1. The energy loss per turn is given by

$$
\begin{equation*}
U_{0}=\frac{e^{2} \beta^{3} \gamma^{4}}{3 \varepsilon_{0} \rho} \tag{1}
\end{equation*}
$$

With $\rho=2.22 \mathrm{~m}$ and $\gamma=1 \mathrm{GeV} / 0.511 \mathrm{MeV}=1957$, eq. (1) yields

$$
\begin{equation*}
U_{0}=\frac{e^{2} \beta^{3} \gamma^{4}}{3 \varepsilon_{0} \rho}=39.6 \mathrm{KeV}=6.33 \times 10^{-15} \mathrm{~J} \tag{2}
\end{equation*}
$$

The critical photon energy is given by

$$
\begin{equation*}
E_{c}=\hbar \omega_{c}, \tag{3}
\end{equation*}
$$

where \hbar is the denoted Planck constant and

$$
\begin{equation*}
\omega_{c}=\frac{3}{2} \gamma^{3} \frac{c}{\rho} \approx 1.512 \times 10^{18} \mathrm{rad} / \mathrm{s} \tag{4}
\end{equation*}
$$

is the critical angular frequency of the synchrotron radiation. Inserting eq. (4) into eq. (3) yields

$$
\begin{equation*}
E_{c} \approx 0.996 \mathrm{KeV}=1.594 \times 10^{-16} \mathrm{~J} . \tag{5}
\end{equation*}
$$

The total synchrotron radiation power for a beam is given by the 1-turn energy loss of all particles in the ring divided by the time it takes for one circulation (i.e. the revolution period)

$$
\begin{equation*}
P_{\text {beam }}=\left(U_{0} \cdot N_{\text {ring }}\right) \frac{1}{T_{\text {rev }}}=\left(U_{0} \cdot \frac{I_{b}}{e} T_{\text {rev }}\right) \frac{1}{T_{\text {rev }}}=U_{0} \frac{I_{b}}{e} . \tag{6}
\end{equation*}
$$

where $N_{\text {ring }}=I_{b} T_{\text {rev }} / e$ is the total number of electrons in the ring. Inserting eq. (2) and $I_{b}=200 \mathrm{~mA}$ into eq. (6) give

$$
\begin{equation*}
P_{\text {beam }} \approx 7.91 \mathrm{KW} . \tag{7}
\end{equation*}
$$

2.

Since the two intersection points are on the light-cone opened-up by $x=\left(x_{0}, \vec{x}\right)$, they satisfy the following equation:

$$
\begin{equation*}
\left(x_{0}-X_{0}\right)-\sqrt{\left(X_{1}-x_{1}\right)^{2}+\left(X_{2}-x_{3}\right)^{2}+\left(X_{3}-x_{3}\right)^{2}}=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x_{0}-Y_{0}\right)-\sqrt{\left(Y_{1}-x_{1}\right)^{2}+\left(Y_{2}-x_{3}\right)^{2}+\left(Y_{3}-x_{3}\right)^{2}}=0 \tag{9}
\end{equation*}
$$

Subtracting eq. (9) with eq. (8) yields

$$
\begin{equation*}
Y_{0}-X_{0}=\sqrt{\left(X_{1}-x_{1}\right)^{2}+\left(X_{2}-x_{2}\right)^{2}+\left(X_{3}-x_{3}\right)^{2}}-\sqrt{\left(Y_{1}-x_{1}\right)^{2}+\left(Y_{2}-x_{2}\right)^{2}+\left(Y_{3}-x_{3}\right)^{2}} \tag{10}
\end{equation*}
$$

The three points \vec{X}, \vec{X} and \vec{Y} form a triangle and since the difference in the length of any two sides of a triangle is always smaller than the length of the third side, it follows from eq. (10)

$$
\begin{equation*}
Y_{0}-X_{0} \leq \sqrt{\left(X_{1}-Y_{1}\right)^{2}+\left(X_{2}-Y_{2}\right)^{2}+\left(X_{3}-Y_{3}\right)^{2}} \tag{11}
\end{equation*}
$$

