrix A is called an orthognal matrix if
- $\quad A^{T}=A^{-1}$
- A square matrix A is called symmetric matrix if $A^{T}=A$ and anti-symmetric if $A^{T}=-A$

Matrix: trace

- In any square matrix, the sum of the diagonal elements is called the trace.

$$
\operatorname{Tr}(A)=\sum_{i} a_{i i}
$$

- A useful property: $\quad \operatorname{Tr}(A B)=\operatorname{Tr}(B A)$
- In general, $\quad \operatorname{Tr}(A B C)=\operatorname{Tr}(B C A) \neq \operatorname{Tr}(B A C)$
- Trace is a linear operator:

$$
\operatorname{Tr}(A+k B)=\operatorname{Tr}(A)+k \cdot \operatorname{Tr}(B)
$$

Matrix: determinant of a matrix

- For a square matrix,

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

- The determinant

$$
D=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|=\operatorname{det}(A)
$$

is called the determinant of matrix A and is denoted by $\operatorname{det}(\mathrm{A})$.

Determinant I

$$
\begin{aligned}
& \mathrm{n} \text { columns } \\
& \ulcorner- \\
& D=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right| \text { n rows }=\sum_{i, j, k} \varepsilon_{i j k . .} a_{1 i} a_{2 j} a_{3 k} \ldots \\
& \left.\begin{array}{llll}
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \quad \varepsilon_{i j k \ldots} \text { is Levi-Civita symbol } \\
& \int \begin{array}{c}
1 \\
\text { if }(i, j, k \ldots) \text { is even permutation of }(1,2,3 \ldots)
\end{array} \\
& \varepsilon_{i j k}=\left\{\begin{array}{c}
-1 \quad \text { if }(i, j, k \ldots) \text { is odd permutation of }(1,2,3 \ldots), ~
\end{array}\right. \\
& 0 \quad \text { if any of the two indices is repeated } \\
& \varepsilon_{i j k \cdots \cdots \cdots \cdots}=-\varepsilon_{i j k \cdots \cdots \cdots \cdots}
\end{aligned}
$$

Determinant II

A determinant of n dimension can be expanded over a column (or a row) into a sum of n determinants of $\mathrm{n}-1$ dimension:

$$
D=\left|\begin{array}{ccccc}
a_{11} & \ldots & a_{1 j} & \ldots & a_{1 n} \\
a_{21} & \ldots & a_{2 j} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n j} & \ldots & \ldots
\end{array}\right|=\sum_{i} C_{i j} a_{i j}
$$

$C_{i j}=(-1)^{i+j} M_{i j} \quad$ is called the $\mathrm{ij}^{\text {th }}$ cofactor of D .

$$
\left.\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\left|=a_{11}\right| \begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\left|-a_{21}\right| \begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\left|+a_{31}\right| \begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array} \right\rvert\,
$$

Determinant III

- Multiplied by a constant

$$
\left|\begin{array}{lll}
k a_{11} & a_{12} & a_{13} \\
k a_{21} & a_{22} & a_{23} \\
k a_{31} & a_{32} & a_{33}
\end{array}\right|=k\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

- The value of a determinant is unchanged if a multiple of one column (row) is added to another column (row)

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{lll}
a_{11}+k a_{12} & a_{12} & a_{13} \\
a_{21}+k a_{22} & a_{22} & a_{23} \\
a_{31}+k a_{32} & a_{32} & a_{33}
\end{array}\right|
$$

- A determinant is equal to zero if any two columns (rows) are proportional

$$
\left|\begin{array}{lll}
a_{12} & k a_{12} & a_{13} \\
a_{22} & k a_{22} & a_{23} \\
a_{32} & k a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{lll}
0 & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & a_{32} & a_{33}
\end{array}\right|=0
$$

Linear equation system

- Existence of non-trivial solution of homogeneous equations

$$
\begin{gathered}
\left\{\begin{array}{l}
a_{11} x+a_{12} y+a_{13} z=0 \\
a_{21} x+a_{22} y+a_{23} z=0 \\
a_{31} x+a_{32} y+a_{33} z=0
\end{array}\right. \\
x \cdot D \equiv x \cdot\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{lll}
a_{11} x+a_{12} y+a_{13} z & a_{12} & a_{13} \\
a_{21} x+a_{22} y+a_{23} z & a_{22} & a_{23} \\
a_{31} x+a_{32} y+a_{33} z & a_{32} & a_{33}
\end{array}\right|=0
\end{gathered}
$$

Similarly, $\quad y \cdot D=0$ and $z \cdot D=0$

- Thus a set of homogenous linear equations have non-trivial solutions only if the determinant of the coefficients, D, vanishes.

