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1. Problem 1

From the lecture notes, we have(
X(s2)
X ′(s2)

)
= M(s2, s1)

(
X(s1)
X ′(s1)

)
where the transfer matrix M(s2, s1) is

M(s2, s1) =

 √
β2

β1
(cosµ+ α1 sinµ)

√
β1β2 sinµ

− 1+α1α2√
β1β2

sinµ− α1−α2√
β1β2

cosµ
√

β2

β1
(cosµ− α1 sinµ)


=

( √
β2 0

− α2√
β2

1√
β1

)(
cosµ sinµ
− sinµ cosµ

)( 1√
β1

0

− α1√
β1

√
β1

)

We can solve X(s2)

X(s2) =

√
β2

β1
(cosµ+ α1 sinµ) ·X(s1) +

√
β1β2 sinµ ·X ′(s1)

If a particle is kicked at s1 by angle θ, we have(
X(s2) + ∆x2

X ′(s2) + ∆x′2

)
= M(s2, s1)

(
X(s1)

X ′(s1) + θ

)
We can solve X(s2) + ∆x2

X(s2) + ∆x2 =

√
β2

β1
(cosµ+ α1 sinµ) ·X(s1) +

√
β1β2 sinµ · (X ′(s1) + θ)

Taking difference between X(s2) and X(s2) + ∆x2, we have

∆x2 = θ
√
β1β2 sinµ

∆x2 is proportion to
√
β1, and β1 is the β function at the kicker location.

To obtain the maximum kicker strength, the kicker should be located in the position
where β function reaches maximum. To obtain the minimum kicker strength, the
kicker should be located in the position where β function reaches minimum.
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2. Problem 2

2.1. Maximum. Maximum betatron functions are located at center of QFs, so a
FODO cell is arranged as

QF/2⇒ B ⇒ QD ⇒ B ⇒ QF/2

Assuming the quadrupoles are thin lens, the corresponding transfer matrix is

M =

(
1 0
− 1

2f 1

)(
1 L1

0 1

)(
1 0
1
f 1

)(
1 L1

0 1

)(
1 0
− 1

2f 1

)

=

(
1− L2

1

2f2 2L1(1 + L1

2f )

− L1

2f2 (1− L1

2f ) 1− L2
1

2f2

)

The transfer matrix can also be written as

M =

(
cos Φ + α sin Φ β sin Φ
−γ sin Φ cos Φ− α sin Φ

)
So we can solve that

cos Φ =
1

2
Tr(M)

= 1− L2
1

2f2

And with cos Φ = 1− sin2 Φ
2 , we can solve that sin Φ

2 = L1

2f , and we have

α = 0

β =
2L1(1 + L1

2f )

sin Φ

=
2L1(1 + sin Φ

2 )

sin Φ

In this problem, number of FODO cells is nFODO = 12, circumference is L = 180m,
so L1 = L/nFODO/2 = 7.5m.
The betatron tunes are Qx = 3.5, Qy = 3.4, so the phase advance for each FODO
cell should be

Φx =
2πQx
nFODO

=
7π

12

Φy =
2πQy
nFODO

=
6.8π

12
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Therefore

βx,max =
2L1(1 + sin Φx

2 )

sin Φx
= 27.85m

βy,max =
2L1(1 + sin

Φy

2 )

sin Φy
= 27.25m

2.2. Minimum. Minimum betatron functions are located at center of QDs, so a
FODO cell is arranged as

QD/2⇒ B ⇒ QF ⇒ B ⇒ QD/2

Assuming the quadrupoles are thin lens, the corresponding transfer matrix is

M =

(
1 0
1

2f 1

)(
1 L1

0 1

)(
1 0
− 1
f 1

)(
1 L1

0 1

)(
1 0
1

2f 1

)

=

(
1− L2

1

2f2 2L1(1− L1

2f )

