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HW 1 (5 point): Let’s first determine an effective focal length, F, of the of a paraxial 
(e.g. small angles!) focusing object (a black-box) as ratio between a parallel displacement 
of trajectory at its entrance to corresponding change of the angle at its exit (see figure 
below): 

  
F = − x

′x
; ′x ≡ dx

dz  

see figure below for  
 

 
For completeness, the distance from the entrance to the object to the trajectory crossing 
the axis, l, in general is not equal to the focal length. In beam optics this is frequently, but 
not correctly, referred as astigmatism – in contrast, the astigmatism is defined as 
dependence of the focal strengths on the direction of propagation of the ray (particle). 
Let consider a doublet of two thin lenses:  a focusing (F) and defocusing (D) lenses with 
equal but opposite in sign focal length F with center separated by distance L as in Fig. 1.  

 
Fig.1. Two combinations of a doublet: FD and DF. 

 
1. (3 points) Show through a calculation of the ray trajectory that the focal lengths of FD 
and DF doublets are equal and given by following expression: 
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2. (2 points) Determine location of the ray crossing the axis and find their difference 
between FD and DF doublets – this indeed would be an astigmatism of doublet built 
from two quadruples. 
 
P.S. Definition (picture) of thin lens: 

 
 

 
Solution: In both cases we start from initial conditions  

  x = xo; ′x = 0;  
and apply following transformations: 

  

F lens : xout = xin; ′xout = ′xin −
xin

F
;

Dlens : xout = xin; ′xout = ′xin +
xin

F
;

Drift : xout = xin + L ′xin; ′xout = ′xin;
 

For FD case is gives us 

  

x1 = x0; ′x1 = −
x0

F
→ x2 = x0 − L

x0

F
; ′x2 = −

x0

F
→

x3 = x0 − L
x0

F
; ′x3 = −

x0

F
+ 1

F
x0 − L

x0

F
⎛
⎝⎜

⎞
⎠⎟
= L

x0

F 2 ;     (1) 

and for DF case 



  

x1 = x0; ′x1 = +
x0

F
→ x2 = x0 + L

x0

F
; ′x2 = +

x0

F
→

x3 = x0 + L
x0

F
; ′x3 = +

x0

F
− 1

F
x0 + L

x0

F
⎛
⎝⎜

⎞
⎠⎟
= −L

x0

F 2 ;     (2) 

with   ′x3, ′x3  being the position an the angle at the exit of the :black box”. The answer for 

the first question is coming from 
  
′x3 = −L

x0

F 2  for both FD and DF cases. 

The location of the ray crossing the z-axis coming from dividing the position at the exit 
of the second lens by the angle and adding L (distance from the starting point): 

  

F : Z = L−
x3

′x3

= L+ F 2

L
1− L

F
⎛
⎝⎜

⎞
⎠⎟
= L− F + F 2

L

D : Z = L−
x3

′x3

= L+ F 2

L
1+ L

F
⎛
⎝⎜

⎞
⎠⎟
= L+ F + F 2

L

    (3) 

Hence, the astigmatism of FD set is equal to 2F. 
  



HW 2 (2 points): Spectral brightness (sometimes called brilliance) of a light source is 
defined as  
 

  
B =

dN ph

dtdΩdA dλ / λ( ) =
dN ph

dtdΩdA dω /ω( ) ;  

where 
 

dN ph

dt
 is the number of photons per second with the spectral bandwidth   dω /ω  

radiated from an area  dA  into the solid angle   dΩ . The units used for brightness are 
expressed in photons per second  

  
B⎡⎣ ⎤⎦ =

photons
sec⋅mm2 ⋅mrad 2 10−3dλ / λ( )  

 
As an exercise, calculate spectral brightness of NdYAG laser with average power of 10 
W, wavelength of λ=1.064 µm, Bandwidth of   Δω = 700 GHz and with diffraction limited 
spot size and angular spread: 

  
Δx ⋅ Δθ x =

λ
4π

;Δy ⋅ Δθ y =
λ

4π
.  