Matrix: properties of the determinant of a matrix

- Some properties of the determinant of matrices
- $\quad \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
- $\quad \operatorname{det}(k A)=k^{n} \operatorname{det}(A)$
- $\quad \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(3) $|A B|=\sum_{i, j, k \ldots} \varepsilon_{i j k \ldots}(A B)_{1 i}(A B)_{2 j}(A B)_{3 k} \cdots$
$=\sum_{i, j, k \ldots, \ldots, \gamma,} \sum_{i j k . . .} A_{1 \alpha} B_{\alpha i} A_{2 \beta} B_{\beta j} A_{2 \gamma} B_{\gamma j} \cdots$
$=\sum_{\alpha, \beta, \gamma} A_{1 \alpha} A_{2 \beta} A_{2 \gamma} \ldots\left\{\sum_{i, j, k, \ldots} \varepsilon_{i j k . . .} B_{\alpha i} B_{\beta j} B_{\gamma j} \ldots\right\}$
$=|B| \sum_{\alpha, \beta, \gamma} \varepsilon_{\alpha \beta \gamma, \ldots} A_{1 \alpha} A_{2 \beta} A_{2 \gamma} \ldots$
$=|A||B|$

Proof of $\operatorname{det}(\mathrm{AB})=\operatorname{det}(\mathrm{A}) \operatorname{det}(\mathrm{B})$:

$$
\begin{align*}
& \sum_{i, j, k . \ldots} \varepsilon_{i j k} a_{\alpha i} a_{\beta j} a_{\gamma k} \ldots \tag{2}\\
& =\varepsilon_{\alpha \beta \gamma \ldots \sum_{i, j, k \ldots} \varepsilon_{i j k} a_{1 i} a_{2 j} a_{3 k} \ldots}^{=\varepsilon_{\alpha \beta \gamma \ldots}|A|}
\end{align*}
$$

Matrix IV: inversion

- Inversion of a square matrix A is to find a square matrix B such that

$$
A B=B A=I
$$

B is called the inverse matrix of A and often denoted by A^{-1}, i.e.

$$
A A^{-1}=A^{-1} A=I
$$

- One way to find the inverse matrix is by

$$
\left(A^{-1}\right)_{i j}=\frac{C_{j i}}{|A|}, \quad \text { where } C_{j i} \text { is the } j i^{\text {th }} \text { cofactor of } A
$$

Matrix VI: similarity transformation

 and diagonalization- Two matrix, A and B, are called similar if there exists a invertible matrix P such that

$$
B=P^{-1} A P,
$$

and the transformation from A to B is called similarity transformation.

- Diagnolization of a matrix, A , is to find a similarity transformation matrix, P , such that $P^{-1} A P$ is a diagonal matrix:

Matrix VII: diagonalization

$$
P^{-1} A P=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \lambda_{n}
\end{array}\right) \quad \text { or } \quad A P=P\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \lambda_{n}
\end{array}\right)
$$

- If we look at the $j^{\text {th }}$ column of the second equation, it follows

$$
\begin{equation*}
\sum_{k} a_{i k} p_{k j}=\sum_{k} p_{i k} \lambda_{k} \delta_{k j}=\lambda_{j} p_{i j} \tag{*}
\end{equation*}
$$

Defining a nx1 matrix (i.e. a column vector) $\left|P^{\prime}\right\rangle$ such that $\quad\left|P^{j}\right\rangle_{i}=p_{i j} \quad$ (note: j is fixed)
Equation (*) becomes: $A\left|P^{j}\right\rangle=\lambda_{j}\left|P^{j}\right\rangle$

Matrix VIII: eigenvalue and eigenvector

- For a matrix A , a vector matrix X is called an eigenvector of A if

$$
A \cdot X=\lambda X
$$

where λ is called the eigenvalue associated with the eigenvector X .

- The eigenvalues are found by solving the following polynomial equation

$$
(A-\lambda I) \cdot X=0 \Rightarrow \operatorname{det}(A-\lambda I)=0
$$

Defective Matrix

- Not all square matrix can be diagonalized:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & -3 \\
3 & -4
\end{array}\right) ; \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
2-\lambda & -3 \\
3 & -4-\lambda
\end{array}\right|=0 \Rightarrow(\lambda+1)^{2}=0 \Rightarrow \lambda=-1 \\
& \left(\begin{array}{ll}
2 & -3 \\
3 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}=-\binom{x_{1}}{x_{2}} \Rightarrow\left\{\begin{array}{l}
3 x_{1}-3 x_{2}=0 \\
3 x_{1}-3 x_{2}=0
\end{array} \Rightarrow\binom{x_{1}}{x_{2}}=\binom{1}{1} ;\right.
\end{aligned}
$$

We end up with only one eigenvector.

- A square matrix that does not have a complete set of eigenvectors is not diagonalizable and is called a defective matrix.
- If a matrix, A , is defective (and hence is not similar to a diagonal matrix), then what is the simplest matrix that A is similar to?

