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Classical Cyclotron1308

Abstract This chapter introduces the classical cyclotron, and the theoretical material1309

needed for the simulation exercises. It begins with a brief reminder of the historical1310

context, and continues with beam optics and with the principles and methods which1311

the classical cyclotron leans on, including1312

- ion orbit in a cyclic accelerator,1313

- weak focusing and periodic transverse motion,1314

- revolution period and isochronism,1315

- voltage gap and resonant acceleration,1316

- the cyclotron equation.1317

The simulation of a cyclotron dipole will either resort to an analytical model of the1318

field: the optical element DIPOLE, or will resort to using a field map together with1319

the keyword TOSCA to handle it and raytrace through. An additional accelerator1320

device needed in the exercises, CAVITE, simulates a local oscillating voltage. Run-1321

ning a simulation generates a variety of output files, including the execution listing1322

zgoubi.res, always, and other zgoubi.plt, zgoubi.CAVITE.out, zgoubi.MATRIX.out,1323

etc., aimed at looking up program execution, storing data for post-treatment, produc-1324

ing graphs, etc. Additional keywords are introduced as needed, such as the matching1325

procedure FIT[2]; FAISCEAU and FAISTORE which log local particle data in1326

zgoubi.res or in a user defined ancillary file; MARKER; the ’system call’ command1327

SYSTEM; REBELOTE, a ’do loop’; and some more. This chapter introduces in addi-1328

tion to spin motion in accelerator magnets; dedicated simulation exercises include a1329

variety of keywords: SPNTRK, a request for spin tracking, SPNPRT or FAISTORE,1330

to log spin vector components in respectively zgoubi.res or some ancillary file, and1331

the “IL=2” flag to log stepwise particle data, including spin vector, in zgoubi.plt file.1332

Simulations include deriving transport matrices, beam matrix, optical functions and1333

their transport, from rays, using MATRIX and TWISS keywords.1334
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Notations used in the Text1335

B; B0 magnetic field; at a reference radius R0

B; BR; By field vector; radial component; axial component

BR = p/q magnetic rigidity

C; C0 orbit length, C = 2πR; reference, C0 = 2πR0

E ion energy, E = γm0c2

frev, frf revolution and RF voltage frequencies

G gyromagnetic anomaly, G = 1.7928 for proton, −4.184 for helion

h harmonic number, an integer, h = frf/ frev
k = R

B
dB
dR

radial field index

m; m0; M ion mass; rest mass; in units of MeV/c2

p; p; p0 ion momentum vector; its modulus; reference

q ion charge

R; R0; RE equilibrium orbit radius; reference, R(p0); at energy E

RF Radio-Frequency

s path variable

Trev, Trf revolution and accelerating voltage periods

v; v ion velocity vector; its modulus

V(t); V̂ oscillating voltage; its peak value

W kinetic energy, W = 1
2 mv

2

x, x’, y, y’ radial and axial coordinates
[
(∗)′ = d(∗)

ds

]

α trajectory deviation, or momentum compaction

β = v
c
; β0; βs normalized ion velocity; reference; synchronous

γ = E/m0c2 Lorentz relativistic factor

∆p, δp momentum offset

εu Courant-Snyder invariant (u : x, r, y, l,Y, Z, s, etc.)

θ azimuthal angle

φ RF phase at ion arrival at the voltage gap

1336

2.1 Introduction1337

Cyclotrons are the most widespread type of accelerator, today, used by thousands,1338

with the production of isotopes as the dominant application. This chapter is devoted1339

to the first cyclic accelerator: the early 1930s classical cyclotron which its concept1340

limited to low energy, a few 10s of MeV/nucleon. This limitation overcome a decade1341

later by the azimuthally varying field (AVF) technique, this is the subject of the next1342

chapter.1343

The classical cyclotron is based on four main principles:1344

(i) the use of a cylindrical-symmetry magnetic field in the gap of an electromagnet1345

(Fig. 2.1) to maintain ions on a circular trajectory1346
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(ii) transverse vertical confinement of the beam obtained by a slow radial decrease1347

of the magnetic field. A technique known as weak focusing, applied over the years1348

in all cyclic accelerators: microtron, betatron, synchrocyclotron, synchrotron. These1349

weak focusing accelerator species all are still part of the landscape today1350

(iii) resonant acceleration by synchronization of a fixed-frequency accelerating volt-1351

age on the quasi-constant revolution time (Fig. 2.1). and1352

(iv) use of high voltage, to mitigate the effect of the turn-by-turn RF phase slip.1353

Resonant acceleration has the advantage that a small gap voltage is enough to1354

accelerate with, in principle, no energy limitation, by contrast with the electrostatic1355

techniques developed at the time, which required the generation of the full voltage,1356

such as the Van de Graaf which was limited by sparking at a few tens of megavolts.1357

The cyclotron concept goes back to the late 1920s [1], yet it was not until the early1358

1930s when a cyclotron was first brought to operation [2]. The principles are sum-1359

marized in Fig. 2.1: an oscillating voltage is applied on a pair of electrodes (“dees”)1360

forming an accelerating gap and placed between the two poles of an electromagnet.1361

Ions reaching the gap during the acceleration phase of the voltage wave experience1362

an energy boost; no field is experienced inside the dees. Under the effect of energy1363

increase at the gap every half-revolution, they spiral out in the quasi-constant field1364

of the dipole.
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Fig. 2.1 Left: a cyclotron electromagnet, namely here that used for a model of Berkeley’s 184-
inch cyclotron in the early 1940s [3]. Magnetic field in the gap decreases with radius. Right: a
schematic of the resonant acceleration motion; gap after gap, accelerated ions spiral out (bottom)
in the quasi-uniform field (top). A double-dee (or, a variant, a single-dee facing a slotted electrode)
forms an accelerating gap. The fixed-frequency oscillating voltage V (t) applied is a harmonic
of the revolution frequency. Ions experiencing proper voltage phase at the gap, turn by turn, are
accelerated. A septum electrode allows beam extraction

1365

The first cyclotron achieved acceleration of H+
2

hydrogen ions to 80 keV [2], at1366

Berkeley in 1931. The apparatus used a dee-shaped electrode vis-à-vis a slotted1367

electrode forming a voltage gap, the ensemble housed in a 5 in diameter vacuum1368

chamber and placed in the 1.3 Tesla field of an electromagnet. A ≈ 12 MHz vacuum1369

tube oscillator provided 1 kVolt gap voltage.1370
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One goal foreseen in developing this technology was the acceleration of protons1371

to MeV energy range for the study of atom nucleus. And in background, a wealth1372

of potential applications. An 11 in cyclotron followed which delivered a 0.01 µA1373

