
Chapter 4911

Classical Cyclotron912

Abstract This chapter introduces to the classical cyclotron, and to the theoretical913

material needed for the simulation exercises. It begins with a brief reminder of the914

historical context, and continues with beam optics and acceleration techniques which915

the classical cyclotron principle and methods lean on, including916

- ion orbit in a cyclic accelerator,917

- weak focusing and periodic transverse motion,918

- revolution period and isochronism,919

- voltage gap and resonant acceleration,920

- the cyclotron equation.921

922

Simulation of a cyclotron dipole will either resort to an analytical model of the923

field: the optical element DIPOLE, or will otherwise resort to a field map and to924

the keyword TOSCA to handle it and raytrace through, An additional accelerator925

device needed in the exercises, CAVITE, simulates a local oscillating voltage. Run-926

ning a simulation generates a variety of output files, including the execution listing927

zgoubi.res, always, and other zgoubi.plt, zgoubi.CAVITE.out, zgoubi.MATRIX.out,928

etc., aimed at looking up program execution, storing data for post-treatment, pro-929

ducing graphs, etc. Additional keywords are introduced as needed, such as FIT[2],930

a matching procedure; FAISCEAU and FAISTORE which log local particle data in931

zgoubi.res or in a user defined ancillary file; MARKER; the ’system call’ command932

SYSTEM; REBELOTE, a ’do loop’; and some more. This chapter introduces in addi-933

tion to spin motion in accelerator magnets; dedicated simulation exercises include a934

variety of keywords: SPNTRK, a request for spin tracking, SPNPRT or FAISTORE,935

to log spin vector components in respectively zgoubi.res or some ancillary file, and936

the “IL=2” flag to log stepwise particle data, including spin vector, in zgoubi.plt file.937

Simulations include deriving transport matrices, beam matrix, optical functions and938

their transport, from rays, using MATRIX and TWISS keywords.939
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Notations used in the Text940

B; B0 field value; at reference radius R0

B; BR; By field vector; radial component; axial component
Bρ = p/q ion rigidity
C; C0 orbit length, C = 2πR; reference, C0 = 2πR0

E ion energy
frev, frf revolution and accelerating voltage frequencies
h harmonic number, an integer, h = frf/ frev
k = R

B
dB
dR

radial field index
m; m0; M mass, m = γm0; rest mass; in units of MeV/c2

p; p; p0 ion momentum vector; its modulus; reference
q ion charge
R; R0; RE orbit radius; reference radius R(p0); at energy E
RF Radio-Frequency: as per the accelerating voltage technology
s path variable
Trev, Trf revolution and accelerating voltage periods
v; v ion velocity vector; its modulus
V(t); V̂ oscillating voltage; its peak value
x, x’, y, y’ radial and axial coordinates in the moving frame [(∗)′ = d(∗)/ds]

α momentum compaction, or trajectory deviation
β = v/c; β0; βs normalized ion velocity; reference; synchronous
γ = E/m0 Lorentz relativistic factor
∆p, δp momentum offset
εu Courant-Snyder invariant (u: x, r, y, l, Y, Z, s, etc.)
θ azimuthal angle
φ RF phase at ion arrival at the voltage gap

941

4.1 Introduction942

Cyclotrons are the most widespread type of accelerator, today, used by hundreds,943

with dominant application the production of isotopes. This chapter is devoted to the944

first cyclic accelerator: the 1930s “classical” cyclotron which its concept limited to945

low energy, a few 10s of MeV/nucleon, a limitation overcome a decade later by the946

azimuthally varying field (AVF) technique - subject of the next chapter.947

The 1930s cyclotron is based on two main principles:948

(i) resonant acceleration by synchronization of a fixed-frequency accelerating voltage949

on the quasi-constant revolution time, an acceleration technique still in use a century950

later, and951

(ii) transverse beam confinement based on so-called weak focusing, a technique952

which would be used over the years in all (but the AVF) cyclic accelerators: cyclotron,953

microtron, betatron, synchrotron, until the invention of alternating gradient strong954
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focusing in the early 1950s; weak focusing it is still in use today, in betatrons and955

low energy proton synchrotrons mostly.956

The cyclotron concept goes back to the late 1920s [1], a cyclotron was first brought957

to operation in the early 1930s [2], its principles are summarized in Fig. 4.1: an958

oscillating voltage is applied on a pair of electrodes (“dees”) forming an accelerating959

gap and placed between the two poles of an electromagnet; ions reaching the gap960

during the acceleration phase of the voltage wave experience an energy boost; under961

the effect of energy increase, they spiral out in the quasi-constant field of the dipole.962

