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Accelerator Hamiltonian
Intro: Before we are indulging ourselves on deriving accelerator Hamiltonian, 
let’s discuss what accelerators are about. In practice they are about accelerating 
and circulating beams of relativistic charged particles. Beam – by a definition – is 
a group of particles which propagates along and around a common trajectory, 
which frequently called “orbit” or “reference trajectory”. What is important that 
their motion is continuous, e.g. particles do not separate from the beam and go 
backwards. The later is very important, since the distance along the reference 
trajectory, s, will be used as an independent variable instead of the time. In 
addition, typical beams are confined transversely and usually propagate inside a 
vacuum chamber to avoid scattering. Exceptions are exceptions, and one can 
imagine an “accelerator” in which particles are completely disorganized and go 
everywhere in space in time – needless to say it most likely will be a useless 
device. Thus, let’s focus on practical accelerators operating confined beams of 
charged particles. 

!

A beam of particles in a cathode-ray tube  
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!
!

A magnet cell of an Australian light source: Green is 
a sextupole, yellow is a combined function dipole and 
red  

LHC tunnel: a long periodic lattice of 
superconducting 80 kGs (8T) magnets 

There is a number of very good reason for using s as independent variable: most 
of the accelerator elements are either DC (constant) or slowly varying in time, but 
always have a specific geometry – in other words all accelerators are bolted to the 
floor. Thus, arrival time of a particle into an accelerator element can vary, while 
element position, structure and duration along the reference trajectory is well 
defined. In circular accelerators (such as synchrotrons or storage rings), particles 
circulate for billions and billions of turns traversing the same magnetic structure 
(frequently called magnetic lattice!). This motion is nearly periodic in space along 
the trajectory. 
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It is important for independent variable to be a monotonous function (as is time), 
which requires that the reference particle never stops moving (except possibly at 
the beginning and the end of the reference trajectory).  

Reference trajectories 

 
Fig. 1. Various possible reference trajectories, from a simple straight pass to a 

circular one, though all other possibilities. 
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The reference trajectory is determined by initial 4-momentum of the reference 
particle and the EM field along its trajectory. We should consider that trajectory is 
given (and from   

€ 

! 
r o t( ) we also know the particle’s 4-momentum in each point of 

trajectory) and so satisfy the equation of motion.  
Usually EM fields are designed for the existence of such a trajectory (within 

constrains of Maxwell equation). Herein, the words reference trajectory and orbit 
are used interchangeably.  

Inverting (96 we can write the 4D trajectory at the function of s: 

  

€ 

! r = ! r o(s); t = to(s); ! p = ! p o(s), E = Eo(s).   (97 
with the charge to the designer of accelerator to make it real trajectory: 

  

€ 

d
! 
p o(s)
ds

=
dto(s)

ds
e
! 
E 
! 
r o(s), to(s)( ) +

e
c
! v o(s) ×

! 
B 
! 
r o(s), to(s)( )[ ]# 

$ 
% 

& 

' 
(   (98) 
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Starting from this point, we use following conventions: Derivatives of any 
function with respect to the time will be shown by appropriate number of dots, 
while appropriate number of symbol ′ will be used to indicate derivatives with 
respect to s: 

€ 

" f =
df
ds

; " " f =
d2 f
ds2 ...... ˙ f =

df
dt

; ˙ ̇ f =
d2 f
dt 2 .   (99) 

There is infinite variety of possible reference trajectories. The most popular ones 
are flat, i.e. they lie in a plane. A typical example is the circular orbit of a storage 
ring with a horizontal trajectory. Many of reference orbits are piece-wise 
combinations of trajectories lying in various planes. Still, there are 3D reference 
orbits by design. As the matter of fact, all real reference orbits are 3D because of 
the field errors in magnets, and errors in aligning these magnets. 
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Hence, there is no good reason not to start this discussion from general 3D 
reference trajectory. Fortunately two French mathematicians, Jean Frédéric Frenet 
and Joseph Alfred Serret, in the mid-nineteenth century developed such a 
coordinate system, which is described by the Frenet-Serret formulas in classical 
differential geometry (O.Struik, Dirk J., Lectures on Classical Differential 
Geometry, Addison-Wesley, Reading, Mass, 1961). The Frenet-Serret coordinate 
system often is called the natural coordinate system. One important feature is that 
it has non-diagonal metrics. Hence, we have a bit of differential geometry to spice 
the mix.  

            
Fig. 2. Illustration of Frenet-Serret formulas and system from 

http://en.wikipedia.org/wiki/Frenet-Serret 
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Figures 2 and 3 illustrate the Frenet-Serret coordinate system and define 3 
orthogonal unit vectors: Normal   

€ 

ˆ e 1 =
! n (s) , tangent   

€ 

ˆ e 2 =
! 
τ (s), and normal and bi-

normal  

€ 

ˆ e 3 =
! 
b (s) =

! n × ! τ [ ] :  

  

€ 

! n ⋅ ! τ ( ) =
! 
b ⋅ ! n ( ) =

! 
b ⋅ ! τ ( ) = 0 . 