H+
2

beam at 1.22 MeV [4], and a 27 in cyclotron later reached 6 MeV (Fig. 2.2) [5].1374

Targets were mounted at the periphery of the 11-inch cyclotron, disintegrations were1375

observed in 1932. And, in 1933: ‘The neutron had been identified by Chadwick1376

in 1932. By 1933 we were producing and observing neutrons from every target1377

bombarded by deuterons.“ [5, M.S. Livingston, p. 22].1378
V

Fig. 2.2 Berkeley 27-inch cyclotron, brought to operation in 1934, accelerated deuterons up to
6 MeV. Left: a double-dee (seen in the vacuum chamber, cover off), 22 in diameter, creates an
accelerating gap: 13 kV, 12 MHz radio frequency voltage is applied for deuterons for instance
(through two feed lines seen at the top right corner). This apparatus was dipped in the 1.6 Tesla
dipole field of a 27 in diameter, 75 ton, electromagnet. A slight decrease of the dipole field with
radius, from the center of the dipole, ensures axial beam focusing. With their energy increasing,
ions spiral out from the center to eventually strike a target (red arrow). Right: ionization of the air
by the extracted beam (1936); the view also shows the vacuum chamber squeezed between the pole
pieces of the electromagnet [3]

Fig. 2.3 Berkeley 184 in di-
ameter, 4,000 ton cyclotron
during construction [3]. The
coil windings around both of
the magnetic poles are clearly
visible. Following the inven-
tion of longitudinal focusing
it was actually operated as
a synchrocyclotron, in 1946.
The man on the right gives the
scale
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A broad range of applications were foreseen: “At this time biological experiments1379

were started. [...] Also at about this same time the first radioactive tracer experiments1380

on human beings were tried [...] simple beginnings of therapeutic use, coming a1381

little bit later, in which neutron radiation was used, for instance, in the treatment1382

of cancer. [...] Another highlight from 1936 was the first time that anyone tried1383

to make artificially a naturally occurring radio-nuclide. (a bismuth isotope) [5,1384

McMillan, p. 26].1385

Berkeley’s 184 in cyclotron, the largest (Fig. 2.3), commissioned in 1941, was to1386

accelerate Deuterons to 100 MeV for meson production. It’s magnet however was1387

diverted to the production of uranium for the atomic bomb during the second world1388

war years [1]. Re-started in 1946, as a consequence of the discovery of phase focusing1389

the accelerator was actually operated as a synchrocyclotron (an accelerator species1390

addressed in Chap. 6).1391

Limitation in energy1392

The understanding of the dynamics of ions in the classical cyclotron took some time,1393

and brought two news, a bad one and a good one,1394

(i) the bad one first: the energy limitation. A consequence of the loss of isochro-1395

nism resulting from the relativistic increase of the ion mass so that “[...] it seems1396

useless to build cyclotrons of larger proportions than the existing ones [...] an accel-1397

erating chamber of 37 in radius will suffice to produce deuterons of 11 MeV energy1398

which is the highest possible [...]” [6], or in a different form: “If you went to graduate1399

school in the 1940s, this inequality (−1 < k < 0) was the end of the discussion of1400

accelerator theory” [7].1401

(ii) the good news now: the energy limit which results from the mass increase can1402

be removed by splitting the magnetic pole into valley and hill field sectors. This is1403

the azimuthally varying field (AVF) cyclotron technology, due to L.H. Thomas in1404

1938 [8]. It took some years to see effects of this breakthrough (Fig. 2.4). The AVF1405

is the object of Chap. 3.1406

With the progress in magnet computation tools, in computer speed and in beam1407

dynamics simulations, the AVF cyclotron ends up being essentially as simple to1408

design and build: it has in a general manner supplanted the classical cyclotron in all1409

energy domains (Fig. 2.4).1410

2.2 Basic Concepts and Formulæ1411

The cyclotron was conceived as a means to overcome the technological difficulty of1412

a long series of high electrostatic voltage electrodes in a linear layout, by, instead,1413

repeated recirculation through a single accelerating gap in synchronism with an1414

oscillating voltage (Fig. 2.5). As the accelerated bunch spirals out in the uniform1415

magnetic field, the velocity increase comes with an increase in orbit length; the1416
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Fig. 2.4 Evolution of the
number of the various cy-
clotron species, over the
years [9]. From the 1950s on
the AVF cyclotron rapidly sup-
planted the 1930s’ classical
cyclotron

Fig. 2.5 Resonant accelera-
tion: in an h = 1 configuration
an ion bunch meets an oscil-
lating field E across gap A,
at time t , at an accelerating
phase; it meets again, half a
turn later, at time t+Trev/2, the
accelerating phase across gap
A’, and so on: the magnetic
field recirculates the bunch
through the gap, repeatedly.
Higher harmonic allows more
bunches: the next possibility
in the present configuration is
h=3, and 3 bunches, 120 de-
grees apart, in synchronism
with E
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Fig. 2.6 An ion which reaches
the double-dee gap at the
RF phase ωrf t = φA or
ωrf t = φB is accelerated. If it
reaches the gap at ωrf t = φC

it is decelerated
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net result is a slow increase of the revolution period Trev with energy, yet, with1417

appropriate fixed frf ≈ h/Trev the revolution motion and the oscillating voltage can1418

be maintained in sufficiently close synchronism, Trev ≈ Trf/h, that the bunch will1419

transit the voltage gap at an accelerating phase (Fig. 2.6) over a large enough number1420

of turns that it acquires a significant energy boost.1421

The orbital motion quantities: radius R, ion rigidity BR, revolution frequency1422

frev, satisfy1423

BR =
p

q
, 2π frev = ωrev =

v

R
=

qB

m
=

qB

γm0
(2.37)

These relationships hold at all γ, so covering the classical cyclotron domain (v ≪ c,1424

γ ≈ 1) as well as the isochronous cyclotron (in which the ion energy increase is1425

commensurate with its mass). To give an idea of the revolution frequency, in the1426

limit γ = 1, for protons, one has frev/B = q/2πm = 15.25 MHz/T.1427

The cyclotron design sets the constant RF frequency frf = ωrf/2π at an interme-1428

diate value of h frev along the acceleration cycle. The energy gain, or loss, by the ion1429

when transiting the gap, at time t, is1430

∆W(t) = qV̂ sin φ(t) with φ(t) = ωrft − ωrevt + φ0 (2.38)

with φ its phase with respect to the RF signal at the gap (Fig. 2.6), φ0 = φ(t = 0),1431

and ωrevt the orbital angle. Assuming constant field B, the increase of the revolution1432

period with ion energy satisfies1433

∆Trev

Trev
= γ − 1 (2.39)

