
HomeWorks 4-5 – catching up 
 
Problem 1. 7 points. Long elements. 
Prelude: Many elements of accelerators are straight – e.g. coordinate system is simply 
Cartesian (x,y,s=z). It allows you to forget about curvilinear coordinates and use simple 
div and curl and Laplacian… Many of them are DC - e.g. either with constant or nearly 
constant EM fields. Again, Maxwell equations without time derivatives – EM static. 
Furthermore, many of them are also long – e.g. have a constant cross-section with 
transverse size much smaller than the length of the element. It means that you can drop 
derivatives over z. Finally, all current and charges generating field are outside of the 
vacuum where particles propagate – e.g. Maxwell static equations are also homogeneous 
– charge and current densities are zero! It should come as no surprise – everybody like to 
have a solvable problem to rely upon. 
(a) use electro-static equations for a long uniform electric element and show that 

    (1) 

satisfy static Maxwell equations with  being a complex number. Electric elements with 
real  call regular elements (they have plane symmetry!), element with imaginary  are 
called skew .  
(b) use magneto-static equations for a long uniform magnetic element  

   (2) 

satisfy static Maxwell equations with b being a complex number. Magnetic elements with 
imaginary  call regular elements (they have plane symmetry!), element with real  are 
called skew.  
(c) show that arbitrary combination of elements from (1) and (2) is also a solution of 
electrostatic equations. 
 
Note: elements with various n have specific names: n=1 – dipole, n=2 – quadrupole, n=3 
– sextupole, n=4 – octupole, …. Or 2n-pole element. Term “skew” is added as needed to 
names of quadrupole and higher order element. It also obvious that an arbitrary 2n-pole 
“element” can be constricted as combination a regular and a skew fields. 
 
Solution: Most of Maxwell equations are satisfied automatically: 

(a)  

the only non-trivial equations remain are: 

(b)  

What we have to prove is trivial: 
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(b)  

Needless to say, that we discussed that the one of most important features of EM fields is 
principle of superposition: if two fields are satisfying Maxwell equations, then their linear 
combinations also satisfy the equations. 
What is really unusual is that we expressed magnetic field as a gradient of a scalar potential 
– it is only possible in the area where , i.e. in the absence of currents and time 
dependent electric field! Do not try this for AC fields! 
 
Problem 2. 10 points. Edge effects. 
 

(a) We continue with Cartesian (x,y,s=z) coordinates for a straight element. But now 
we will suggest that field in this element depends on z; 

    (3) 

Show that such elements will generate terms in the field which are not a higher order multi-
poles (1) or (2). Prove that a sum of higher order multi-poles with amplitudes dependent 
on z cannot be a solution for edge field.  
 

(b) You proved that simple combination of field multipoles can not describe the edge 
of a magnet. You also learned that we can used Laplacian equation on effective 
field potential: 

 

Let expand the potential in transverse direction while keeping arbitrary dependence along 
the beam propagating axis (s=z) 

 

Derive the condition (connections) between functions . 
 
Solution:  
(a) Similar to problem 1, there is only one not-trivial equation for E or B:  

 

Since uniform x ,y polynomials of n-th order cannot be canceled by those of different order, 
this solution is invalid.  
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(b)  

 

 

It means that a “multipole” of kth order will generate terms  where n=1,…k+2 
No lower order terms are generated! 
 
Problem 3. 8 points. Prove what we discussed in class:  
 

 
where I is unit nxn matrix, A is an arbitrary nxn matrix and  is infinitesimally small real 
number. Term  means that it contains second and higher orders of .  

Hint: first, look on the diagonal elements  first, then see what contribution 

to determinant comes from non-diagonal terms .  
 
Solution: The contribution to determinant from the diagonal elements is  

   (1) 

A generic term containing a non-diagonal element , excludes from the product 
at least two diagonal elements  and . 

 

Since the total number of elements in the product is n, such term contains at least two 
non-diagonal elements, each of which contains . This proves that non-diagonal terms 
can contribute only second and higher order term into . Combining it with (1) 
finishes the proof. 
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