− L1

2f2 (1 + L1

2f ) 1− L2
1

2f2

)
The transfer matrix can also be written as

M =

(
cos Φ + α sin Φ β sin Φ
−γ sin Φ cos Φ− α sin Φ

)
So we can solve that

cos Φ =
1

2
Tr(M)

= 1− L2
1

2f2

And with cos Φ = 1− sin2 Φ
2 , we can solve that sin Φ

2 = L1

2f , and we have

α = 0

β =
2L1(1− L1

2f )

sin Φ

=
2L1(1− sin Φ

2 )

sin Φ

In this problem, number of FODO cells is nFODO = 12, circumference is L = 180m,
so L1 = L/nFODO/2 = 7.5m.
The betatron tunes are Qx = 3.5, Qy = 3.4, so the phase advance for each FODO
cell should be

Φx =
2πQx
nFODO

=
7π

12

Φy =
2πQy
nFODO

=
6.8π

12
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Therefore

βx,min =
2L1(1− sin Φx

2 )

sin Φx
= 3.21m

βy,min =
2L1(1− sin

Φy

2 )

sin Φy
= 3.42m

2.3. Chamber size. Now we have maximum of betatron functions and RMS beam
emittance, we can calculate the RMS beam size

σx =
√
βx,maxε

=
√

27.85 · 1e− 6

= 5.28e− 3m

σy =
√
βy,maxε

=
√

27.25 · 1e− 6

= 5.22e− 3m

As we know, in a 1D normal distribution, integral of density function from −8σ to
8σ will be more than 99%. So if we take 8 ·max(σx, σy) as the chamber radius, the
vacuum chamber will be large enough to house such beam. So the vacuum chamber
size should be at least 4.224e-2m in radius or 8.448e-2m in diameter.

3. Problem 3

Given a distribution ρ(X,X ′) with
∫
ρ(X,X ′)dXdX ′ = 1, we have

< X > =

∫
Xρ(X,X ′)dXdX ′

< X ′ > =

∫
X ′ρ(X,X ′)dXdX ′

σ2
X =

∫
(X− < X >)2ρ(X,X ′)dXdX ′

σ2
X′ =

∫
(X ′− < X ′ >)2ρ(X,X ′)dXdX ′

σXX′ =

∫
(X− < X >)(X ′− < X ′ >)ρ(X,X ′)dXdX ′

And we can simplify σ2
X , σ

2
X′ , σXX′ as

σ2
X = < X2 > − < X >2

σ2
X′ = < X ′2 > − < X ′ >2

σXX′ = < XX ′ > − < X >< X ′ >
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If we take derivative over s, we have

dσ2
X

ds
= 2 < XX ′ > −2 < X >< X ′ >

dσ2
X′

ds
= 2 < X ′X ′′ > −2 < X ′ >< X ′′ >

dσXX′

ds
= < X ′2 > − < X ′ >2 − < X >< X ′′ > + < XX ′′ >

Note that X satisfies the function

X ′′ +KX = 0

So we can replace X ′′ by −KX.
And emittance is defined as

ε2 = σ2
Xσ

2
X′ − σ2

XX′

Therefore

dε2

ds
= σ2

X

dσ2
X′

ds
+ σ2

X′
dσ2

X

ds
− 2σXX′

dσXX′

ds

=
(
< X2 > − < X >2

)
(2 < X ′X ′′ > −2 < X ′ >< X ′′ >)

+
(
< X ′2 > − < X ′ >2

)
(2 < XX ′ > −2 < X >< X ′ >)

−2 (< XX ′ > − < X >< X ′ >)
(
< X ′2 > − < X ′ >2 − < X >< X ′′ > + < XX ′′ >

)
=

(
< X2 > − < X >2

)
(−2K < XX ′ > +2K < X >< X ′ >)

+
(
< X ′2 > − < X ′ >2

)
(2 < XX ′ > −2 < X >< X ′ >)

−2 (< XX ′ > − < X >< X ′ >)
(
< X ′2 > − < X ′ >2 +K < X >2 −K < X2 >

)
= 2K

(
< X2 > − < X >2

)
(< X >< X ′ > − < XX ′ >)

+2
(
< X ′2 > − < X ′ >2

)
(< XX ′ > − < X >< X ′ >)

−2 (< XX ′ > − < X >< X ′ >)
(
< X ′2 > − < X ′ >2

)
−2K (< XX ′ > − < X >< X ′ >)

(
< X >2 − < X2 >

)
= 0

Note that the two terms with K are canceled and the two terms without K are
canceled. So we have

dε2

ds
= 0