The mis-match so induced between the RF and cyclotron frequencies is a turn-by-turn1434

cumulative effect and sets a limit to the tolerable isochronism defect, ∆Trev/Trev ≈1435

2 − 3%, or highest velocity β = v/c ≈ 0.22. This results for instance in a practical1436

limitation to ≈ 25 MeV for protons, and ≈ 50 MeV for D and α particles, a limit1437

however dependent on energy gain per turn.1438

Over time multiple-gap accelerating structures where developed, whereby a1439

“multiple-∆” electrode pattern substitutes to a “double-D”. An example is GANIL1440

C0 injector with its 4 accelerating gaps and h = 4 and h = 8 RF harmonic opera-1441

tion [10].1442

2.2.1 Fixed-Energy Orbits, Revolution Period1443

In a laboratory frame (O;x,y,z), with (O;x,z) the bend plane (Fig. 2.7), assume

B|y=0 = By , constant. An ion is launched from the origin with a velocity

v =

(
dx

dt
,

dy

dt
,

dz

dt

)
= (v sinα, 0, v cosα)
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at an angle α from the z-axis. Solving

Fig. 2.7 Circular motion of
an ion in the plane normal
to a uniform magnetic field
B. The orbit is centered
at xC = −v cosα/ωrev,
zC = v sinα/ωrev, its radius
is v/ωrev

O

z
α

V

x

B

C

cz xc

y

1444

mÛv = qv × B (2.40)

with B = (0, By, 0) yields the parametric equations of motion1445





x(t) = v

ωrev
cos(ωrevt − α) − v cosα

ωrev
y(t) = constant

z(t) = v

ωrev
sin(ωrevt − α) + v sinα

ωrev

(2.41)

which result in1446

(
x +

v cosα

ωrev

)2

+

(
z − v sinα

ωrev

)2

=

(
v

ωrev

)2

(2.42)

a circular trajectory of radius R = v/ωrev centered at (xC, zC) = (− v cosα
ωrev
, v sinα

ωrev
).1447

Stability of the cyclic motion - The initial velocity vector defines a reference closed1448

orbit in the median plane of the cyclotron dipole; a small perturbation in α or v1449

results in a new orbit in the vicinity of the reference. An axial velocity component vy1450

on the other hand, causes the ion to drift away from the reference, vertically, linearly1451

with time, as there is no axial restoring force. The next Section will investigate the1452

necessary field property to ensure both horizontal and vertical confinement of the1453

cyclic motion in the vicinity of a reference orbit in the median plane.1454

2.2.2 Weak Focusing1455
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In the early accelerated turns in a classical cyclotron (central region of the electro-1456

magnet, energy up to tens of keV/u), the accelerating electric field provides vertical1457

focusing for particles with proper RF phase [11, Sect. 8], whereas a flat magnetic1458

field with uniformity dB/B < 10−4 is sufficient to maintain isochronism. Beyond1459

this low energy region however, at greater radii, a magnetic field gradient must be1460

introduced to ensure transverse stability: field must decrease with R.1461

Fig. 2.8 Moving frame
(M0; s, x, y) along the ref-
erence circular orbit. The cur-
vature 1/R0 is constant along
the orbit and (M0; s, x, y)
can be considered equiva-
lent to the cylindrical frame
(C; θ, R0, y)

   

B

reference

0
M

M x

y

v   

s

C

r(s)

0
R

Ion coordinates in the following are defined in the moving frame (M0; s, x, y)1462

(Fig. 2.8), which moves along the reference orbit (radius R0), with its origin M01463

the projection of ion location M on the reference orbit; the s axis is tangent to the1464

latter, the x axis is normal to s, the y axis is normal to the bend plane. Median-plane1465

symmetry of the field is assumed, thus the radial field component BR |y=0 = 0 at all1466

R (Fig. 2.9).1467

Consider small motion excursions x(t) = r(t) − R0 ≪ R0; introduce Taylor1468

expansion of the field components,1469

By(R0 + x) = By(R0) + x
∂By

∂R

����
R0

+

x2

2!

∂2By

∂R2

�����
R0

+ ... ≈ By(R0) + x
∂By

∂R

����
R0

BR(0 + y) = y
∂BR

∂y

����
0︸ ︷︷ ︸

=
∂By

∂R

���
R0

+

y
3

3!

∂3BR

∂y3

����
0

+ ... ≈ y
∂By

∂R

����
R0

(2.43)

Using these, and noting Û(∗) = d(∗)/dt, the linear approximation of the differential1470

equations of motion in the moving frame writes1471
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Fx = m Üx = −qvBy(R) +
mv

2

R0 + x
≈ −qv

(

By(R0) +
∂By

∂R

����
R0

x

)

+

mv
2

R0

(
1 − x

R0

)

→ m Üx = −mv
2

R2
0

(
R0

B0

∂By

∂R

����
R0

+ 1

)

x (2.44)

Fy = m Üy = qvBR(y) = qv
∂BR

∂y

����
y=0

y + higher order → m Üy = qv
∂By

∂R
y

Fig. 2.9 Axial motion stabil-
ity requires proper shaping of
field lines: By has to decrease
with radius. The Laplace force
pulls a positive charge with
velocity pointing out of the
page, at I, toward the median
plane. Increasing the field
gradient (k closer to -1, gap
opening up faster) increases
the focusing

F
B=B y    

BF
I

I

r

Magnet pole, South

Magnet pole, North

plane
Median

B

y

g
(r

)

1472

Fig. 2.10 Geometrical focus-
ing: take k=0; two circular
trajectories which start from
r = R0±δR (solid lines, going
counter-clockwise) undergo
exactly one oscillation around
the reference orbit r = R0.
A negative k (triangles), for
axial focusing, decreases the
radial convergence; a positive
k (square markers) increases
the radial convergence - and
increases vertical divergence

 0  0.05  0.1  0.15  0.2

k=0

k<0

k>0

R
0

R
0
-δ

R

R
0
+

δ
R

Note By(R0) = B0 and introduce1473

ω2
R = ω

2
rev

(
1 +

R0

B0

∂By

∂R

)
, ω2

y = −ω2
rev

R0

B0

∂By

∂R
(2.45)

substitute in Eqs. 2.44, this yields1474
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Fig. 2.11 Radial motion
stability. Trajectory arcs at
p = mv are represented:
case of k = 0 (thin black
lines), of −1 < k < 0
(thick blue lines), and of
k = −1 (dashed concentric
circles). k decreasing towards
−1 reduces the geometrical
focusing, increases axial
focusing. The resultant of
the Laplace and centrifugal
forces, Ft = −qvB + mv2/r ,
is zero at I, motion is stable if
Ft is toward I at i, i.e. qvBi <

mv2/Ri , and toward I as well
at e, i.e. qvBe > mv2/Re

2

force toward Iforce toward I

BR<mv/q BR>mv/q  BR=
mv/q

rB
decreases        

  increases       
 R

mv /R

                   

s

x

I

y

i e

qvB    

O

R0

C

Üx + ω2
Rx = 0 and Üy + ω2

y y = 0 (2.46)

