
1

PHY 554 
Fundamentals of Accelerator Physics

Mon, Wed 6:30-7:50PM Physics D103

Yichao Jing, Vladimir N. Litvinenko, Jun Ma and Gang Wang

Center for Accelerator Science and Education
Department of Physics & Astronomy, Stony Brook University

Collider-Accelerator Department, Brookhaven National Laboratory

http://case.physics.stonybrook.edu/index.php/PHY554_Fall_2024



Electron storage rings
Yichao Jing



Modern synchrotron radiation theory was formulated by many physicists;
in particular, its foundation was laid by J. Schwinger. Some of his many 
important results are summarized below: [J. Schwinger, Phys. Rev. 70, 798 
(1946); 75, 1912 (1949); Proc. Nat. Acad. Sci. 40, 132 (1954).]
[1] The angular distribution  of synchrotron radiation is sharply peaked in the 
direction of the electron's velocity vector within an angular width of 1/γ, where γ
is the relativistic energy factor. The radiation is plane polarized on the plane of 
the electron's orbit, and elliptically polarized outside this plane.
[2] The radiation spans a continuous spectrum. The power spectrum produced by 
a high energy electron extends to a critical frequency ωc=3γ3ωρ/2, where ωρ=c/ρ
is the cyclotron frequency for electron moving at the speed of light. [D.H. 
Tomboulin and P.L. Hartman experimentally verified that electrons at high 
energy (70 MeV then) could emit extreme ultraviolet (XUV) photons; Phys. Rev. 
102, 1423 (1956).]
[3] Quantum mechanical correction becomes important only when the critical 
energy of the radiated photon, ћω=(3/2)ћcγ3/ρ is comparable to the electron beam 
energy, E=γmc2. This occurs when the electron energy reaches mc2(mcρ/ћ)1/2 ~
106 GeV. The beamstrahlung parameter, defined as Υ=(2/3) ћωc/E is a measure of 
the importance of quantum mechanical effects.



According to Larmor's theorem, the instantaneous radiated power from an 
accelerated electron is
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dτ=dt/γ is the proper time. The radiation power from circular motion in a dipole  
becomes
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The moments of energy distribution become

At a fixed bending radius, the quantum fluctuation 
varies as the seventh power of the energy.



II Radiation Damping and Excitation

The instantaneous power radiated by a relativistic electron at energy E is

where B is the magnetic field strength, ρ is the local radius of curvature, and
Cγ = 8.85 × 10−5 m/(GeV)3 is given by Eq. (4.5). The total energy radiated in
one revolution becomes

The average radiation power for an isomagnetic ring is

where T0 = βc/2πR is the revolution period, and R is the average radius of a 
storage ring. An electron at 50 GeV in the LEP at CERN (ρ = 3.096 km) will lose 
0.18 GeV per turn. The energy loss per revolution at 100 GeV is 2.9 GeV, i.e. 3% 
of its total energy. The energy of circulating electrons is compensated by rf
cavities with longitudinal electric field.



Since higher energy electrons lose more 
energy than lower energy electrons and 
the average beam energy is compensated 
by longitudinal electric field, there is 
radiation damping (cooling) in the 
longitudinal phase space. 
Electrons lose energy in a cone with an 
angle about 1/γ of their instantaneous 
velocity vector, and gain energy through 
rf cavities in the longitudinal direction. 
This mechanism provides transverse 
phase-space damping. 
The damping (e-folding) time is 
generally equal to the time it takes for 
the beam to lose all of its energy.

radiation
cavity



II.1 Damping of Synchrotron Motion

(cτs, 0): the longitudinal phase-space coordinates 
of a synchronous particle. 
(c(τ +τs),ΔE): of a particle with energy deviation 
ΔE from the synchronous energy.
The path length difference between these two 
particles is ΔC = αcC ΔE/E , where αc is the 
momentum compaction factor, C is the accelerator 
circumference, and the difference in arrival time is

During one revolution, the electron loses energy 
U(E) by radiation, and gains energy eV (τ ) from 
the rf system. Thus the net energy change is



cdt/ds = (1+x/ρ),

The damping re-partition
To evaluate the damping rate, we need to evaluate W. Since the radiation energy 
loss per revolution is



where K(s) = B1/Bρ is the quadrupole gradient function with B1 = ∂B/∂x. The
damping partition number D is a property of lattice configuration. For an 
isomagnetic ring,

1. For an isomagnetic ring with separate 
function magnets, where K(s) = 0 in dipoles

The damping time constant, which is the inverse of αE, is nearly equal to the 
time it takes for the electron to radiate away its total energy.