The first cyclotron achieved acceleration of H+2 hydrogen ions to 80 keV [2], at
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Fig. 4.1 Left: dipole electromagnet used for a model of Berkeley’s 184-inch cyclotron, in 1943 [3].
Right: a schematic view of the resonant acceleration method: in the uniform field between the two
cylindrical magnetic poles (top), accelerated ions spiral out (bottom); a double-dee (or, a variant, a
single-dee facing a slotted electrode) forms a gap to which is applied a fixed-frequency oscillating
voltage V (t) of which the frequency is a harmonic of the revolution frequency; ions experiencing
proper voltage phase at the gap are accelerated; a septum electrode allows beam extraction

963

Berkeley in 1931. The apparatus used a dee-shaped electrode vis-à-vis a slotted964

electrode forming a voltage gap, the ensemble housed in a 5 inch diameter vacuum965

chamber and placed in the 1.3 Tesla field of an electromagnet. A ≈ 12 MHz vacuum966

tube oscillator provided a 1 kVolt gap voltage.967

One goal foreseen in developing this technology was the acceleration of protons968

to MeV energy range for the study of atom nucleus - and in background a wealth of969

potential applications. An 11 inch cyclotron followed which delivered a 0.01 µA H+2970

beam at 1.22 MeV [4], and a 27 inch cyclotron later reached 6 MeV (Fig. 4.2) [5].971

Targets were mounted at the periphery of the 11 inch cyclotron, disintegrations were972

observed in 1932. And, in 1933: ‘The neutron had been identified by Chadwick973

in 1932. By 1933 we were producing and observing neutrons from every target974

bombarded by deuterons.“ [5, M.S. Livingston, p. 22].975

A broad range of applications were foreseen: “At this time biological experiments976

were started. [...] Also at about this same time the first radioactive tracer experiments977

on human beings were tried [...] simple beginnings of therapeutic use, coming a978
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V

Fig. 4.2 Berkeley 27 inch cyclotron, brought to operation in 1934, accelerated deuterons up to
6 MeV. Left: a double-dee (seen in the vacuum chamber, cover off), 22 inch diameter, creates an
accelerating gap: 13 kV, 12 MHz radio frequency voltage is applied for deuterons for instance
(through two feed lines seen at the right). This apparatus was dipped in the 1.6 Tesla dipole field
of a 27 in diameter, 75 ton, electromagnet. A slight decrease of the dipole field with radius, from
the center of the dipole, assures axial beam focusing. With their energy increasing, ions spiral out
from the center to eventually strike a target (arrow). Right: ionization of the air by the extracted
beam (1936); the view also shows the vacuum chamber squeezed between the pole pieces of the
electromagnet [3]

Fig. 4.3 Berkeley 184 in di-
ameter, 4,000 ton cyclotron
during construction [3]. Its
design was modified and it
was operated as a synchrocy-
clotron from the beginning, in
1946

little bit later, in which neutron radiation was used, for instance, in the treatment979

of cancer. [...] Another highlight from 1936 was the first time that anyone tried980

to make artificially a naturally occurring radio-nuclide. (a bismuth isotope) [5,981

McMillan, p. 26].982
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Limitation in energy983

A complete understanding of ion dynamics in the classical cyclotron took more or984

less until the mid-1930s and brought two news, a bad one and a good one,985

(i) bad one first: the energy limitation, a consequence of the loss of isochronism986

resulting from the relativistic increase of the ion mass so that “[...] it seems useless987

to build cyclotrons of larger proportions than the existing ones [...] an accelerating988

chamber of 37 in radius will suffice to produce deuterons of 11 MeV energy which989

is the highest possible [...]” [6], or in a different form: “If you went to graduate990

school in the 1940s, this inequality (−1 < k < 0) was the end of the discussion of991

accelerator theory” [7].992

(ii) the good news now: the overcoming of the energy limit which results from the993

mass increase, by splitting the magnetic pole into valley and hill field sectors: the994

azimuthally varying field (AVF) cyclotron, by L.H. Thomas in 1938 [8] - the object995

of Chapt. 5. It took some years to see effects of this breakthrough.996

Fig. 4.4 Evolution of the
number of the various cy-
clotron species, over the
years [9] [10, Fig. 8]. From the
1950s on the AVF cyclotron
rapidly supplanted the 1930s’
classical cyclotron