A restoring force (linear terms in x and y, Eq. 2.46) arises from the radially varying1475

field, characterized by a field index1476

k =
R0

B0

∂By

∂R

����
R=R0,y=0

(2.47)

Radial stability: radially this force adds to the geometrical focusing (curvature term1477

“1” in ω2
R

, Eq. 2.45, Fig. 2.10). In the weakly decreasing field B(R) an ion with mo-1478

mentum p = mv moving in the vicinity of the R0-radius reference orbit experiences1479

in the moving frame a resultant force Ft = −qvB + m
v

2

r
(Fig. 2.11) of which the1480

(outward) component fc = m v2

r
decreases with r at a higher rate than the decrease1481

of the Laplace (inward) component fB = −qvB(r). In other words, radial stability1482

requires BR to increase with R, ∂BR
∂R
= B + R ∂B

∂R
> 0, this holds in particular at R0,1483

thus 1 + k > 0.1484

Axial stability requires a restoring force directed toward the median plane. Refer-1485

ring to Fig. 2.9, this means Fy = −a× y (with a a positive quantity) and thus BR < 0,1486

at all (r, y , 0). This is achieved by designing a guiding field which decreases with1487

radius, ∂BR

∂y
< 0. Referring to Eq. 2.47 this means k < 0.1488

From these radial and axial constraints the condition of “weak focusing” for1489

transverse motion stability around the circular equilibrium orbit results, namely,1490

−1 < k < 0 (2.48)

Note regarding the geometrical focusing: the focal distance associated with the1491

curvature of a magnet of arc length L is obtained by integrating d2x
ds2 +

1
R2

0

x = 0 and1492

identifying with the focusing property ∆x ′
= −x/ f , namely,1493
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∆x ′
=

∫
d2x

ds2
ds ≈ −x

R2

∫
ds =

−xL
R2
, thus f =

R2

L (2.49)

Isochronism: the axial focusing constraint, B decreasing with R, contributes break-1494

ing the isochronism (in addition to the effect of the mass increase) by virtue of1495

ωrev ∝ B.1496

Paraxial Transverse Coordinates1497

Introduce the path variable s as the independent variable in Eq. 2.46 and neglect the1498

transverse velocity components (1 + x
R0

≈ 1, y ≪ 0) so that1499

ds =
[
r2(s)dθ2 + dr2

+ dy2
]1/2 ≈ |v|dt

ds

ds

dr

0

0R

M0

θ

r

d

(2.50)

thus the equations of motion in the moving frame (Eq. 2.46) take the form1500

d2x

ds2
+

1 + k

R2
0

x = 0 and
d2

y

ds2
− k

R2
0

y = 0 (2.51)

Given −1 < k < 0 the motion is that of a harmonic oscillator, in both planes, with1501

respective restoring constants (1 + k)/R2
0

and −k/R2
0
, both positive quantities. The1502

solution is a sinusoidal motion,1503

{
r(s) − R0 = x(s) = x0 cos

√
1+k
R0

(s − s0) + x ′
0

R0√
1+k

sin
√

1+k
R0

(s − s0)
r ′(s) = x ′(s) = −x0

√
1+k
R0

sin
√

1+k
R0

(s − s0) + x ′
0

cos
√

1+k
R0

(s − s0)
(2.52)

1504 {
y(s) = y0 cos

√
−k
R0

(s − s0) + y
′
0

R0√
−k

sin
√
−k
R0

(s − s0)
y
′(s) = −y0

√
−k
R0

sin
√
−k
R0

(s − s0) + y
′
0

cos
√
−k
R0

(s − s0)
(2.53)

Radial and axial wave numbers can be introduced,1505

νR =
ωR

ωrev
=

√
1 + k and νy =

ωy

ωrev
=

√
−k (2.54)

i.e., the number of sinusoidal oscillations of the paraxial motion about the reference1506

circular orbit over a turn, respectively radial and axial. Both are less than 1: there1507

is less than one sinusoidal oscillation in a revolution. In addition, as a result of the1508

revolution symmetry of the field,1509

ν2R + ν
2
y = 1 (2.55)
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Off-Momentum Orbit1510

In a structure with revolution symmetry, the equilibrium trajectory at momentum
{

p0

p = p0 + ∆p
is at radius

{
R0 with B0R0 =

p0

q

R with BR =
p

q

, where

{
B = B0 +

(
∂B
∂x

)

0
∆x + ...

R = R0 + ∆x

On the other hand

BR =
p

q
⇒

[
B0 +

(
∂B

∂x

)

0

∆x + ...

]
(R0 + ∆x) = p0 + ∆p

q

which, neglecting terms in (∆x)2, and given B0R0 =
p0

q
, leaves∆x

[(
∂B
∂x

)

0
R0 + B0

]
=1511

∆p

q
. With k =

R0

B0

(
∂B
∂x

)

0
this yields

R

y

A B

R0 R

Magnet pole

Magnet pole R

R

p
0

.

p0

Fig. 2.12 The equilibrium radius at location A is R0, momentum is p0, rigidity is B0R0. The
equilibrium radius at B is R, momentum p, rigidity BR

1512

∆x = D
∆p

p0
with D =

R0

1 + k
the dispersion function (2.56)

The dispersion D is an s-independent quantity as a result of the revolution symmetry1513

of the field (k and R=p/qB are s-independent).1514

To the first order in the coordinates, the vertical coordinates y(s), y’(s) (Eq. 2.53)1515

are unchanged under the effect of a momentum offset, the horizontal trajectory angle1516

x’(s) (Eq. 2.52) is unchanged as well (the circular orbits are concentric, Fig. 2.12)1517

whereas x(s) satisfies1518

x(s, p0 + ∆p) = x(s, p0) + ∆p
∂x

∂p

����
s,p0

= x(s, po) + D
∆p

p0
(2.57)
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Orbit and revolution period lengthening1519

A δp momentum offset results in (Eq. 2.56)1520

δC
C =

δR

R
=

δx

R
= α
δp

p
with α =

1

1 + k
=

1

ν2
R

(2.58)

with α the momentum compaction, a positive quantity: orbit length increases with1521

momentum. Substituting
δβ

β
=

1
γ2

δp

p
, the change in revolution period Trev = C/βc1522

with momentum writes1523

δTrev

Trev
=

δC
C

− δβ
β
=

(
α − 1

γ2

)
δp

p
(2.59)