  

€ 

ˆ e 3 =
 
b 

  

€ 

ˆ e 2 =
 
τ 

  

€ 

ˆ e 1 =
 
n   

€ 

 
τ =

d
 
r o(s)
ds

=
 
r o#

 
n = −

 
r o##
 
r o##

 
b =
 
n ×
 
τ [ ]€ 

e123 =1

 
Fig. 3. Unit vectors in the Frenet-Serret coordinate system and their definitions 
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The reference trajectory must be smooth, with finite second derivatives, 
etc….etc… The position of any particle located in close proximityto the reference 
trajectory can uniquely expressed as 

  

€ 

! 
r =
! 
r o(s) + x ⋅

! 
n (s) + y ⋅

! 
b (s) .    (100) 

i.e., it is fully described by 3 contra-variant coordinates: 

€ 

q1 = x; q2 = s,  q3 = y .     (100-1) 

The vectors 
  

€ 

! n , ! τ ,
! 
b { }  satisfy Frenet-Serret formulae: 

  

€ 

d! τ 
ds

−K(s) ⋅ ! n ; d! n 
ds

= K(s) ⋅ ! τ −κ s( ) ⋅
! 
b ; d
! 
b 

ds
=κ s( ) ⋅

! n ;.   (101) 

where  

€ 

K(s) =1/ρ s( )      (101-1) 

is the curvature of the trajectory, and 

€ 

κ s( ) is its torsion. If the torsion is equal to 
zero, the trajectory remains in one plane, as designed for majority of accelerators. 
Curvature of trajectory is more common – each dipole magnet makes trajectory to 
curve. 
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Proximity to the reference orbit is important for the uniqueness of the extension (100): As shown on the 
figure above, equation (101-2) may have multiple solutions if the requirement of proximity is not applied, i.e, 
the expansion (100) may have multiple branches and mathematically become too involved.  

              
 

Fig. 4. Expansion of particle’s position in Frenet-Serret frame.  
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As shown in Fig.4, the transverse part of the position vector 

  

€ 

! 
r ⊥ = x ⋅

! 
n (s) + y ⋅

! 
b (s)  lies in the plane defined by the normal and by-normal unit 

vectors  

€ 

(! n (s), 
! 
b (s)), while s is defined from equation: 

  

€ 

! 
r −
! 
r o(s)( ) ⋅

! 
τ (s) = 0 .    (101-2) 

Now we expand the differential geometry: 

  

€ 

d
! 
r =

! 
a i

i=1

3

∑ dqi =
! 
n dx +

! 
b dy + 1+ Kx( )

! 
τ +κ

! 
n y −
! 
b x( ){ }ds   (102) 

with the co-variant basis of 

  

€ 

! 
a i =

∂
! 
r 

∂qi ;  ! a 1 =
! 
n ; ! a 2 = 1+ Kx( )

! 
τ +κ

! 
n y −
! 
b x( );  ! a 3 =

! 
b ;   (103) 
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A co-variant basis vector is readily derived from the orthogonal conditions: 

  

€ 

! 
a i
! 
a j = δi

j;  ! a 1 =
! 
n − κy

1+ Kx
! 
τ ; ! a 2 =

! 
τ 

1+ Kx
+κ
! 
n y −
! 
b x( );  ! a 3 =

! 
b + κx

1+ Kx
! 
τ ;  

 (104) 
The components of the co- and contra-variant metric tensors are defined as 
follows: 

  

€ 

gik =
! 
a i ⋅
! 
a k =                   

1 κy 0
κy 1+ Kx( )2

+κ 2 x 2 + y 2( ) −κx
0 −κx 1

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

gik =
! 
a i ⋅
! 
a k =

1
1+ Kx( )2 ⋅

1+ Kx( )2
+κ 2y 2 −κy −κ 2xy

−κy 1 κx
−κ 2xy κx 1+ Kx( )2

+κ 2x 2

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

go = det gik[ ] = 1+ Kx( )2

  (105) 
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Any vector can be expanded about both co- and contra-variant bases, as well can 

  

€ 

! n , ! τ ,
! 
b { } : 

  

€ 

! 
R ≡ Rx

! 
n + Rs

! 
τ + Ry

! 
b ≡ Rk ! a k

k
∑ ≡ Rk

! 
a 

k
∑

k

Rk =
! 
R ⋅
! 
a k; R1 = Rx;R2 = 1+ Kx( )Rs +κ Rx y − Ry x( ); R3 = Ry;