 
Solution: First, lets calculate the frequency ω , the bandwidth and the photon energy  !ω  

   

ω = 2π c
λ
= 1.77 ⋅1015 Hz; ! = 1.05459 ⋅10−34;

Δω
ω

= 3.95⋅10−4 = 0.395⋅10−3; Eph =!ω = 1.87 ⋅10−19 J ;  

 
Then the number of photons per second:  

   

dN ph

dt
=

Plaser

!ω
= 5.36 ⋅1019 photons

sec  

The product of the area and he angular spread can be calculated for the diffraction limited 
laser beam as 

  

A ⋅Ω = Δx ⋅ Δy ⋅ Δθ y ⋅ Δθ x =
λ

4π
⎛
⎝⎜

⎞
⎠⎟

2

= 7.17 ⋅10−15 m2rad 2;

A ⋅Ω = 7.17 ⋅10−3mm2mrad 2  
Hence, using three red numbers, the spectral brightness of this laser is  

B= 1.89 1022 ph/sec/mm2/mrad2/0.1%BW. 
 



HW 3 (3 points): In a fixed Cartesian coordinates for a trajectory with 
  
dz
dt

≠ 0 of a 

particle moving in magnetic field    
!
B = x̂Bx + ŷBy + ẑBz  equation for its trajectory can be 

written in terms of z as independent variable: 
 

  

d 2x
dz2 = e

p
1+ ′x 2 + ′y 2 ′y Bz − (1+ ′x 2 )By + ′x ′y Bx( );

d 2 y
dz2 = − e

p
1+ ′x 2 + ′y 2 ′x Bz − (1+ ′y 2 )Bx + ′x ′y By( );

′x ≡ dx
dz

; ′y ≡ dy
dz

;

 

 
where e is the particle’s charge and   p = γ mv  is its relativistic momentum. 
 
Hint: consider constants of motion in a magnetic field. 
 
Solution: Equation of motion with time as independent variable are: 
 

   
d!p
dt

= e
c
!v ×
!
B⎡⎣ ⎤⎦; !p = γ m!v,  

which with addition of the fact that energy is a integral of motion in magnetic field 

  E = γ mc2 = const  yields: 

   

d!v
dt

= e
γ mc

!v ×
!
B⎡⎣ ⎤⎦; !v=x̂

dx
dt

+ ŷ
dy
dt

+ ẑ
dz
dt

= x̂ "x + ŷ"y + ẑ"z

!v2 ≡ v2 = "x2 + "y2 + "z2 = const;

d 2x
dt2 = e

γ mc
Bz

dy
dt

− By

dz
dt

⎛
⎝⎜

⎞
⎠⎟

;
d 2y
dt2 = e

γ mc
Bx

dz
dt

− Bz

dx
dt

⎛
⎝⎜

⎞
⎠⎟

;

d 2z
dt2 = e

γ mc
By

dx
dt

− Bx

dy
dt

⎛
⎝⎜

⎞
⎠⎟

;

   (1) 

which we need to transfer to equation of motion with z as independent coordinate. We 
shall start from expressing dt ins term of dz: 

  

v2dt2 =dx2 + dy2 + dz2 = 1+ dx
dz

⎛
⎝⎜

⎞
⎠⎟

2

+ dy
dz

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dz2;

dt = 1+ ′x 2 + ′y 2 dz
v

; ′x ≡ dx
dz

; ′y ≡ dy
dz

; ′z ≡ dz
dz

= 1.

