PHY554: HOMEWORK 2

JUN MA
108747654

1. Problem 1

From the lecture notes, we have

$$
\binom{X\left(s_{2}\right)}{X^{\prime}\left(s_{2}\right)}=M\left(s_{2}, s_{1}\right)\binom{X\left(s_{1}\right)}{X^{\prime}\left(s_{1}\right)}
$$

where the transfer matrix $M\left(s_{2}, s_{1}\right)$ is

$$
\begin{aligned}
M\left(s_{2}, s_{1}\right) & =\left(\begin{array}{cc}
\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \mu+\alpha_{1} \sin \mu\right) & \sqrt{\beta_{1} \beta_{2}} \sin \mu \\
-\frac{1+\alpha_{1} \alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \sin \mu-\frac{\alpha_{1}-\alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \cos \mu & \sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \mu-\alpha_{1} \sin \mu\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sqrt{\beta_{2}} & 0 \\
-\frac{\alpha_{2}}{\sqrt{\beta_{2}}} & \frac{1}{\sqrt{\beta_{1}}}
\end{array}\right)\left(\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta_{1}}} & 0 \\
-\frac{\alpha_{1}}{\sqrt{\beta_{1}}} & \sqrt{\beta_{1}}
\end{array}\right)
\end{aligned}
$$

We can solve $X\left(s_{2}\right)$

$$
X\left(s_{2}\right)=\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \mu+\alpha_{1} \sin \mu\right) \cdot X\left(s_{1}\right)+\sqrt{\beta_{1} \beta_{2}} \sin \mu \cdot X^{\prime}\left(s_{1}\right)
$$

If a particle is kicked at s_{1} by angle θ, we have

$$
\binom{X\left(s_{2}\right)+\Delta x_{2}}{X^{\prime}\left(s_{2}\right)+\Delta x_{2}^{\prime}}=M\left(s_{2}, s_{1}\right)\binom{X\left(s_{1}\right)}{X^{\prime}\left(s_{1}\right)+\theta}
$$

We can solve $X\left(s_{2}\right)+\Delta x_{2}$

$$
X\left(s_{2}\right)+\Delta x_{2}=\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \mu+\alpha_{1} \sin \mu\right) \cdot X\left(s_{1}\right)+\sqrt{\beta_{1} \beta_{2}} \sin \mu \cdot\left(X^{\prime}\left(s_{1}\right)+\theta\right)
$$

Taking difference between $X\left(s_{2}\right)$ and $X\left(s_{2}\right)+\Delta x_{2}$, we have

$$
\Delta x_{2}=\theta \sqrt{\beta_{1} \beta_{2}} \sin \mu
$$

Δx_{2} is proportion to $\sqrt{\beta_{1}}$, and β_{1} is the β function at the kicker location.
To obtain the maximum kicker strength, the kicker should be located in the position where β function reaches maximum. To obtain the minimum kicker strength, the kicker should be located in the position where β function reaches minimum.

2. Problem 2

2.1. Maximum. Maximum betatron functions are located at center of QFs, so a FODO cell is arranged as

$$
Q F / 2 \Rightarrow B \Rightarrow Q D \Rightarrow B \Rightarrow Q F / 2
$$

Assuming the quadrupoles are thin lens, the corresponding transfer matrix is

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2 f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2 f} & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1-\frac{L_{1}^{2}}{2 f^{2}} & 2 L_{1}\left(1+\frac{L_{1}}{2 f}\right) \\
-\frac{L_{1}}{2 f^{2}}\left(1-\frac{L_{1}}{2 f}\right) & 1-\frac{L_{1}^{2}}{2 f^{2}}
\end{array}\right)
\end{aligned}
$$

The transfer matrix can also be written as

$$
M=\left(\begin{array}{cc}
\cos \Phi+\alpha \sin \Phi & \beta \sin \Phi \\
-\gamma \sin \Phi & \cos \Phi-\alpha \sin \Phi
\end{array}\right)
$$

So we can solve that

$$
\begin{aligned}
\cos \Phi & =\frac{1}{2} \operatorname{Tr}(M) \\
& =1-\frac{L_{1}^{2}}{2 f^{2}}
\end{aligned}
$$

And with $\cos \Phi=1-\sin ^{2} \frac{\Phi}{2}$, we can solve that $\sin \frac{\Phi}{2}=\frac{L_{1}}{2 f}$, and we have

$$
\begin{aligned}
\alpha & =0 \\
\beta & =\frac{2 L_{1}\left(1+\frac{L_{1}}{2 f}\right)}{\sin \Phi} \\
& =\frac{2 L_{1}\left(1+\sin \frac{\Phi}{2}\right)}{\sin \Phi}
\end{aligned}
$$