Rk =
! 
R ⋅
! 
a k; R1 = Rx −

κy
1+ Kx

Rs; R2 =
Rs

1+ Kx
+κ Rx y − Ry x( );  R3 = Ry +

κx
1+ Kx

Rs;

 

(106) 
All this is trivial, and finally differential operators will look like: 

  

€ 

! 
∇ ϕ =

! 
a k ∂ϕ
∂qk ;   div

! 
A =

! 
∇ ⋅
! 
A ( ) =

1
go

∂
∂qk go Ak( );

curl
! 
A =

! 
∇ ×
! 
A [ ] =

eikl

go

∂Al

∂qk

! 
a i;  Δϕ =

! 
∇ 2ϕ =

1
go

∂
∂qi go gik ∂ϕ

∂qk

( 

) 
* 

+ 

, 
- 

.  (107) 
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As discussed before, the Hamiltonian of a charged particle in EM field in 
Cartesian coordinate system is 

  

€ 

H(! r ,
! 
P ,t) = c m2c 2 +

! 
P − e

c

! 
A 

# 

$ 
% 

& 

' 
( 
2

+ eϕ , (from Lecture 3/4) 

where the canonical momentum is 
  

! 
P =
! 
p +

e
c
! 
A . Let us explore how we can make 

the transformation to our “curved and twisted” coordinate system. The easiest 
way is to apply canonical transformation with generation function 

  

€ 

F(
! 
P ,qi) = −

! 
P ⋅
! 
r o(s) + x ⋅

! 
n (s) + y ⋅

! 
b (s)( ) .   (108) 

to our new coordinates (101):  

€ 

q1 = x; q2 = s,  q3 = y .     (109) 
with new momenta obtained by simple differentiation 

€ 

P1 = Px;P2 = 1+ Kx( )Ps +κ Pxy − Pyx( ); P3 = Py;  (110) 
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 that alter the appearance of the Hamiltonian (L1.38)
 

€ 

H = c
1+ Kx( )−2 P2 −

e
c
A2

# 

$ 
% 

& 

' 
( +κx P3 −

e
c
A3

# 

$ 
% 

& 

' 
( −κy P1 −

e
c
A1

# 

$ 
% 

& 

' 
( 

# 

$ 
% 

& 

' 
( 

2

+ P1 −
e
c
A1

# 

$ 
% 

& 

' 
( 
2

+ P3 −
e
c
A3

# 

$ 
% 

& 

' 
( 
2

+ m2c 2
+ eϕ

 (111) 
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This is still the Hamiltonian with t as independent variable and three sets of 
canonical pairs 

€ 

q1,P1{ }, q2,P2{ }, q3,P3{ } . Now, we change the independent variable 
to s by the easiest method, that, as always, is using the least-action principle: we 
consider the conjugate momentum to s, P2, as a function of the remaining 
canonical variables: 

€ 

 q1,P1{ },  q3,P3{ },  −t,H{ }   

€ 

S = P1dq
1 + P2(....)ds+ P3dq

3 −Hdt
A

B

∫ ;   δS = 0;  (112)

 
Notably, the coordinates and time, the canonical momenta and the Hamiltonian 
appear in the 4-D scalar product form in the action integral.  

€ 

Pidx
i; x i = ct,x,s,y{ };Pi = H /c,−P1,−P2,−P3{ },i = 0,1,2,3. 

This equivalency of the time and space is fundamental to the relativistic theory.  
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Let’s use s a independent variable and t as one of the coordinates: 

€ 

δSAB = δ Pidq
i −Hdt

A

B

∫
% 

& 
' 

( 

) 
* =

δPidq
i + Pidδq

i +
∂P2
∂qi

δqids+
∂P2
∂Pi

δPids
% 

& 
' 

( 

) 
* 

i=1,3
∑ +

−δHdt −Hdδt +
∂P2
∂t

δtds+
∂P2
∂H

δHds
% 

& 
' 

( 

) 
* 

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

A

B

∫ = 0  

and integrating by parts 

€ 

Piδq
i −Hδt

i=1,3
∑

A

B

≡ 0, equations of motions as functions of 

s: 

δSAB =
δPi

∂P2

∂Pi
ds + dqi

⎛
⎝⎜

⎞
⎠⎟
+δqi ∂P2

∂qi
ds − dPi

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟i=1,3
∑

+ δ t dH + ∂P2

∂ t
ds⎛

⎝⎜
⎞
⎠⎟ +δH

∂P2

∂H
ds − dt⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟A

B

∫ = 0

dqi

ds
= − ∂P2

∂Pi
; dt
ds

= ∂P2

∂H
ds;     dPi

ds
= + ∂P2

∂qii
; dH
ds

= − ∂P2

∂ t

 (113) 
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Or explicitly: 

€ 

" x =
dx
ds

=
∂h*

∂P1

; dP1

ds
= −

∂h*

∂x
;                " y =

dy
ds

=
∂h*

∂P3

; dP3

ds
= −

∂h*

∂y

" t =
dt
ds

=
∂h*

∂Pt

≡ −
∂h*

∂H
;  dPt

ds
= −

∂h*

∂t
→

dH
ds

=
∂h*

∂t

 (114) 

€ 

h* = − 1+ Kx( )
H − eϕ( )2

c 2
−m2c 2 − P1 −

e
c
A1

$ 

% 
& 

' 

( 
) 
2

− P3 −
e
c
A3

$ 

% 
& 

' 

( 
) 
2

+
e
c
A2 +κx P3 −

e
c
A3

$ 

% 
& 

' 

( 
) −κy P1 −

e
c
A1

$ 

% 
& 

' 

( 
) 

   (115) 

Thus, by choosing one of coordinates as independent variable, the new 
Hamiltonian is nothing but its conjugate canonical momentum with a minus sign. 
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The same result can be obtained indirectly (the way frequently used in text books) 
by using equivalency of the Canonical pairs: 

 

H = H (xi ,P1,P2,P3)→
solve!

P2 = P2 (xi ,P1,P2,H )  
rename   Pt = −H ;h* = −P2 (xi ,P1,P2,H )

S = P1 dx + P3 dy + Pz dz − H dt ≡∫
P1 dx − P3 dy − h

* dz + Pt dt∫

     

While this gives the same result, it has an appearance of a trick, not direct 
derivation. Hence, we did it from the least action principle. 
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Applying a canonical transformation that exchanges the coordinate with 
momentum and then employs a new coordinate (old momentum) as the 
independent variable it would turn the old coordinate into the new Hamiltonian. 
In all cases, the Hamiltonian is the function of the remaining canonical variables. 
This capability of the Hamiltonian systems is unique and one we can take 
advantage of. An important restriction is the monotonous behavior of independent 
variable. Otherwise, some or all of the derivatives can be infinite in the point 
where the independent variable stumbles (i.e., where the new time stops).  

The equations (114) and (115) are the general form of the single-particle 
Hamiltonian equation in an accelerator. It undoubtedly is nonlinear (the square 
root signifies relativistic mechanics), and cannot be solved analytically in general. 
Only few specific cases allow such solutions.  
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h* = − 1+ Kx( ) H − eϕ( )2
c2

−m2c2 − P1 −
e
c
A1

⎛
⎝⎜

⎞
⎠⎟
2

− P3 −
e
c
A3

⎛
⎝⎜

⎞
⎠⎟
2

+ e
c
A2 +κ x P3 −

e
c
A3

⎛
⎝⎜

⎞
⎠⎟ −κ y P1 −

e
c
A1

⎛
⎝⎜

⎞
⎠⎟

′x = dx
ds

= ∂h*

∂P1

; dP1

ds
= − ∂h

*

∂ x
;                ′y = dy

ds
= ∂h*

∂P3

; dP3

ds
= − ∂h

*

∂ y

′t = dt
ds

= ∂h*

∂Pt
≡ − ∂h

*

∂H
;  dPt
ds

= − ∂h
*

∂ t
→ dH

ds
= ∂h*

∂ t

Most General Form of 
the Accelerator Hamiltonian

We always have a choice of the reference orbit (e.g. K and κ) as 
well as of the gauge of 4-potential. We can use this flexibility for 

our benefit! 
Next class – we will use a specific gauge to express components 
of 4-potentail as explicit functions of electric and magnetic fields  



23 

Relations between units: 
 corrected typo from class 4 
 



Simple things useful in accelerator physics ���
SGS <->   SI  <->  eV/TeV ���

Typo is corrected !
•  1 meter = 100 cm;    1kg=103 g;     1J = 107 erg; seconds are universal 
•  Speed of the light 2.9979 x 1010 cm/sec ~ 3 x 1010 cm/sec 

•  Electron charge, e         4.803 x 10-10 ESU 1.602 x 10-19 C

•  EM field, Gs         1 Gs = 299.79 (~300) V/cm      1 T =104 Gs
•  Energy 1 eV =1.602 x 10-12 erg =1.602 x 10-19 J  

•  Energy/rigidity (pc) e x 1 Gs cm = 299.79 eV ~ 0.3 keV
•                                       e x 1 T m = 299.79 MeV  ~ 0.3 GeV

24 

I found one useful unit in old British – modern USA system: 
1’ = One foot ~ 30 cm ~ c*10-9 sec   

This how I remember what is one foot. 

 
E = !p2c2 + mc2( )2

We will introduce more “handy” formulae/relations in the future  