Given that −1 < k < 0 and γ & 1, it results that α − 1/γ2 > 0: the revolution period1524

increases with energy, the increase in radius is faster than the velocity increase.1525

2.2.3 Quasi-Isochronous Resonant Acceleration1526

The energy W of an accelerated ion (in the non-relativistic energy domain of the1527

classical cyclotron) satisfies the frequency dependence1528

W =
1

2
mv

2
=

1

2
m (2πR frev)2 =

1

2
m

(
2πR

frf

h

)2

(2.60)

Observe in passing: given the cyclotron size (radius R), frf and h set the limit for1529

the acceleration range. The revolution frequency decreases with energy and the1530

condition of synchronism with the oscillating voltage, frf = h frev, is only fulfilled1531

at that particular radius where ωrf = qB/m (Fig. 2.13-left). The out-phasing ∆φ of1532

the RF at ion arrival at the gap builds-up turn after turn, decreasing in a first stage1533

(towards lower voltages in Fig. 2.13-right) and then increasing back to φ = π/2 and1534

beyond towards π. Beyond φ = π the RF voltage is decelerating.1535

With ωrev constant between two gap passages, differentiating φ(t) (Eq. 2.38)1536

yields Ûφ = ωrf − ωrev. Between two gap passages on the other hand, ∆φ = Ûφ∆T =1537

ÛφTrev/2 = Ûφ πR
v

, yielding a phase-shift of1538

half-turn ∆φ = π

(
ωrf

ωrev(R)
− 1

)
= π

(
mωrf

qB(R) − 1

)
(2.61)

The out-phasing is thus a gap-after-gap, cumulative effect. Due to this the classical1539

cyclotron requires quick acceleration (small number of turns), which means high1540

voltage (tens to hundreds of kVolts). As expected, withωrf and B constant, φ presents1541

a minimum ( Ûφ = 0) at ωrf = ωrev = qB/m where exact isochronism is reached1542

(Fig. 2.13). The upper limit to φ is set by the condition ∆W > 0: acceleration.1543
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Fig. 2.13 Left: a sketch of the synchronism condition at one point (h=1 assumed). Right: the span
in phase of the energy gain ∆W = qV̂ sinφ (Eq. 2.38) over the acceleration cycle

Fig. 2.14 A graph of the
cyclotron equation (Eq. 2.62),
for three different accel-
erating voltages: 100, 200
and 400 kV/gap (respectively
square, circle and triangle
markers). The sole settings re-
sulting in −1 < cosφ(E) < 1,
∀E , allow complete accelera-
tion to top energy. φi = π/4
at injection for instance, does
not (upper three curves).
φi = 3π/4 works (lower
three curves), with as low as
100 kV/gap
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The cyclotron equation determines the achievable energy range, depending on1544

the injection energy Ei , the RF phase at injection φi , the RF frequency ωrf and gap1545

voltage V̂ . It writes [12]1546

cos φ = cos φi + π

[
1 − ωrf

ωrev

E + Ei

2M

]
E − Ei

qV̂
(2.62)

Equation 2.62 is represented in Fig. 2.14 for various values of the peak voltage1547

and phase at injection φi . M [eV/c2] and E [eV] are respectively the rest mass and1548

relativistic energy, qV̂ is expressed in electron-volts, the index i denotes injection1549

parameters.1550
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2.2.4 Beam Extraction1551

From R = p/qB and assuming B(R) ≈constant (this is legitimate as k is normally1552

small), in the non-relativistic approximation (W ≪ M , W = p2/2M) one gets1553

dR

R
=

1

2

dW

W
(2.63)

Integrating yields1554

R2
= R2

i

W

Wi

(2.64)

with Ri , Wi initial conditions. From Eqs. 2.63, 2.64, assuming Wi ≪ W and constant1555

acceleration rate dW such that W = n dW after n turns, one gets the scaling laws1556

R ∝
√

n, dR ∝ R

W
∝ 1

R
∝ dW,

dR

dn
=

R

2n
(2.65)

The turn separation dR is proportional to the energy gain per turn and inversely1557

proportional to the orbit radius.1558

Fig. 2.15 The radial distance
between successive turns
decreases with energy, in
inverse proportion to the
orbit radius. The red and
blue segments here figure the
accelerating gap
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The radial distance between successive turns decreases with energy, toward zero1559

(Fig. 2.15), eventually resulting in insufficient spacing for insertion of an extraction1560

septum.1561

Orbit modulation1562

Consider an ion bunch injected in the cyclotron with some (x0, x
′
0
) conditions in1563

the vicinity of the reference orbit, and assume slow acceleration. While accelerated1564

the bunch undergoes an oscillatory motion around the equilibrium orbit (Eq. 2.52).1565

Observed at the extraction septum this oscillation modulates the distance of the1566
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bunch to the local equilibrium orbit, moving it outwards or inwards depending on1567

the turn number, which modulates the distance between the accelerated turns. This1568

effect can be resorted to, so to increase the separation between the final two turns1569

and so enhance the extraction efficiency [9].1570

2.2.5 Spin Dance1571

“Much of the physics of spin motion can be illustrated using the simplest model of a1572

storage ring consisting of uniform horizontal bending and no straight sections.” [13].1573

By virtue of this statement, a preliminary introduction to spin motion in magnetic1574

fields is given in the present chapter. In support to this in addition, comes the fact that1575

cyclotrons happened to be the first circular machines to acelerate polarized beams1576

(first acceleration of polarized beams had happened earlier in the 1960s, using1577

electrostatic columns at voltage generators, when polarized proton and deuteron1578

sources began operating [14]).1579

The magnetic field B of the cyclotron dipole exerts a torque on the spin angular1580

momentum S of an ion, causing it to precess following the Thomas-BMT differential1581

equation [15]1582

dS

dt
= S × q

m

[
(1 + G)B‖ + (1 + Gγ)B⊥

]

︸                                  ︷︷                                  ︸
ωsp

(2.66)

where t is the time; ωsp the precession vector: a combination of B‖ and B⊥ compo-1583

nents of B respectively parallel and orthogonal to the ion velocity vector. G is the1584

gyromagnetic anomaly,1585

G=1.7928474 (proton), -0.178 (Li), -0.143 (deuteron), -4.184 (3He) ...1586

S in this equation is in the ion rest frame, all other quantities are in the laboratory1587

frame.1588

In the case of an ion moving in the median plane of the dipole, B‖ = 0, thus the1589

precession axis is parallel to the magnetic field vector, By , so that ωsp =
q

m
(1 +1590

Gγ)By . The spin precession angle over a trajectory arc L is1591

θsp, Lab =
1

v

∫

(L)
ωsp ds = (1 + Gγ)