With the progress in magnet computation tools, in computational speed and997

beam dynamics simulations, the AVF cyclotron ends up being essentially as simple998

to design and build has in a general manner supplanted the classical cyclotron in all999

energy domains (Fig. 4.4).1000

4.2 Basic Concepts and Formulæ1001

The cyclotron was conceived as a means to overcome the technological difficulty of1002

a long series of high electrostatic voltage electrodes in a linear layout, by, instead,1003

repeated recirculation through a single accelerating gap in synchronism with an1004

oscillating voltage (Fig. 4.5). With its energy increasing, an accelerated bunch spirals1005

out in the uniform magnetic field, the velocity increase comes with an increase in orbit1006
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Fig. 4.5 Resonant accelera-
tion: in an h = 1 configuration
an ion bunch meets an oscil-
lating field E across gap A, at
time t, on accelerating phase;
it meets again, half a turn later,
at time t +Trev/2, the acceler-
ating phase across gap A’, and
so on: the uniform magnetic
field recirculates the bunch
through the gap, repeatedly.
Higher harmonic allows more
bunches: the next possibility
with two dees is h=3, and 3
bunches, 120 degrees apart, in
synchronism with E
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Fig. 4.6 A ion which reaches
the double-dee gap at the
RF phase ωrf t = φA or
ωrf t = φB is accelerated. If it
reaches the gap at ωrf t = φC

it is decelerated

t
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length; the net result is a slow increase of the revolution period Trev with energy, yet,1007

with appropriate fixed voltage frequency frf ≈ h/Trev the revolution motion and the1008

oscillating voltage can be maintained in sufficiently close synchronism, Trev ≈ hTrf ,1009

that the bunch will transit the voltage gap upon accelerating phase (Fig. 4.6) over a1010

large enough number of turns that it acquires a significant energy boost.1011

The orbital motion quantities: radius R, ion rigidity BR, revolution frequency1012

frev, satisfy1013

BR =
p

q
, 2π frev = ωrev =

v

R
=

qB

m
=

qB

γm0
(4.1)

relationships which hold at all γ, so covering the classical cyclotron domain (v ≪ c,1014

γ ≈ 1) as well as the isochronous cyclotron (ion energy increase commensurate with1015

its mass - Chapt. 5). To give an idea of the revolution frequency, in the limit γ = 1,1016

for protons, one has frev/B = q/2πm = 15.25 MHz/T.1017

The cyclotron design sets the constant RF frequency frf = ωrf/2π at an interme-1018

diate value of h frev along the acceleration cycle. The energy gain, or loss, by the ion1019

when transiting the gap, at time t, is1020

∆W(t) = qV̂ sin φ(t) with φ(t) = ωrft − ωrevt + φ0 (4.2)

with φ its phase with respect to the RF signal at the gap (Fig. 4.6), φ0 = φ(t = 0),
and ωrevt the orbital angle. Assuming constant field B, the increase of the revolution
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period with ion energy satisfies

∆Trev

Trev
= γ − 1

The mis-match so induced between the RF and cyclotron frequencies is a turn-by-turn1021

cumulative effect and sets a limit to the tolerable isochronism defect, ∆Trev/Trev ≈1022

2 − 3%, or highest velocity β = v/c ≈ 0.22. This results for instance in a practical1023

limitation to ≈ 25 MeV for protons, and ≈ 50 MeV for D and α particles.1024

Over time multiple-gap accelerating structures where developed, whereby a1025

“multiple-∆” electrode pattern substitutes a “double-D”. An example is GANIL1026

C0 injector with its 4 accelerating gaps and h = 4 and h = 8 RF harmonic opera-1027

tion [11].1028

4.2.1 Fixed-Energy Orbits, Revolution Period1029

In a laboratory frame (O;x,y,z), with (O;x,z) the bend plane (Fig. 4.7), assume
B|y=0 = By , constant. An ion is launched from the origin with a velocity

v =

(
dx

dt
,

dy

dt
,

dz

dt

)
= (v sinα, 0, v cosα)

at an angle α from the z-axis.1030

Fig. 4.7 Circular motion of
an ion in the plane normal
to a uniform magnetic field
B. The orbit is centered
at xC = −v cosα/ωrev,
zC = v sinα/ωrev, its radius
is v/ωrev
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Solving1031

mÛv = qv × B (4.3)

with B = (0, By, 0) yields the parametric equations of motion1032
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x(t) = v

ωrev
cos(ωrevt − α) − v cosα

ωrev

y(t) = constantz(t) = v

ωrev
sin(ωrevt − α) + v sinα

ωrev

(4.4)

which result in1033

(
x +

v cosα

ωrev

)2

+

(
z − v sinα

ωrev

)2

=

(
v

ωrev

)2

(4.5)

a circular trajectory of radius R = v/ωrev centered at (xC, zC) = (− v cosα
ωrev
, v sinα