2. For an isomagnetic combined function accelerator, we find



II.2 Damping of Betatron Motion
A relativistic electron emits synchrotron radiation primarily along its direction of 
motion within an angle 1/γ. The momentum change resulting from recoil of 
synchrotron radiation is exactly opposite to the direction of particle motion. Figure 
4.6 illustrates betatron motion with synchrotron radiation, where vertical betatron
coordinate z is plotted as a function of longitudinal coordinate s. The betatron
phase-space coordinates are

where A is betatron amplitude, φ is betatron phase, and β is betatron function.

Schematic drawing of the damping of 
vertical betatron motion due to 
synchrotron radiation. The energy loss 
through synchrotron radiation along the 
particle trajectory with an opening 
angle of 1/γ. Energy is replenished in 
the rf cavity along the longitudinal 
direction. This process damps the 
vertical betatron oscillation to a very 
small value.



When an electron loses an amount of energy u by radiation, the momentum vector
P changes by δP , such that δP is parallel and opposite to P with |cδP | = u. Since
the radiation loss changes neither slope nor position of the trajectory, the betatron
amplitude is unchanged except for a small increment in effective focusing force.

where <..> averages over betatron oscillations in one revolution, and U0 is 
synchrotron radiation energy per revolution. Since the betatron motion is sinusoidal, 
we obtain <(βz′)2> = A2/2, 

Now the energy gain from rf accelerating force is on the average parallel to the
designed orbit, i.e. 

The corresponding change of amplitude A in one revolution becomes

The damping rate applies also to the horizontal betatron motion.



Horizontal betatron motion
The horizontal motion of an electron is complicated by the off-momentum 
closed orbit. The horizontal displacement from the reference orbit is

We neglected all terms linear in xβ′, 
because their average over the 
betatron phase is zero. The time 
average over the betatron phase gives 
<xβ> = 0 and <xβ2>=A2/2.



The fractional betatron amplitude increment in one turn becomes

Including the phase space damping, the net horizontal amplitude change:

Robinson theorem

In summary, radiation damping coefficients for the three degrees of freedom in a
bunch are



II.3 Damping Rate Adjustment

A. Increase U to increase damping rate (damping wiggler)

The damping time is shortened by a factor of (1+Uwiggler/U0)−1.

B. Change D to repartition the partition number
Many early synchrotrons, such as 8 GeV synchrotron (DESY) in Hamburg, 28 GeV 
CERN-PS, 33 GeV AGS, etc., used combined function isomagnetic magnets, where 
D ≈ 2. Thus the energy oscillations are strongly damped (JE ≈ 4) and the horizontal 
oscillations become anti-damped (Jx ≈ −1).



Robinson wiggler

If the gradient and dipole field of each magnet satisfy Kρ < 0, as shown in Fig. 4.9, 
the damping partition of Eq. (4.100) can be made negative.

The Robinson wiggler has been successfully employed in the CERN PS to obtain 
Jx ≈ 2, which enhances damping of horizontal emittance and reduces damping in 
energy oscillation. The resulting line density of beam bunches is likewise reduced 
to prevent collective instabilities.



II.4 Radiation Excitation and Equilibrium Energy Spread

The time during which a quantum is emitted is about

Emission of individual quanta are statistically independent because the energy of 
each photon [keV] is a very small fraction of electron energy.
Discontinuous quantized photon emission disturbs electron orbits. The cumulative 
effect of many such small disturbances introduces diffusion similar to random 
noise. The amplitude of oscillation will grow until the rates of quantum excitation 
and radiation damping are on the average balanced. The damping process depends 
only on the average rate of energy loss, whereas the quantum excitation fluctuates 
about its average rate.

A. Effects of quantum excitation



B. Equilibrium rms energy spread



C. Adjustment of rms momentum spread

D. Beam distribution function in momentum

The normalized phase-space coordinates are (ΔE, θ = Eωsτ/αc).

Central Limit Theorem: If the probability P(u) of each quantum emission is 
statistically independent, and the probability function falls off rapidly as |u| → ∞, 
then the probability distribution function for the emission of n photons is a 
Gaussian,



II.5 Radial Bunch Width and Distribution Function
Emission of discrete quanta in synchrotron radiation also excites random 
betatron motion. The emission of a quantum of energy u results in a change of 
betatron coordinates, i.e.

The resulting change in the Courant-Snyder invariant is



This is called the natural emittance. Since the H-function is proportional to Lθ2 ∼
ρθ3, where θ is the dipole angle of a half cell, the natural emittance of an electron 
storage ring is proportional to γ2θ3. The normalized emittance is proportional to 
γ3θ3. Unless the orbital angle of each dipole is inversely proportional to γ, the 
normalized natural emittance of an electron storage ring increases with energy.
The horizontal distribution function

The total radial beam width has contributions from both betatron and energy
oscillations. The rms beam width is Gaussian quadrature

Using Eq. (4.71) for N<u2>, we obtain



II.6 Vertical Beam Width
The transverse kick is then equal to θγu/c. The transverse angular kicks on 
phase-space coordinates become

Emittances in the presence of linear coupling



II.7 Radiation Integrals

𝑃"# = −
8
5 3



III Emittance in Electron Storage Rings

Since H ∼ Lθ2 = ρθ3, the <H> and the resulting natural emittance obey the 
scaling laws:

where the scaling factor Flattice depends on the design of the storage ring lattices, 
and θ is the total dipole bending angle in a bend-section. The resulting 
normalized emittance is



A. FODO cell lattice



B. Double-bend achromat (Chasman-Green lattice)



Achromatic: d0=0, d0
′=0, 



The H-function at the end of the dipole is

This criterion can be used to evaluate the goodness of DBA lattice match.



C. Minimum emittance (ME): Minimum <H>-function lattice



Define the H-function at the end of TME lattice: 𝐻#*+ =
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SESAME full period optical functions 
for (Qx=7.23 - Qz=6.19), ε=26 nm.
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Effective emittance

A smaller emittance in a NON_ACHROOMATIC lattice does not 
necessary produce a  smaller effective emittance!!



Define the dispersive emittance as



D. Three-bend achromat

Theoretical εMEDBA=1.85 nm  
compared to 6.2 nm.

EPAC92_43 (‘92)



The matching condition requires L2 = 31/3L1 for isomagnetic storage rings, or 
ρ1 = √3ρ2 for storage rings with equal length dipoles.

The emittance of the matched minimum 
TBA (QBA, or nBA) lattice is

where θ1 is the bending angle of the outer dipoles, provided the middle dipole 
is longer by a factor of 31/3 than the outer dipoles. The formula for the 
attainable minimum emittance is identical to that for the MEDBA.

Problem: Dispersion function mis-match



The Quadruple-bend achromat

L1 L2

1. Matching is relatively easy (as 
compared to TBA lattices)

2. The chromatic properties is as 
good as the DB lattice!

3. The emittance obeys the scaling 
law: γ2θ3, i.e. 30 cells (15 QBA 
cells) will give about 1.24 nm 
emittance without any damping 
wiggler!

With L2=1.45L1, we find that the emittance should scale like [2/(1+31/3)]3=0.54. 



H/HTME of one super QBA cell with 
The HTME=ρθ2

3/3√15 is the 
maximum H-function for the 
theoretical minimum emittance
TME lattice based on the middle 
dipole. The dotted line is the average 
H-function in dipoles, derived from 
the emittance of 1.02 nm at 3 GeV. 
The ratio is 0.25 for a theoretical 
MEQBA! 

Consider a lattice with 16 QBA cells, a circumference of 780.3 m. The 
parameters used in this lattice are L1=1.8 m and L2=3.0 m.The lengths of the 
straight sections are 10.0 and 5.77 m. The emittance of 1.02 nm at the 3 GeV
beam energy. 



III.4 Beam Physics of High Brightness Storage Rings

A. Low emittance lattices and the dynamical aperture

B. Diffraction limit

C. Beam lifetime

D. Collective beam instabilities