Jordan form matrix

- Definition: a Jordan block with value λ is a square, upper triangular matrix whose entries are all λ on the diagonal, all 1 on the entries immediately above the diagonal, and zero elsewhere:

$$
\left.J(\lambda)=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
0 & 0 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right] \text { 2D:[} \begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right] \text { 3D: }\left[\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right]
$$

- Definition: a Jordan form matrix is a block diagonal matrix whose blocks are all Jordan blocks
- Theorem: Let A be a nxn matrix. Then there is a Jordan form matrix that is similar to A.
$\left[\begin{array}{cc|cc|c|c}1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & -1 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & -1\end{array}\right]$

Symplectic Matrix

- As long as the system has a Hamiltonian, the Jacobian matrix, $M_{\alpha \beta}=\frac{\partial X_{\alpha}}{\partial\left(X_{0}\right)_{\beta}}$, which describe the motion of the particles, satisfies

$$
\begin{gather*}
M^{T} S M=S \tag{**}\\
S=\left(\begin{array}{cccc}
S_{1 D} & 0 & \ldots & 0 \\
0 & S_{1 D} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & S_{1 D}
\end{array}\right) ; \quad S_{1 D}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{gather*}
$$

- A matrix satisfying condition $\left(^{* *}\right)$ is called a symplectic matrix.
- inverse: $M^{T} S M=S \Rightarrow S M^{T} S M=S^{2}=-I \Rightarrow\left(-S M^{T} S\right) M=I \Rightarrow M^{-1}=-S M^{T} S$
- if M and N are both symplectic, then their product, MN , is also symplectic $(M N)^{T} S(M N)=N^{T} M^{T} S M N=N^{T} S N=S$
- if M is symplectic, M^{T} is also symplectic

$$
\left(M^{T} S M\right)^{-1}=-S \Rightarrow M^{-1} S\left(M^{T}\right)^{-1}=S \Rightarrow S=M S M^{T} \Rightarrow\left(M^{T}\right)^{T} S M^{T}=S
$$

Symplectic Matrix II

- If λ is eigen value then $1 / \lambda$ is also an eigenvalue and the multiplicity of λ and $1 / \lambda$ is the same.
- It implies that the eigenvalues are coming in pairs $\{\lambda, 1 / \lambda\}$.
- As a consequence of above property, the determinant of a symplectic matrix is 1 .

Symplectic Matrix

- If a motion of a particle in n-D space can be described by a Hamiltonian, H, it follows

$$
\dot{x}_{i}=\frac{\partial H}{\partial p_{i}} \quad \dot{p}_{i}=-\frac{\partial H}{\partial x_{i}} \quad \text { for } \quad i=1,2 \ldots n
$$

We can write above equations into a matrix form:

$$
\begin{gathered}
\dot{X}=S \frac{\partial H}{\partial X} \Leftrightarrow(\dot{X})_{\alpha}=S_{\alpha \beta}\left(\frac{\partial H}{\partial X}\right)_{\beta} \text { for } \quad \alpha, \beta, \gamma=1,2, \ldots, 2 n \\
X=\left(\begin{array}{c}
x_{1} \\
p_{1} \\
\ldots \\
\ldots \\
x_{n} \\
p_{n}
\end{array}\right) ; \quad \dot{X}=\left(\begin{array}{c}
\dot{x}_{1} \\
\dot{p}_{1} \\
\ldots \\
\ldots \\
\dot{x}_{n} \\
\dot{p}_{n}
\end{array}\right) ; \quad S=\left(\begin{array}{cccc}
S_{1 D} & 0 & \ldots & 0 \\
0 & S_{1 D} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & S_{1 D}
\end{array}\right) ; S_{1 D}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \frac{\partial H}{\partial X}=\left(\begin{array}{c}
\frac{\partial H}{\partial x_{1}} \\
\frac{\partial H}{\partial p_{1}} \\
\ldots \\
\ldots \\
\frac{\partial H}{\partial x_{n}} \\
\frac{\partial H}{\partial p_{n}}
\end{array}\right)
\end{gathered}
$$

Symplectic Matrix

- Let M to be the Jacobian matrix of a map (for linear motion, this is the transfer matrix)

$$
M_{\alpha \beta}=\frac{\partial X_{\alpha}}{\partial\left(X_{0}\right)_{\beta}}
$$

where X is the coordinate ${ }^{\text {enector }}$ at some final location s and X_{0} is the cooridnates vector at the initial location $\mathrm{s}=0$

- It can be shown that $\frac{d}{d s}\left(M^{T} S M\right)=0$, which means $M^{T} S M$ does not change with s . When the particle is still at its initial location, M is a unit matrix, and hence

$$
M^{T} S M=I^{T} S I \Rightarrow M^{T} S M=S
$$