ωrev
).1034

Stability of the cyclic motion - The initial velocity vector defines a, say “reference”,1035

closed orbit in the median plane of the cyclotron dipole; a small perturbation in α or1036

v defines a new orbit in the vicinity of the reference. An axial velocity component vy1037

on the other hand, causes the ion to drift away from the reference, vertically, linearly1038

with time, as there is no axial restoring force. The next Section will investigate the1039

necessary field property to ensure both horizontal and vertical confinement of the1040

cyclic motion in the vicinity of a reference orbit in the median plane.1041

4.2.2 Weak Focusing, Linearized Approach1042

In the early accelerated turns in a classical cyclotron (central region of the electro-1043

magnet, energy up to tens of keV/u), the accelerating electric field provides adequate1044

transverse focusing [11], whereas a flat magnetic field with uniformity dB/B < 10−4
1045

is sufficient to maintain isochronism. Beyond this low energy region however, at1046

greater radii, a magnetic field gradient must be introduced to ensure transverse1047

stability: field must decrease with R.1048

Fig. 4.8 Moving frame
(M0; s, x, y, s) along the ref-
erence circular orbit. The cur-
vature 1/R0 is constant along
the orbit and (M0; s, x, y)
can be considered equiva-
lent to the cylindrical frame
(C; θ, R0, y)
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Ion coordinates in the following are defined in the moving frame (M0; s, x, y)1049

(Fig. 4.8), which moves along the reference orbit (radius R0), with its origin M01050

the projection of ion location M on the reference orbit; the s axis is tangent to the1051
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latter, the x axis is normal to s, the y axis is normal to the bend plane. Median-plane1052

symmetry of the field is assumed, thus the radial field component BR |y=0 = 0 at all1053

R (Fig. 4.9).1054

Consider small motion excursions from (R = R0, y = 0): x(t) = R(t) − R0 ≪ R0;1055

introduce the Taylor expansion of the vertical field component1056

By(R0 + x) = By(R0) + x
∂By

∂R

����
R0

+

x2

2!

∂2By

∂R2

�����
R0

+ ... ≈ By(R0) + x
∂By

∂R

����
R0

BR(0 + y) = y
∂BR

∂y

����
0︸ ︷︷ ︸

=
∂By

∂R

���
R0

+

y
3

3!

∂3BR

∂y3

����
0

+ ... ≈ y
∂By

∂R

����
R0

(4.6)

Using these, and noting Û(∗) = d(∗)/dt, the linear approximation of the differential1057

equations of motion in the moving frame writes1058

Fx = m Üx = −qvBy(R) +
mv

2

R0 + x
≈ −qv

(

By(R0) +
∂By

∂R

����
R0

x

)

+

mv
2

R0

(
1 − x

R0

)

→ m Üx = −mv
2

R2
0

(
R0

B0

∂By

∂R

����
R0

+ 1

)

x (4.7)

Fy = m Üy = qvBR(y) = qv
∂BR

∂y

����
y=0

y + higher order → m Üy = qv
∂By

∂R
y

Fig. 4.9 Axial motion stabil-
ity requires proper shaping of
field lines: By has to decrease
with radius. The Laplace force
pulls a positive charge with
velocity pointing out of the
page, at I, toward the median
plane. Increasing the field
gradient (k closer to -1, gap
opening up faster) increases
the focusing

F
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1059

Note By(R0) = B0 and introduce1060

ω2
R = ω

2
rev(1 +

R0

B0

∂By

∂R
), ω2

y = −ω2
rev

R0

B0

∂By

∂R
(4.8)

substitute in Eqs. 4.7, this yields1061
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Fig. 4.10 Geometrical focus-
ing: in a uniform field, k=0,
the two circular trajectories
at r = R0 ± δR (solid lines)
undergo exactly one oscilla-
tion around the reference orbit
r = R0. A positive k (square
markers) increases the conver-
gence - but causes the vertical
motion to diverge; a nega-
tive k (triangles), a necessary
condition for axial focusing,
decreases the convergence

 0  0.05  0.1  0.15  0.2
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Fig. 4.11 Radial motion sta-
bility in an axially symmetric
structure. Trajectories arcs at
p=mv are represented: case
of k=0 (thin black lines), of
-1<k<0 (thick blue lines),
and of k=-1 (dashed con-
centric circles). k decreasing
towards -1 reduces the geo-
metrical focusing, increases
axial focusing. The resultant
of the Laplace and centrifugal
forces, Ft = −qvB + mv2/r ,
is zero at I, motion is sta-
ble if Ft is toward I at i,
i.e. qvBi < mv2/Ri , and
toward I as well at e, i.e.

