
1. The energy loss per turn is given by 
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With 2.22mρ =  and 1 / 0.511 1957GeV MeVγ = =  , eq. (1) yields 
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The critical photon energy is given by 

                                                                                         c cE ω=  ,                                                                          (3) 

where   is the denoted Planck constant and 
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is the critical angular frequency of the synchrotron radiation. Inserting eq. (4) into eq. (3)  yields 

                                                                 160.996 1.594 10cE KeV J−≈ = × .                                                      (5) 

The total synchrotron radiation power for a beam is given by the 1-turn energy loss of all particles in the 
ring divided by the time it takes for one circulation (i.e. the revolution period) 
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where /ring b revN I T e=  is the total number of electrons in the ring. Inserting eq. (2) and 200bI mA=  

into eq. (6) give 

                                                                                              7.91beamP KW≈ .                                                        (7)      
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According to eq. (11) , the following relation holds 
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and inserting eq. (14) into eq. (13) yields 
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Eq. (15) violates special relativity and hence the trajectory of a particle cannot intersect a light-cone 
twice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. The angular distribution of radiation power is given by 
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For 4
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and eq. (1) becomes 
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Since the factor inside the square bracket is between 0 and 1, the angular width of eq. (3) is determined 

by the factor ( ) 32 21 γ θ
−

+ , i.e. the radiation power drops substantially when 
1θ
γ

≥  .  

 

 

 

 