∫
(L) B ds

BR
= (1 + Gγ)α (2.67)

with α the velocity vector precession (Fig. 2.16). The precession angle in the moving1592

frame (the latter rotates by an angle α along L) is1593

θsp = Gγα (2.68)

thus the number of 2π spin precessions per ion orbit around the cyclotron is Gγ. By1594

analogy with the wave numbers (Eq. 2.54) this defines the “spin tune”1595
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Fig. 2.16 Spin and velocity
vector precession in a constant
field, from S to S′ and v to
v′ respectively. In the moving
frame the spin precession
along the arc L = Rα

is Gγα, in the laboratory
frame the spin precesses by
(1 +Gγ)α

R

y

v

S x

α

xy

S

x’
G

γα

(1
+

G
γ)α

S
’

v’

νsp = Gγ (2.69)
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2.3 Exercises1596

Note: some of the input data files for these simulations are available in zgoubi1597

sourceforge repository at1598

https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/cyclotron_classical/1599

2.5 Modeling a Cyclotron Dipole: Using a Field Map1600

Solution: page 3151601

In this exercise, ion trajectories are ray-traced, various optical properties addressed1602

in the foregoing are recovered, using a field map to simulate the cyclotron dipole.1603

Fabricating that field map is a preliminary step of the exercise.1604

The interest of using a field map is that it is an easy way to account for fancy1605

magnet geometries and fields, including field gradients and possible defects. A1606

field map can be generated using mathematical field models, or from magnet com-1607

putation codes, or from magnetic measurements. The first method is used, here.1608

TOSCA[MOD.MOD1=22.1] keyword [16, cf. INDEX] is used to ray-trace through1609

the map.1610

Working hypotheses: A 2-dimensional m(R, θ) polar meshing of the median plane1611

is considered (Fig. 2.17). It is defined in a (O; X,Y ) frame and covers an angular1612

sector of a few tens of degrees. The mid-plane field map is the set of values BZ (R, θ) at1613

the nodes of the mesh. During ray-tracing, TOSCA[MOD.MOD1=22.1] extrapolates1614

the field along 3D space (R, θ, Z) ion trajectories from the 2D polar map [16].1615

Fig. 2.17 Principle of a 2D
field map in polar coordinates,
covering a 180o sector (over
the right hand side dee).
The mesh nodes m(R, θ)
are distant ∆R radially, ∆θ
azimuthally. The map is used
twice to cover the 360o

cyclotron dipole as sketched
here, while allowing insertion
of an accelerating gap between
the two dees

O

X

Y

m(R,  )θ

θ

R

R∆

    

∆θ  

(a) Construct a 180o two-dimensional map of a median plane field BZ (R, θ),1616

proper to simulate the field in a cyclotron as sketched in Fig. 2.1. Use one of1617

the following two methods: either (i) write an independent program, or (ii) use1618

zgoubi and its analytical field model DIPOLE, together with the keyword OP-1619

TIONS[CONSTY=ON] [16, cf. INDEX].1620

Besides: use a uniform mesh (Fig. 2.17) covering from Rmin=1 to Rmax=76 cm,1621

with radial increment ∆R = 0.5 cm, azimuthal increment ∆θ = 0.5 [cm]/R0 with R01622
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some reference radius (say, 50 cm, in view of subsequent exercises), and constant1623

axial field BZ = 5 kG. The appropriate 6-column formatting of the field map data1624

for TOSCA[MOD.MOD1=22.1] to read is the following:1625

R cos θ, Z, R sin θ, BY, BZ, BX1626

with θ varying first, R varying second; Z is the vertical direction (normal to the map1627

mesh), Z ≡ 0 in the present case. Note that proper functioning of TOSCA requires1628

the field map to begin with the following line of numerical values:1629

Rmin [cm] ∆R [cm] ∆θ [deg] Z [cm]1630

Produce a graph of the BZ (R, θ) field map content.1631

(b) Ray-trace a few concentric circular mid-plane trajectories centered on the1632

center of the dipole, ranging in 10 ≤ R ≤ 80 cm. Produce a graph of these concentric1633

trajectories in the (O; X,Y ) laboratory frame.1634

Initial coordinates can be defined using OBJET, particle coordinates along tra-1635

jectories during the stepwise ray-tracing can be logged in zgoubi.plt by setting IL=21636

under TOSCA. In order to find the Larmor radius corresponding to a particular1637

momentum, the matching procedure FIT can be used. In order to repeat the latter for1638

a series of different momenta, REBELOTE[IOPT=1] can be used.1639

Explain why it is possible to push the ray-tracing beyond the 76 cm radial extent1640

of the field map.1641

(c) Compute the orbit radius R and the revolution period Trev as a function of1642

kinetic energy W or rigidity BR. Produce a graph, including for comparison the1643

theoretical dependence of Trev.1644

(d) Check the effect of the density of the mesh (the choice of ∆R and ∆θ values,1645

i.e., the number of nodes Nθ × NR = (1+ 180o

∆θ
) × (1+ 80 cm

∆R
)), on the accuracy of the1646

trajectory and time-of-flight computation.1647

(e) Check the effect of the integration step size on the accuracy of the trajectory1648

and time-of-flight computation, by considering a small ∆s = 1 cm and a large1649

∆s = 10 cm, at 200 keV and 5 MeV (proton), and comparing with theory.1650

(f) Consider a periodic orbit, thus its radius R should remain unchanged after1651

stepwise integration of the motion over a turn. However, the size ∆s of the numerical1652

integration step has an effect on the final value of the radius:1653

For two different cases, 200 keV (a small orbit) and 5 MeV (a larger one), provide a1654

graph of the dependence of the relative error δR/R after one turn, on the integration1655

step size ∆s (consider a series of ∆s values in a range ∆s : 0.1 mm → 20 cm).1656

REBELOTE[IOPT=1] do-loop can be used to repeat the one-turn raytracing with1657

different ∆s.1658

2.6 Modeling a Cyclotron Dipole: Using an Analytical Field Model1659

Solution: page 3231660

This exercise is similar to exercise 2.5, yet using the analytical modeling DIPOLE,1661

instead of a field map. DIPOLE provides the Z-parallel median plane field B(R, θ, Z =1662

0) ≡ BZ (R, θ, Z = 0) at the projected m(R, θ, Z = 0) ion location (Fig. 2.18), while1663