qvBe > mv2/Re

2

force toward Iforce toward I

BR<mv/q BR>mv/q  BR=
mv/q

rB
decreases        

  increases       
 R

mv /R

                   

s

x

I

y

i e

qvB    

O

R0

C

Üx + ω2
Rx = 0 and Üy + ω2

yy = 0 (4.9)

A restoring force (linear terms in x and y, Eq. 4.9) arises from the radially varying1062

field, characterized by a field index1063

k =
R0

B0

∂By

∂R

����
R=R0,y=0

(4.10)

Radial stability - radially this force adds to the geometrical focusing (curvature1064

term “1” in ω2
R

, Eq. 4.8, Fig. 4.10). In the weakly decreasing field B(R) an ion1065

with momentum p = mv moving in the vicinity of the R0-radius reference orbit1066

experiences in the moving frame a resultant force Ft = −qvB + m
v

2

r
(Fig. 4.11) of1067

which the (outward) component fc = m v2

r
decreases with r at a higher rate than the1068

decrease of the Laplace (inward) component fB = −qvB(r). In other words, radial1069
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stability requires BR to increase with R, ∂BR
∂R
= B+R ∂B

∂R
> 0, this holds in particular1070

at R0, thus 1 + k > 0.1071

Axial stability requires a restoring force directed toward the median plane. Refer-1072

ring to Fig. 4.9, this means Fy = −a× y (with a a positive quantity) and thus BR < 0,1073

at all (r, y , 0). This is achieved by designing a guiding field which decreases with1074

radius, ∂BR

∂y
< 0. Referring to Eq. 4.10 this means k < 0.1075

From these radial and axial constraints the condition of “weak focusing” for1076

transverse motion stability around the circular equilibrium orbit results, namely,1077

−1 < k < 0 (4.11)

Note regarding the geometrical focusing: the focal distance associated with the

curvature of a magnet of arc length L is obtained by integrating d2x
ds2 +

1
R2

0

x = 0 and

identifying with the focusing property ∆x ′
= −x/ f , namely,

∆x ′
=

∫
d2x

ds2
ds ≈ −x

R2

∫
ds =

−xL
R2
, thus f =

R2

L

Isochronism: the axial focusing constraint: B deceasing with R, contributes break-1078

ing the isochronism (in addition to the effect of the mass increase) by virtue of1079

ωrev ∝ B.1080

Paraxial Transverse Coordinates1081

Introduce the path variable, s, as the independent variable in Eq. 4.9 and neglect the1082

transverse velocity components: ds ≈ vdt; the equations of motion in the moving1083

frame (Eq. 4.9) thus take the form1084

d2x

ds2
+

1 + k

R2
0

x = 0 and
d2y

ds2
− k

R2
0

y = 0 (4.12)

Given −1 < k < 0 the motion is that of a harmonic oscillator, in both planes, with1085

respective restoring constants (1 + k)/R2
0 and −k/R2

0 , both positive quantities. The1086

solution is a sinusoidal motion,1087

{
R(s) − R0 = x(s) = x0 cos

√
1+k
R0

(s − s0) + x′
0

R0√
1+k

sin
√

1+k
R0

(s − s0)
R′(s) = x ′(s) = −x0

√
1+k
R0

sin
√

1+k
R0

(s − s0) + x′
0 cos

√
1+k
R0

(s − s0)
(4.13)

1088 {
y(s) = y0 cos

√
−k

R0
(s − s0) + y′

0
R0√
−k

sin
√
−k

R0
(s − s0)

y′(s) = −y0

√
−k

R0
sin

√
−k

R0
(s − s0) + y′

0 cos
√
−k

R0
(s − s0)

(4.14)

Radial and axial wave numbers can be introduced,1089
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νR =
ωR

ωrev
=

√
1 + k and νy =

ωy

ωrev
=

√
−k (4.15)

i.e., the number of sinusoidal oscillations of the paraxial motion about the reference1090

circular orbit over a turn, respectively radial and axial. Both are less than 1: there1091

is less than one sinusoidal oscillation in a revolution. In addition, as a result of the1092

axial symmetry,1093

ν2R + ν
2
y = 1 (4.16)

Off-Momentum Motion1094

In an axially symmetric structure, the equilibrium trajectory at momentum

{
p0

p = p0 + ∆p

is at radius

{
R0 such that B0R0 = p0/q
R such that BR = p/q , with

{
B = B0 +

(
∂B
∂x

)

0
∆x + ...

R = R0 + ∆x
On the other hand

BR =
p

q
⇒

[
B0 +

(
∂B

∂x

)

0

∆x + ...