The time it takes for the particle to get from \vec{X} to \vec{Y} is given by

$$
\begin{equation*}
\Delta t=\frac{Y_{0}-X_{0}}{c} \tag{12}
\end{equation*}
$$

and hence the average velocity of the particle during its travelling from \vec{X} to \vec{Y} is

$$
\begin{equation*}
\left\langle v_{\text {particle }}\right\rangle=\frac{\sqrt{\left(X_{1}-Y_{1}\right)^{2}+\left(X_{2}-Y_{2}\right)^{2}+\left(X_{3}-Y_{3}\right)^{2}}}{\Delta t}=\frac{c \sqrt{\left(X_{1}-Y_{1}\right)^{2}+\left(X_{2}-Y_{2}\right)^{2}+\left(X_{3}-Y_{3}\right)^{2}}}{Y_{0}-X_{0}} . \tag{13}
\end{equation*}
$$

According to eq. (11) , the following relation holds

$$
\begin{equation*}
\frac{\sqrt{\left(X_{1}-Y_{1}\right)^{2}+\left(X_{2}-Y_{2}\right)^{2}+\left(X_{3}-Y_{3}\right)^{2}}}{Y_{0}-X_{0}} \geq 1 \tag{14}
\end{equation*}
$$

and inserting eq. (14) into eq. (13) yields

$$
\begin{equation*}
\left\langle v_{\text {particle }}\right\rangle=c \frac{\sqrt{\left(X_{1}-Y_{1}\right)^{2}+\left(X_{2}-Y_{2}\right)^{2}+\left(X_{3}-Y_{3}\right)^{2}}}{Y_{0}-X_{0}} \geq c \tag{15}
\end{equation*}
$$

Eq. (15) violates special relativity and hence the trajectory of a particle cannot intersect a light-cone twice.
3. The angular distribution of radiation power is given by

$$
\begin{equation*}
\frac{d P\left(t_{r}\right)}{d \Omega}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{4 \pi c} \frac{\dot{\beta}^{2}}{(1-\beta \cos \theta)^{3}}\left[1-\frac{\sin ^{2} \theta \cos ^{2} \phi}{\gamma^{2}(1-\beta \cos \theta)^{2}}\right] . \tag{1}
\end{equation*}
$$

For $\frac{1}{\gamma^{4}} \ll \theta \ll 1$ and $\gamma \gg 1$, we can use the following approximation

$$
\begin{align*}
1-\beta \cos \theta & \approx 1-\beta\left(1-\frac{1}{2} \theta^{2}\right) \\
& =1-\beta+\frac{1}{2} \beta \theta^{2} \\
& =\frac{1}{\gamma^{2}(1+\beta)}+\frac{1}{2} \theta^{2} \\
& =\frac{1}{\gamma^{2}}\left[\frac{1}{2-(1-\beta)}\right]+\frac{1}{2} \theta^{2}, \tag{2}\\
& \approx \frac{1}{2 \gamma^{2}}\left[1+\frac{1-\beta}{2}\right]+\frac{1}{2} \theta^{2} \\
& \approx \frac{1}{2 \gamma^{2}}\left[1+\frac{1}{4 \gamma^{2}}+\ldots\right]+\frac{1}{2} \theta^{2} \\
& \approx \frac{1}{2 \gamma^{2}}+\frac{1}{2} \theta^{2}
\end{align*}
$$

and eq. (1) becomes

$$
\begin{equation*}
\frac{d P\left(t_{r}\right)}{d \Omega} \approx \frac{1}{4 \pi \varepsilon_{0}} \frac{2 e^{2}}{\pi c} \frac{\gamma^{6} \dot{\beta}^{2}}{\left(1+\gamma^{2} \theta^{2}\right)^{3}}\left[1-\frac{4 \gamma^{2} \theta^{2} \cos ^{2} \phi}{\left(1+\gamma^{2} \theta^{2}\right)^{2}}\right] \tag{3}
\end{equation*}
$$

Since the factor inside the square bracket is between 0 and 1 , the angular width of eq. (3) is determined by the factor $\left(1+\gamma^{2} \theta^{2}\right)^{-3}$, i.e. the radiation power drops substantially when $\theta \geq \frac{1}{\gamma}$.