 

where we are using traditional for accelerator definition of dimensionless derivatives 
  ′x , ′y .  Establishing rules for transformation for derivatives 



   

!f ≡ df
dt

= v

1+ ′x 2 + ′y 2

df
dz

≡ v ′f

1+ ′x 2 + ′y 2

!!f ≡ d 2 f
dt2 ≡ v2

1+ ′x 2 + ′y 2

d
dz

′f

1+ ′x 2 + ′y 2
;

= v2

1+ ′x 2 + ′y 2 ′′f −
v2 ′f ′x ′′x + ′y ′′y( )

1+ ′x 2 + ′y 2( )2 =

v2
′′f 1+ ′x 2 + ′y 2( )− ′f ′x ′′x + ′y ′′y( )

1+ ′x 2 + ′y 2( )2 =

 

we can rewrite (1) as 

  

′′x 1+ ′x 2 + ′y 2( )− ′x ′x ′′x + ′y ′′y( ) = e
pc

Bz ′y − By( ) 1+ ′x 2 + ′y 2( )3/2
;

′′y 1+ ′x 2 + ′y 2( )− ′y ′x ′′x + ′y ′′y( ) = e
pc

Bx − Bz ′x( ) 1+ ′x 2 + ′y 2( )3/2
;

− ′x ′′x + ′y ′′y( ) = e
pc

By ′x − Bx ′y( ) 1+ ′x 2 + ′y 2( )3/2
;

   (2) 

with important note that because to the absolute value of the velocity is constant, one of 
these three equation is redundant!  We can easily resolve first two equations with respect 
to   ′′x , ′′y : 

  

′′x 1+ ′y 2( )− ′′y ⋅ ′x ′y = e
pc

Bz ′y − By( ) 1+ ′x 2 + ′y 2( )3/2
;

′′y 1+ ′x 2( )− ′′x ⋅ ′x ′y = e
pc

Bz − Bz ′x( ) 1+ ′x 2 + ′y 2( )3/2
;

1+ ′y 2 − ′x ′y

− ′x ′y 1+ ′x 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

′′x
′′y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= e

pc
1+ ′x 2 + ′y 2( )3/2 Bz ′y − By

Bx − Bz ′x

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
;

  (3) 

I suggest that you check for yourself this simple 2x2 matrix manipulations: 

  

M = a b
c d

⎡

⎣
⎢

⎤

⎦
⎥→ M −1 = 1

det M
d −b
−c a

⎡

⎣
⎢

⎤

⎦
⎥; det

1+ ′y 2 − ′x ′y

− ′x ′y 1+ ′x 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
== 1+ ′x 2 + ′y 2

1+ ′y 2 − ′x ′y

− ′x ′y 1+ ′x 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= 1
1+ ′x 2 + ′y 2

1+ ′x 2 ′x ′y

′x ′y 1+ ′y 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

′′x
′′y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= e

pc
1+ ′x 2 + ′y 2 1+ ′x 2 ′x ′y

′x ′y 1+ ′y 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Bz ′y − By

Bx − Bz ′x

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
;

(3) 

to get  



  

′′x = e
pc

1+ ′x 2 + ′y 2 1+ ′x 2( ) Bz ′y − By( ) + ′x ′y Bx − Bz ′x( ){ };

′′y = e
pc

1+ ′x 2 + ′y 2 ′x ′y Bz ′y − By( ) + 1+ ′y 2( ) Bx − Bz ′x( ){ };

   

 

which gives the final result 

  

′′x = e
pc

1+ ′x 2 + ′y 2 ′x ′y Bx − 1+ ′x 2( )By + ′y Bz{ };

′′y = e
pc

1+ ′x 2 + ′y 2 1+ ′y 2( )Bx − ′x ′y By − ′x Bz{ };
   (5) 

 
which differs from one given in the problem only by ordering of terms in the brackets and 
using SGS units – hence extra c in the denominator. 
Just as a sanity check, we check that third equation in (2) we had dropped is indeed 
redundant< Using expressions for   ′′x , ′′y  from (5)  

  

′x ′′x + ′y ′′y
e
pc

1+ ′x 2 + ′y 2
=

′x ′x ′y Bx − 1+ ′x 2( )By + ′y Bz( )− ′y 1+ ′y 2( )Bx − ′x ′y By − ′x Bz( ) =
1+ ′y 2 + ′x 2( ) Bx ′y − ′x By( )

   

which is identical to the third equation in (2). No surprise here – it is a consequence of 
the constant velocity, momentum and energy. 