]
(R0 + ∆x) = p0 + ∆p

q

which, neglecting terms in (∆x)2, and given B0R0 =
p0
q

, leaves∆x
[(

∂B
∂x

)

0
R0 + B0

]
=1095

∆p

q
. With k =

R0
B0

(
∂B
∂x

)

0
this yields

R

y

A B

R0 R

Magnet pole

Magnet pole
R

R

p
0

.

p0

Fig. 4.12 The equilibrium radius at location A is R0, the equilibrium momentum is p0, rigidity is
B0R0. The equilibrium radius at B is R, equilibrium momentum p, rigidity BR

1096

∆x = D
∆p

p0
with D =

R0

1 + k
the dispersion function (4.17)

The dispersion D is an s-independent quantity as a result of the cylindrical symmetry1097

of the field (k and R=p/qB are s-independent).1098
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To the first order in the coordinates, the vertical coordinates y(s), y’(s) (Eq. 4.14)1099

are unchanged under the effect of a momentum offset, the horizontal trajectory angle1100

x’(s) (Eq. 4.13) is unchanged as well (the circular orbits are concentric, Fig. 4.12)1101

whereas x(s) satisfies1102

x(s, p0 + ∆p) = x(s, p0) + ∆p
∂x

∂p

����
s,p0

= x(s, po) + D
∆p

p0
(4.18)

Orbit and revolution period lengthening1103

A p + δp off-momentum motion satisfies (Eq. 4.17)1104

δC
C =

δR

R
=

δx

R
= α
δp

p
with α =

1

1 + k
=

1

ν2
R

(4.19)

with α the “momentum compaction”, a positive quantity: orbit length increases with1105

momentum. Substituting δβ

β
=

1
γ2

δp

p
, the change in revolution period Trev = C/βc1106

with momentum writes1107

δTrev

Trev
=

δC
C

− δβ
β
=

(
α − 1

γ2

)
δp

p
(4.20)

Given that −1 < k < 0 and γ & 1, it results that α − 1/γ2 > 0: the revolution period1108

increases with energy, the increase in radius is faster than the velocity increase.1109

4.2.3 Quasi-Isochronous Resonant Acceleration1110

The energy W of an accelerated ion (in the non-relativistic energy domain, which is1111

that of the classical cyclotron) satisfies the frequency dependence1112

W =
1

2
mv

2
=

1

2
m (2πR frev)2 =

1

2
m

(
2πR

frf

h

)2

(4.21)

Observe in passing: given the cyclotron size (radius R), frf and h set the limit for1113

the acceleration range. The revolution frequency decreases with energy and the1114

condition of synchronism with the oscillating voltage, frf = h frev, is only fulfilled1115

at that particular radius where ωrf = qB/m (Fig. 4.13-left). The out-phasing ∆φ of1116

the RF at ion arrival at the gap builds-up turn after turn, decreasing in a first stage1117

(towards lower voltages in Fig. 4.13-right) and then increasing back to φ = π/2 and1118

beyond towards π. Beyond φ = π the RF voltage is decelerating.1119

With ωrev constant between two gap passages, differentiating φ(t) (Eq. 4.2) yields1120

Ûφ = ωrf −ωrev. Between two gap passages on the other hand, ∆φ = Ûφ∆T = ÛφTrev/2 =1121

Ûφ πR
v

, yielding a phase-shift of1122
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Fig. 4.13 A sketch of the synchronism condition at one point (left, h=1 assumed), and the span
in phase of the energy gain ∆W = qV̂ sinφ (Eq. 4.2) over the acceleration cycle (right). The two
∆W (φ) branches on the right graph (∆φ < 0 and ∆φ > 0) actually superimpose, they have been
dissociated here for clarity

half-turn ∆φ = π

(
ωrf

ωrev(R)
− 1

)
= π

(
mωrf

qB(R) − 1

)
(4.22)

The out-phasing is thus a gap-after-gap, cumulative effect. Due to this the classical1123

cyclotron requires quick acceleration (limited number of turns), which means high1124

voltage (tens to hundreds of kVolts). As expected, withωrf and B constant, φ presents1125

a minimum ( Ûφ = 0) at ωrf = ωrev = qB/m where exact isochronism is reached1126

(Fig. 4.13). The upper limit to φ is set by the condition ∆W > 0: acceleration.1127

Fig. 4.14 A graph of the
cyclotron equation (Eq. 4.23),
for a few different settings
of the accelerating voltage.
The sole settings resulting
in −1 < cosφ(E) < 1, ∀E ,
allow complete acceleration
to top energy. φi = π/4 at
injection for instance, does
not allow acceleration to
20 MeV (upper three curves).
Acceleration to 20 MeV works
with φi = 3π/4, with as low
as 100 kV/gap (lower three
curves)
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The cyclotron equation determines the achievable energy range, depending on1128

the injection energy Ei , the RF phase at injection φi , the RF frequency ωrf and gap1129

voltage V̂ , and writes [12]1130
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cos φ = cos φi + π