In this problem, number of FODO cells is $n_{F O D O}=12$, circumference is $L=180 \mathrm{~m}$, so $L_{1}=L / n_{F O D O} / 2=7.5 \mathrm{~m}$.
The betatron tunes are $Q_{x}=3.5, Q_{y}=3.4$, so the phase advance for each FODO cell should be

$$
\begin{aligned}
\Phi_{x} & =\frac{2 \pi Q_{x}}{n_{F O D O}} \\
& =\frac{7 \pi}{12} \\
\Phi_{y} & =\frac{2 \pi Q_{y}}{n_{F O D O}} \\
& =\frac{6.8 \pi}{12}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\beta_{x, \max } & =\frac{2 L_{1}\left(1+\sin \frac{\Phi_{x}}{2}\right)}{\sin \Phi_{x}} \\
& =27.85 m \\
\beta_{y, \max } & =\frac{2 L_{1}\left(1+\sin \frac{\Phi_{y}}{2}\right)}{\sin \Phi_{y}} \\
& =27.25 m
\end{aligned}
$$

2.2. Minimum. Minimum betatron functions are located at center of QDs, so a FODO cell is arranged as

$$
Q D / 2 \Rightarrow B \Rightarrow Q F \Rightarrow B \Rightarrow Q D / 2
$$

Assuming the quadrupoles are thin lens, the corresponding transfer matrix is

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{2 f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{2 f} & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1-\frac{L_{1}^{2}}{2 f^{2}} & 2 L_{1}\left(1-\frac{L_{1}}{2 f}\right) \\
-\frac{L_{1}}{2 f^{2}}\left(1+\frac{L_{1}}{2 f}\right) & 1-\frac{L_{1}^{2}}{2 f^{2}}
\end{array}\right)
\end{aligned}
$$

The transfer matrix can also be written as

$$
M=\left(\begin{array}{cc}
\cos \Phi+\alpha \sin \Phi & \beta \sin \Phi \\
-\gamma \sin \Phi & \cos \Phi-\alpha \sin \Phi
\end{array}\right)
$$

So we can solve that

$$
\begin{aligned}
\cos \Phi & =\frac{1}{2} \operatorname{Tr}(M) \\
& =1-\frac{L_{1}^{2}}{2 f^{2}}
\end{aligned}
$$

And with $\cos \Phi=1-\sin ^{2} \frac{\Phi}{2}$, we can solve that $\sin \frac{\Phi}{2}=\frac{L_{1}}{2 f}$, and we have

$$
\begin{aligned}
\alpha & =0 \\
\beta & =\frac{2 L_{1}\left(1-\frac{L_{1}}{2 f}\right)}{\sin \Phi} \\
& =\frac{2 L_{1}\left(1-\sin \frac{\Phi}{2}\right)}{\sin \Phi}
\end{aligned}
$$

In this problem, number of FODO cells is $n_{F O D O}=12$, circumference is $L=180 \mathrm{~m}$, so $L_{1}=L / n_{F O D O} / 2=7.5 \mathrm{~m}$.
The betatron tunes are $Q_{x}=3.5, Q_{y}=3.4$, so the phase advance for each FODO cell should be

$$
\begin{aligned}
\Phi_{x} & =\frac{2 \pi Q_{x}}{n_{F O D O}} \\
& =\frac{7 \pi}{12} \\
\Phi_{y} & =\frac{2 \pi Q_{y}}{n_{F O D O}} \\
& =\frac{6.8 \pi}{12}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\beta_{x, \min } & =\frac{2 L_{1}\left(1-\sin \frac{\Phi_{x}}{2}\right)}{\sin \Phi_{x}} \\
& =3.21 m \\
\beta_{y, \min } & =\frac{2 L_{1}\left(1-\sin \frac{\Phi_{y}}{2}\right)}{\sin \Phi_{y}} \\
& =3.42 m
\end{aligned}
$$

2.3. Chamber size. Now we have maximum of betatron functions and RMS beam emittance, we can calculate the RMS beam size

$$
\begin{aligned}
\sigma_{x} & =\sqrt{\beta_{x, \text { max }} \varepsilon} \\
& =\sqrt{27.85 \cdot 1 e-6} \\
& =5.28 e-3 m \\
\sigma_{y} & =\sqrt{\beta_{y, \text { max }} \varepsilon} \\
& =\sqrt{27.25 \cdot 1 e-6} \\
& =5.22 e-3 m
\end{aligned}
$$

As we know, in a 1D normal distribution, integral of density function from -8σ to 8σ will be more than 99%. So if we take $8 \cdot \max \left(\sigma_{x}, \sigma_{y}\right)$ as the chamber radius, the vacuum chamber will be large enough to house such beam. So the vacuum chamber size should be at least $4.224 \mathrm{e}-2 \mathrm{~m}$ in radius or $8.448 \mathrm{e}-2 \mathrm{~m}$ in diameter.