B(R, θ, Z) at particle location is obtained by extrapolation.1664
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Fig. 2.18 DIPOLE provides
the value BZ (m) of the
median plane field at m,
projection of particle position
M(R, θ, Z) in the median
plane. B(R, θ, Z) is obtained
by extrapolation

z

  = 0

mR

θ

θ

M

ZB

(a) Simulate a 180o sector dipole; DIPOLE requires a reference radius [16,1665

Eqs. 6.3.19-21], noted R0 here; for the sake of consistency with other exercises, it is1666

suggested to take R0 = 50 cm. Take a constant axial field BZ = 5 kG.1667

Explain the various data that define the field simulation in DIPOLE: geometry,1668

role of R0, field and field indices, fringe fields, integration step size, etc.1669

Produce a graph of BZ (R, θ).1670

(b) Repeat question (b) of exercise 2.5.1671

(c) Repeat question (c) of exercise 2.5.1672

(d) As in question (e) of exercise 2.5, check the effect of the integration step size1673

on the accuracy of the trajectory and time-of-flight computation.1674

Repeat question (f) of exercise 2.5.1675

(e) From the two series of results (exercise 2.5 and the present one), comment on1676

various pros and cons of the two methods, field map versus analytical field model.1677

2.7 Resonant Acceleration1678

Solution: page 3271679

Based on the earlier exercises, using indifferently a field map (TOSCA) or an1680

analytical model of the field (DIPOLE), introduce a sinusoidal voltage between the1681

two dees, with peak value 100 kV. Assume that ion motion does not depend on RF1682

phase: the boost through the gap is the same at all passes, use CAVITE[IOPT=3] [16,1683

cf. INDEX] for that. Note that using CAVITE requires prior PARTICUL in order to1684

specify ion species and data, necessary to compute the energy boost (Eq. 2.38).1685

(a) Accelerate a proton with initial kinetic energy 20 keV, up to 5 MeV, take1686

harmonic h=1. Produce a graph of the accelerated trajectory in the laboratory frame.1687

(b) Provide a graph of the proton momentum p and total energy E as a function1688

of its kinetic energy, both from this numerical experiment (ray-tracing data can be1689

stored using FAISTORE) and from theory, all on the same graph.1690

(c) Provide a graph of the normalized velocity β = v/c as a function of kinetic1691

energy, both numerical and theoretical, and in the latter case both classical and1692

relativistic.1693
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(d) Provide a graph of the relative change in velocity∆β/β and orbit length∆C/C1694

as a function of kinetic energy, both numerical and theoretical. From their evolution,1695

conclude that the time of flight increases with energy.1696

(e) Repeat the previous questions, assuming a harmonic h=3 RF frequency.1697

2.8 Spin Dance1698

Solution: page 3311699

Cyclotron modeling in the present exercise can use Exercise 2.5 or Exercise 2.61700

technique (i.e., a field map or an analytical field model), indifferently.1701

(a) Add spin transport, using SPNTRK [16, cf. INDEX]. Produce a listing1702

(zgoubi.res) of a simulation, including spin outcomes.1703

Note: PARTICUL is necessary here, for the spin equation of motion (Eq. 2.66) to1704

be solved [16, Sect. 2]. SPNPRT can be used to have local spin coordinates listed in1705

zgoubi.res (at the manner that FAISCEAU lists local particle coordinates).1706

(b) Consider proton case, take initial spin longitudinal, compute the spin preces-1707

sion over one revolution, as a function of energy over a range 12 keV→5 MeV. Give1708

a graphical comparison with theory.1709

FAISTORE can be used to store local particle data, which include spin coor-1710

dinates, in a zgoubi.fai style output file. IL=2 [16, cf. INDEX] (under DIPOLE or1711

TOSCA, whichever modeling is used) can be used to obtain a print out of particle1712

and spin motion data to zgoubi.plt during stepwise integration.1713

(c) Inject a proton with longitudinal initial spin Si . Give a graphic of the lon-1714

gitudinal spin component value as a function of azimuthal angle, over a few turns1715

around the ring. Deduce the spin tune from this computation. Repeat for a couple of1716

different energies.1717

Place both FAISCEAU and SPNPRT commands right after the first dipole sector,1718

and use them to check the spin rotation and its relationship to particle rotation, right1719

after the first passage through that first sector.1720

(d) Spin dance: the input data file optical sequence here is assumed to model a1721

full turn. Inject an initial spin at an angle from the horizontal plane (this is in order1722

to have a non-zero vertical component), produce a 3-D animation of the spin dance1723

around the ring, over a few turns.1724

(e) Repeat questions (b-d) for two additional ions: deuteron (much slower spin1725

precession), 3He2+ (much faster spin precession).1726

2.9 Synchronized Spin Torque1727

Solution: page 3371728

A synchronized spin kick is superimposed on orbital motion. An input data file for1729

a complete cyclotron is considered as in question 2.8 (d), for instance six 60 degree1730

DIPOLEs, or two 180 degree DIPOLEs.1731

Insert a local spin rotation of a few degrees around the longitudinal axis, at the1732

end of the optical sequence (i.e., after one orbit around the cyclotron). SPINR can be1733

used for that, rather than a local magnetic field, so to avoid any orbital effect. Track1734

4 particles on their respective equilibrium orbit, with energies 0.2, 108.412, 118.8781735

and 160.746 MeV.1736
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Produce a graph of the motion of the vertical spin component Sy along the circular1737

orbit.1738

Produce a graph of the spin vector motion on a sphere.1739

2.10 Weak Focusing1740

Solution: page 3401741

(a) Consider a 60o sector as in earlier exercises (building a field map and using1742

TOSCA as in exercise 2.5, or using DIPOLE as in exercise 2.6), construct the sector1743

accounting for a non-zero radial index k in order to introduce axial focusing, say1744

k = −0.03, assume a reference radius R0 for a reference energy of 200 keV (R0 and1745

B0 are required in order to define the index k, Eq. 2.47). Ray-trace that 200 keV1746

reference orbit, plot it in the lab frame: make sure it comes out as expected, namely,1747

constant radius, final and initial angles zero.1748

(b) Using FIT[2], find and plot the radius dependence of orbit rigidity, BR(R),1749

from ray-tracing over a BR range covering 20 keV to 5 MeV; superpose the theoretical1750

curve. REBELOTE[IOPT=1] can be used to perform the scan.1751

(c) Produce a graph of the paraxial axial motion of a 1 MeV proton, over a few1752

turns (use IL=2 under TOSCA, or DIPOLE, to have step by step particle and field1753

data logged in zgoubi.plt). Check the effect of the focusing strength by comparing1754

the trajectories for a few different index values, including close to -1 and close to 0.1755