[
1 − ωrf

ωrev

E + Ei

2M

]
E − Ei

qV̂
(4.23)

and is represented in Fig. 4.14 for various values of the peak voltage and phase at1131

injection φi . M and E are respectively the rest mass and relativistic energy in eV/c2
1132

units, qV̂ is expressed in electron-volts, the index i denotes injection parameters.1133

4.2.4 Beam Extraction1134

From R = p/qB and assuming B(R) ≈constant (this is legitimate as k is normally1135

small), in the non-relativistic approximation (W ≪ M , W = p2/2M) one gets1136

dR

R
=

1

2

dW

W
(4.24)

Integrating yields1137

R2
= R2

i

W

Wi

(4.25)

with Ri , Wi initial conditions. From Eqs. 4.24, 4.25, assuming Wi ≪ W and constant1138

acceleration rate dW such that W = n dW after n turns, one gets the scaling laws1139

R ∝
√

n, dR ∝ R

W
∝ 1

R
∝ dW,

dR

dn
=

R

2n
(4.26)

Thus, in particular, the turn separation dR/dn is proportional to the orbit radius R1140

and to the energy gain per turn.1141

Fig. 4.15 The radial distance
between successive turns
decreases with energy, in
inverse proportion to the orbit
radius
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The radial distance between successive turns decreases with energy, toward zero1142

(Fig. 4.15), eventually resulting in insufficient spacing for insertion of an extraction1143

septum.1144
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Orbit modulation1145

Consider an ion bunch injected in the cyclotron with some (x0, x
′
0) conditions in the1146

vicinity of the reference orbit, and assume very slow acceleration. While accelerated1147

the bunch undergoes an oscillatory motion around the local closed orbit (Eq. 4.13).1148

Observed at the extraction septum this oscillation modulates the distance of the1149

bunch to the local reference closed orbit, moving it outward or inward depending on1150

the turn number, which modulates the distance between the accelerated turns. This1151

effect can be exploited to increase the separation between the final two turns and so1152

enhance the extraction efficiency [9].1153

4.2.5 Spin Dance1154

The magnetic field B of the cyclotron dipole exerts a torque on the spin angular1155

momentum S of an ion, causing it to precess following the Thomas-BMT differential1156

equation [13]1157

dS

dt
= S × q

m

[
(1 + G)B‖ + (1 + Gγ)B⊥

]

︸                                  ︷︷                                  ︸
ωsp

(4.27)

wherein t is the time; ωsp the precession vector: a combination of B‖ and B⊥1158

components of B respectively parallel and orthogonal to the ion velocity vector. G1159

is the gyromagnetic anomaly,1160

G=1.7928474 (proton), -0.178 (Li), -0.143 (deuteron), -4.184 (3He) ...1161

S in this equation is in the ion rest frame, all other quantities are in the laboratory1162

frame.1163

In the case of an ion moving in the median plane of the dipole, B‖ = 0, thus the1164

precession axis is parallel to the magnetic field vector, By , so that ωsp =
q

m
(1 +1165

Gγ)By . The precession angle over a trajectory arc L is1166

θsp, Lab =
1

v

∫

(L)
ωsp ds = (1 + Gγ)

∫
(L) B ds

BR
= (1 + Gγ)α (4.28)

with α the trajectory deviation angle (Fig. 4.16). The precession angle in the moving1167

frame (the latter rotates by an angle α along L) is1168

θsp = Gγα (4.29)

thus the number of 2π spin precessions per ion orbit around the cyclotron is Gγ. By1169

analogy with the wave numbers (Eq. 4.15) this defines the “spin tune”1170

νsp = Gγ (4.30)
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Fig. 4.16 Spin and velocity
vector precession in a constant
field, from S to S′ and v to
v′ respectively. In the moving
frame the spin precession
along the arc L = Rα

is Gγα, in the laboratory
frame the spin precesses by
(1 +Gγ)α
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4.3 Exercises1171

4.1 Modeling a Cyclotron Dipole: Using a Field Map1172

Solution: page 2591173

In this exercise, ion trajectories are ray-traced, various optical properties addressed1174

in the foregoing are recovered, using a field map to simulate the cyclotron dipole.1175

