Homework 13. Due October 26

Problem 1. 5 points. Beam envelope in straight section.

For a one-dimensional motion consider beam propagating in a straight section starting as s_o and having length L. Let's eigen vector (beam envelope) at s_o is given by:

$$Y(\mathbf{s}_{o}) = \begin{bmatrix} \mathbf{w}_{o}(\mathbf{s}) \\ \mathbf{w}_{o}'(\mathbf{s}) + \frac{i}{\mathbf{w}_{o}(\mathbf{s})} \end{bmatrix};$$

$$\boldsymbol{\beta}_{o}(\mathbf{s}_{o}) \equiv \mathbf{w}_{o}^{2}(\mathbf{s}_{o}); \ \boldsymbol{\alpha}_{o}(\mathbf{s}_{o}) = -\frac{\boldsymbol{\beta}'(\mathbf{s}_{o})}{2} \equiv -\mathbf{w}_{o}(\mathbf{s}_{o})\mathbf{w}_{o}'(\mathbf{s}_{o});$$
(1)

(a) Propagate the eigen vector along the straight section. Show that β -function can be expressed as

$$\beta(s) = \beta^* + \frac{(s-s^*)^2}{\beta^*};$$

where β^*, s^* can be found from initial conditions (1). Hint, use derivative of β -function to find s^* . β^* is frequently used in colliders to describe the beam envelope in detectors.

(b) Calculate the (betatron) phase advance acquired in the straight section. Express it using β^* , s^* . Write expression for x(s) and x'(s). Show that x'=const.

(c) What is the maximum possible phase advance in a straight section (e.g. when $s_{o}L$ are unlimited)?