(d) Produce a graph of the magnetic field experienced by the ion along these1756

trajectories.1757

2.11 Loss of Isochronism1758

Solution: page 3491759

Compare on a common graphic the revolution period Trev(R) for a field index1760

value k ≈ −0.95, −0.5, −0.03, 0−. The scan method of exercise 2.10, based on1761

REBELOTE[IOPT=1] preceded by FIT[2], can be referred to.1762

2.12 Ion Trajectories1763

Solution: page 3511764

In this exercise individual ion trajectories are computed. DIPOLE or TOSCA1765

magnetic field modeling can be used, indifferently. No acceleration here, ions circle1766

around the cyclotron at constant energy.1767

(a) Produce a graph of the horizontal x(s) and vertical y(s) trajectory coordinates1768

of an ion with rigidity close to BR(R0) (R0 is the reference radius in the definition of1769

the index k), over a few turns around the cyclotron. From the number of turns, give1770

an estimate of the wave numbers. Check the agreement with the expected νR(k),1771

νy(k) values (Eq. 2.54).1772

(b) Consider now protons at 1 MeV and 5 MeV, far from the reference energy1773

E(R0); the wave numbers change with energy: consistency with theory can be1774

checked. Find their theoretical values, compare with numerical outcomes.1775

(c) Consider proton, 200 keV energy, plot as a function of s the difference between1776

x(s) from raytracing and its values from Eq. 2.52. Same for y(s) compared to Eq. 2.53.1777
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IL=2 can be used to store in zgoubi.plt the step-by-step particle coordinates across1778

DIPOLE.1779

(d) Perform a scan of the wave numbers over 200 keV−5 MeV energy inter-1780

val, computed using OBJET[KOBJ=5] and MATRIX[IORD=1,IFOC=11], or OB-1781

JET[KOBJ=6] and MATRIX[IORD=2,IFOC=11], together with REBELOTE[IOPT=1]1782

to repeat MATRIX for a series of energy values.1783

2.13 RF Phase at the Accelerating Gap1784

Solution: page 3571785

Consider the cyclotron model of exercise 2.10: field index k = −0.03 defined at1786

R0 = 50 cm, field B0 = 5 kG on that radius. two dees, double accelerating gap.1787

Accelerate a proton from 1 to 5 MeV: get the turn-by-turn phase-shift at the gaps;1788

use CAVITE[IOPT=7] to simulate the acceleration. Compare the half-turn ∆φ so1789

obtained with the theoretical expectation (Eq. 2.61). Produce similar graphs B(R)1790

and ∆W(φ) to Fig. 2.13.1791

Accelerate over more turns, observe the particle decelerating.1792

2.14 The Cyclotron Equation1793

Solution: page 3591794

The cyclotron model of exercise 2.7 is considered: two dees, double accelerating1795

gap, uniform field B = 5 kG, no field gradient needed here (no vertical motion).1796

(a) Set up an input data file for the simulation of a proton acceleration from1797

0.2 to 20 MeV. In particular, assume that cos(φ) reaches its maximum value at1798

Wm = 10 MeV; find the RF voltage frequency from d(cos φ)/dW = 0 at Wm.1799

(b) Give a graph of the energy-phase relationship (Eq. 2.62), for φi =
3π
4 ,

π
2 ,

π
4 ,1800

from both simulation and theory.1801

2.15 Cyclotron Extraction1802

Solution: page 3611803

(a) Acceleration of a proton in a uniform field B = 5 kG is first considered (field1804

hypotheses as in exercise 2.7). RF phase is ignored: CAVITE[IOPT=3] can be used1805

for acceleration. Take a 100 kV gap voltage.1806

Compute the distance ∆R between turns, as a function of turn number and of1807

energy, over the range E : 0.02 → 5 MeV. Compare graphically with theoretical1808

expectation.1809

(b) Assume a beam with Gaussian momentum distribution and rms momentum1810

spread δp/p = 10−3. An extraction septum is placed half-way between two successive1811

turns, provide a graph of the percentage of beam loss at extraction, as a function of1812

extraction turn number. COLLIMA can be used for that simulation and for particle1813

counts, it also allows for possible septum thickness.1814

(c) Repeat (a) and (b) considering a field with index: take for instance B0 = 5 kG1815

and k = −0.03 at R0 = R(0.2 MeV) = 12.924888 cm.1816

(d) Investigate the effect of injection conditions (Yi,Ti) on the modulation of the1817

distance between turns.1818
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Try and confirm numerically that, with slow acceleration, the oscillation is mini-1819

mized for an initial |Ti | = | x0νR

R
| (after Ref. [9, p. 133]).1820

2.16 Acceleration and Extraction of a 6-D Polarized Bunch1821

Solution: page 3661822

The cyclotron simulation hypotheses of exercise 2.14-a are considered; account1823

or k = −0.02 field index.1824

Add a short “high energy” extraction line, say 1 meter, following REBELOTE in1825

the optical sequence, ending up with a “Beam_Dump” MARKER for instance.1826

(a) Create a 1,000 ion bunch with the following initial parameters:1827

- random Gaussian transverse phase space densities, centered on the equilibrium1828

orbit, truncated at 3 sigma, normalized rms emittances εY = εZ = 1 πµm, both1829

emittances matched to the 0.2 MeV orbit optics,1830

- uniform bunch momentum density 0.2×(1−10−3) ≤ p ≤ 0.2×(1+10−3)MeV,1831

matched to the dispersion, namely (Eq. 2.57), ∆x = D
∆p

p
,1832

- random uniform longitudinal distribution −0.5 ≤ s ≤ 0.5 mm,1833

Note: two ways to create this object are, (i) using MCOBJET[KOBJ=3] which1834

generates a random distribution, or (ii) using OBJET[KOBJ=3] to read an external1835

particle coordinate file.1836

Add spin tracking request (SPNTRK), all initial spins normal to the bend plane.1837

Produce a graph of the three initial 2-D phase spaces: (Y,T), (Z,P), (δl,δp/p),1838

matched to the 200 keV periodic optics. Provide Y, Z, dp/p, δl and SZ histograms1839

(HISTO can be used), check the distribution parameters.1840

(b) Accelerate this polarized bunch to 20 MeV, using the following RF conditions:1841

- 200 kV peak voltage,1842

- RF harmonic 1,1843

- initial RF phase φi = π/4.1844

Produce a graph of the three phase spaces as observed downstream of the extrac-1845

tion line. Provide the Y, Z, dp/p, δl and SZ histograms. Compare the distribution1846

parameters with the initial values.1847

What causes the spins to spread away from vertical?1848
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