Fabricating that field map is a preliminary step of the exercise.1176

The interest of using a field map is that it is an easy way to account for fancy magnet1177

geometries and fields, including field gradients and possible defects. A field map can1178

be generated using mathematical field models, or from magnet computation codes, or1179

from magnetic measurements. The first method is used, here. TOSCA keyword [14,1180

cf. INDEX] is used to ray-trace through the map.1181

Working hypotheses: A 2-dimensional m(R, θ) polar meshing of the median plane1182

is considered (Fig. 4.17). It is defined in a (O; X,Y ) frame and covers an angular1183

sector of a few tens of degrees. The mid-plane field map is the set of values BZ (R, θ)1184

at the nodes of the mesh. During ray-tracing, TOSCA extrapolates the field along1185

3D space (R, θ, Z) ion trajectories from the 2D map [14].1186

Fig. 4.17 Principle of a 2D
field map in polar coordinates,
covering a 180o sector (over
the right hand side dee).
The mesh nodes m(R, θ)
are distant ∆R radially, ∆θ
azimuthally. The map is used
twice to cover the 360o

cyclotron dipole as sketched
here, while allowing insertion
of an accelerating gap between
the two dees

O

X

Y

m(R,  )θ

θ

R

R∆

    

∆θ  

(a) Construct a 180o two-dimensional map of a median plane field BZ (R, θ),1187

proper to simulate the field in a cyclotron as sketched in Fig. 4.1. Use one of the1188

following two methods: either (i) write an independent program, or (ii) use zgoubi1189

and its analytical field model DIPOLE, together with the keyword CONSTY [14,1190

cf. INDEX].1191

Besides: use a uniform mesh (Fig. 4.17) covering from Rmin=1 to Rmax=76 cm,1192

with radial increment ∆R = 0.5 cm, azimuthal increment ∆θ = 0.5 [cm]/R0 with R01193

some reference radius (say, 50 cm, in view of subsequent exercises), and constant1194

axial field BZ = 0.5 T. The appropriate 6-column formatting of the field map data1195

for TOSCA to read is the following:1196

R cos θ, Z, R sin θ, BY, BZ, BX1197
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with θ varying first, R varying second; Z is the vertical direction (normal to the map1198

mesh), Z ≡ 0 in the present case. Note that proper functioning of TOSCA requires1199

the field map to begin with the following line of numerical values:1200

Rmin [cm] ∆R [cm] ∆θ [deg] Z [cm]1201

Produce a graph of the BZ (R, θ) field map content.1202

(b) Ray-trace a few concentric circular mid-plane trajectories centered on the1203

center of the dipole, ranging in 10 ≤ R ≤ 80 cm. Produce a graph of these concentric1204

trajectories in the (O; X,Y ) laboratory frame.1205

Initial coordinates can be defined using OBJET, particle coordinates along tra-1206

jectories during the stepwise ray-tracing can be logged in zgoubi.plt by setting IL=21207

under TOSCA. In order to find the Larmor radius corresponding to a particular1208

momentum, the matching procedure FIT can be used. In order to repeat the latter for1209

a series of different momenta, REBELOTE[IOPT=1] can be used.1210

Explain why it is possible to push the ray-tracing beyond the 76 cm radial extent1211

of the field map.1212

(c) Compute the orbit radius R and the revolution period Trev as a function of1213

kinetic energy W or rigidity BR. Produce a graph, including for comparison the1214

theoretical dependence of Trev.1215

(d) Check the effect of the density of the mesh (the choice of ∆R and ∆θ values,1216

i.e., the number of nodes Nθ × NR = (1+ 180o

∆θ
) × (1+ 80 cm

∆R
)), on the accuracy of the1217

trajectory and time-of-flight computation.1218

(e) Consider a mesh with such ∆R, ∆θ density as to ensure reasonably good1219

convergence of the numerical resolution of the differential equation of motion [14,1220

Eq. 1.2.4].1221

Check the effect of the integration step size on the accuracy of the trajectory1222

and time-of-flight computation, by considering a small ∆s = 1 cm and a large1223

∆s = 20 cm, at 200 keV and 5 MeV (proton).1224

(f) Consider a periodic orbit, thus its radius R should remain unchanged after1225

stepwise integration of the motion over a turn. However, the size ∆s of the numerical1226

integration step has an effect on the final value of the radius:1227

for two different cases, 200 keV (a small orbit) and 5 MeV (a larger one), provide1228

the dependence of the relative error δR/R after one turn, on the integration step size1229

∆s (consider a series of ∆s values in a range ∆s : 0.1 mm → 20 cm). Provide a1230

graph of the two δR
R
(∆s) curves (200 keV and 5 MeV).1231

4.2 Modeling a Cyclotron Dipole: Using an Analytical Field Model1232

Solution: page 2671233

This exercise is similar to exercise 4.1, yet using the analytical modeling DIPOLE,1234

instead of a field map. DIPOLE provides the Z-parallel median plane field B(R, θ, Z =1235

0) ