Homework 13. Due October 26

Problem 1.5 points. Beam envelope in straight section.
For a one-dimensional motion consider beam propagating in a straight section starting as $\boldsymbol{s}_{\boldsymbol{o}}$ and having length L. Let's eigen vector (beam envelope) at $\boldsymbol{s}_{\boldsymbol{o}}$ is given by:

$$
\begin{gather*}
Y\left(\mathrm{~s}_{o}\right)=\left[\begin{array}{c}
\mathrm{w}_{o}(\mathrm{~s}) \\
\mathrm{w}_{o}^{\prime}(\mathrm{s})+\frac{i}{\mathrm{w}_{o}(\mathrm{~s})}
\end{array}\right] ; \\
\beta_{o}\left(\mathrm{~s}_{o}\right) \equiv \mathrm{w}_{o}^{2}\left(\mathrm{~s}_{o}\right) ; \alpha_{o}\left(\mathrm{~s}_{o}\right)=-\frac{\beta^{\prime}\left(\mathrm{s}_{o}\right)}{2} \equiv-\mathrm{w}_{o}\left(\mathrm{~s}_{o}\right) \mathrm{w}_{o}^{\prime}\left(\mathrm{s}_{o}\right) ; \tag{1}
\end{gather*}
$$

(a) Propagate the eigen vector along the straight section. Show that β-function can be expressed as

$$
\beta(\mathrm{s})=\beta^{*}+\frac{\left(s-s^{*}\right)^{2}}{\beta^{*}}
$$

where β^{*}, s^{*} can be found from initial conditions (1). Hint, use derivative of β-function to find $s^{*} . \beta^{*}$ is frequently used in colliders to describe the beam envelope in detectors.
(b) Calculate the (betatron) phase advance acquired in the straight section. Express it using β^{*}, s^{*}. Write expression for $\mathrm{x}(\mathrm{s})$ and $\mathrm{x}^{\prime}(\mathrm{s})$. Show that $\mathrm{x}{ }^{\prime}=$ const.
(c) What is the maximum possible phase advance in a straight section (e.g. when $\mathrm{s}_{0}, \mathrm{~L}$ are unlimited)?

