Homework 21

1.

We are trying to find the approximate solution of the form

$$
\begin{equation*}
\lambda=a_{0}+a_{1} \hat{C}+a_{2} \hat{C}^{2} \tag{1}
\end{equation*}
$$

for the polynomial equation

$$
\begin{equation*}
\lambda^{3}+2 i \hat{C} \lambda^{2}-\hat{C}^{2} \lambda=i \tag{2}
\end{equation*}
$$

Inserting eq. (1) into eq. (2) yields
$f(\hat{C}) \equiv\left(a_{0}+a_{1} \hat{C}+a_{2} \hat{C}^{2}\right)^{3}+2 i \hat{C}\left(a_{0}+a_{1} \hat{C}+a_{2} \hat{C}^{2}\right)^{2}-\hat{C}^{2}\left(a_{0}+a_{1} \hat{C}+a_{2} \hat{C}^{2}\right)-i=0$.
Requiring eq. (3) to be satisfied in the zeroth order in \hat{C} leads to

$$
f(0) \equiv a_{0}^{3}-i=0
$$

which leads to (we are searching for the growing mode, i.e. $\operatorname{Re}\left(a_{0}\right)>0$)

$$
\begin{equation*}
a_{0}=\frac{\sqrt{3}}{2}+i \frac{1}{2} \tag{4}
\end{equation*}
$$

Requiring eq. (3) to be satisfied in the first order in \hat{C} leads to

$$
\begin{equation*}
\left.\frac{d}{d \hat{C}} f(\hat{C})\right|_{\hat{C}=0}=0 \Rightarrow 3 a_{1} a_{0}^{2}+2 i a_{0}^{2}=0 \Rightarrow a_{1}=-i \frac{2}{3} \tag{5}
\end{equation*}
$$

Similarly, requiring eq. (3) to be satisfied in the second order in \hat{C} leads to

$$
\begin{array}{r}
\left.\frac{d^{2}}{d \hat{C}^{2}} f(\hat{C})\right|_{\hat{C}=0}=\left.0 \Rightarrow \frac{d}{d \hat{C}}\left[3 \lambda^{2} \lambda^{\prime}+2 i \lambda^{2}+4 i \hat{C} \lambda \lambda^{\prime}-2 \hat{C} \lambda-\hat{C}^{2} \lambda^{\prime}\right]\right|_{\hat{C}=0}=0 \\
\Rightarrow 6 a_{0} a_{1}^{2}+3 a_{0}^{2} 2 a_{2}+8 i a_{0} a_{1}-2 a_{0}=0 \tag{6}\\
\Rightarrow a_{2}=\frac{-3 a_{1}^{2}-4 i a_{1}+1}{3 a_{0}}=-\frac{1}{9}\left(\frac{\sqrt{3}}{2}-i \frac{1}{2}\right)
\end{array}
$$

