
Getting Start with GPU 
Computing: What, 

Why&How
Tianmu Xin

CASE Seminar, 09142017



Content

• What is GPU?
• What is it good at?
• GPU computing basics

– Architecture
– Advantage.
– Disadvantage.

–How to use it?

–Simple examples.



What is GPU?

● Graphic Processing Unit (GPU).

Nvidia AMD



What is GPU good at?

• 3D video game: Large number of vertices 
need to be updated. 

View of point rotation = Matrix multiplication.



• Parallel computing. 

What is GPU good at?



● Parallelization is the direction.
– OpenMP

– MPI

– OpenCL

– CUDA

More powerful serial solution

Parallel solution.

What is GPU good at?

Or



GPU Computing Basics

• Architecture.

CPU (Intel Sandy Bridge)

Nvidia (GM 107 Maxwell)

Able to run one thread with 
each core simultaneously. 
Namely 1024 threads at the 
same time for this chip.



GPU Computing Basics

Same instruction 
for all cores on 
one streaming 
multiprocessor.

Grid of Threads

Block
 0

Block
 k

Block
 N-1

WARP
A

WARP
B

WARP
C

WARP
A

WARP
B

WARP
C

WARP
A

WARP
B

WARP
C

Thread orgnization.



GPU Computing Basics

• Advantage.
– Single Instruction Multiple Data (SIMD)
e.g. Multiplication of Matrices 
(Embarrassingly Parallel)

C=A×B

C ij=∑
m=1

n

Aim Bmj

To get each elements in C, the instruction is simple: 
n multiplications and n-1 adds. 

A, B, C are nxn matrices.



GPU Computing Basics

• Disadvantage
– SIMD
All threads in one SM (32 threads) execute 
the same instruction, Branching is bad.
e.g. if statement, case switching. 



How to use it?

Host Memory (Mother Board) Global Memory

Shared Memory

Register

Cores

Data Flow Chart

PCIE x16
~15 GB/s

~150 
GB/s

~1.5 TB/s

~10 TB/s

GPU



Example 1

● Typical work flow.

(Matrix multiplication.)
– Allocate,initialize memory blocks on host;

– Allocate memory blocks on device (GPU);

– Transfer host memory to device memory; 



Example 1

Matrix multiplication.(continued)

Simple algorithm: 

One thread calculates 
one element in matrix 
C, fetch data from 
global memory directly.
Problem: Lots of 
redundant memory 
read.

C

B

A



Example 1

Matrix multiplication.(continued)

Take advantage of shared memory: 

Load submatrices of A 
and B into shared 
memory, reuse the 
data to calculate all 
elements in 
submatrices of C. 



Example 1



Example 1

• Performance Comparison 
(single precision float)

For Loop OpenMP 
(4 cores)

Numpy (BLAS) Theoretical 
(4 core i7 2.5 
GHz)

Naïve Shared Mem cuBLAS Theoretical 
Nvidia 
GTX 860M
(640 Core) 
1GHz

CPU GPU

0.1

1

10

100

1000

10000

0.47

1.27

39.65 40 30

140

1170 1280

Gflops



Example 2
Branching is bad

• No Branching: 

• Two Branches:

● Four Branches: 



Example 2



Example 3

• Reduction of array:
Array Size = 256 Million elements,
Data Type = single precision float.
Limitation: Memory Bandwidth.

seq Numpy sum OMP 
(44 threads)

std::accumulate Theoretical 
Bandwidth

Home made Thrust Theoretical 
Bandwidth

CPU (E-2699 22-core) GPU (Quadro M4000)

1

10

100

1000

1.6

3.1

33.3

15.9

37.5
28.6

121.2
187.8

Bandwidth (GB/s)



Example 4

CUDA_OpenGL Interop

3rd order resonance driven by sextuple in ring.

● Simple transport matrix

● Sextuple.
(cos (Φ)+α sin (Φ) β sin(Φ)

−γ sin(Φ) cos (Φ)−α sin(Φ))

Δ x '=−
1
2
S (x2

− y2
),

Δ y '=S x y

Run App.



● 10 times more Gflops/watts compare to CPU 
in some problems.

● GPU is good at solving problems which can 
by decomposed into small SIMD sub routines. 

● Memory bandwidth is still the major bottle 
neck, use shared memory if possible.

● Use Library when available.
● Use Library when available.
● Use Library when available.

Summary