3. Problem 3

Given a distribution $\rho\left(X, X^{\prime}\right)$ with $\int \rho\left(X, X^{\prime}\right) d X d X^{\prime}=1$, we have

$$
\begin{aligned}
<X> & =\int X \rho\left(X, X^{\prime}\right) d X d X^{\prime} \\
<X^{\prime}> & =\int X^{\prime} \rho\left(X, X^{\prime}\right) d X d X^{\prime} \\
\sigma_{X}^{2} & =\int(X-<X>)^{2} \rho\left(X, X^{\prime}\right) d X d X^{\prime} \\
\sigma_{X^{\prime}}^{2} & =\int\left(X^{\prime}-<X^{\prime}>\right)^{2} \rho\left(X, X^{\prime}\right) d X d X^{\prime} \\
\sigma_{X X^{\prime}} & =\int(X-<X>)\left(X^{\prime}-<X^{\prime}>\right) \rho\left(X, X^{\prime}\right) d X d X^{\prime}
\end{aligned}
$$

And we can simplify $\sigma_{X}^{2}, \sigma_{X^{\prime}}^{2}, \sigma_{X X^{\prime}}$ as

$$
\begin{aligned}
\sigma_{X}^{2} & =<X^{2}>-<X>^{2} \\
\sigma_{X^{\prime}}^{2} & =<X^{\prime 2}>-<X^{\prime}>^{2} \\
\sigma_{X X^{\prime}} & =<X X^{\prime}>-<X><X^{\prime}>
\end{aligned}
$$

If we take derivative over s, we have

$$
\begin{aligned}
\frac{d \sigma_{X}^{2}}{d s} & =2<X X^{\prime}>-2<X><X^{\prime}> \\
\frac{d \sigma_{X^{\prime}}^{2}}{d s} & =2<X^{\prime} X^{\prime \prime}>-2<X^{\prime}><X^{\prime \prime}> \\
\frac{d \sigma_{X X^{\prime}}}{d s} & =<X^{\prime 2}>-<X^{\prime}>^{2}-<X><X^{\prime \prime}>+<X X^{\prime \prime}>
\end{aligned}
$$

Note that X satisfies the function

$$
X^{\prime \prime}+K X=0
$$

So we can replace $X^{\prime \prime}$ by $-K X$.
And emittance is defined as

$$
\varepsilon^{2}=\sigma_{X}^{2} \sigma_{X^{\prime}}^{2}-\sigma_{X X^{\prime}}^{2}
$$

Therefore

$$
\begin{aligned}
\frac{d \varepsilon^{2}}{d s}= & \sigma_{X}^{2} \frac{d \sigma_{X}^{2}}{d s}+\sigma_{X^{\prime}}^{2} \frac{d \sigma_{X}^{2}}{d s}-2 \sigma_{X X^{\prime}} \frac{d \sigma_{X X^{\prime}}}{d s} \\
= & \left(<X^{2}>-<X>^{2}\right)\left(2<X^{\prime} X^{\prime \prime}>-2<X^{\prime}><X^{\prime \prime}>\right) \\
& +\left(<X^{\prime 2}>-<X^{\prime}>^{2}\right)\left(2<X X^{\prime}>-2<X><X^{\prime}>\right) \\
& -2\left(<X X^{\prime}>-<X><X^{\prime}>\right)\left(<X^{\prime 2}>-<X^{\prime}>^{2}-<X><X^{\prime \prime}>+<X X^{\prime \prime}>\right) \\
= & \left(<X^{2}>-<X>^{2}\right)\left(-2 K<X X^{\prime}>+2 K<X><X^{\prime}>\right) \\
& +\left(<X^{\prime 2}>-<X^{\prime}>^{2}\right)\left(2<X X^{\prime}>-2<X><X^{\prime}>\right) \\
& -2\left(<X X^{\prime}>-<X><X^{\prime}>\right)\left(<X^{\prime 2}>-<X^{\prime}>^{2}+K<X>^{2}-K<X^{2}>\right) \\
= & 2 K\left(<X^{2}>-<X>^{2}\right)\left(<X><X^{\prime}>-<X X^{\prime}>\right) \\
& +2\left(<X^{\prime 2}>-<X^{\prime}>^{2}\right)\left(<X X^{\prime}>-<X><X^{\prime}>\right) \\
& -2\left(<X X^{\prime}>-<X><X^{\prime}>\right)\left(<X^{\prime 2}>-<X^{\prime}>{ }^{2}\right) \\
& -2 K\left(<X X^{\prime}>-<X><X^{\prime}>\right)\left(<X>^{2}-<X^{2}>\right) \\
= & 0
\end{aligned}
$$

Note that the two terms with K are canceled and the two terms without K are canceled. So we have

$$
\frac{d \varepsilon^{2}}{d s}=0
$$

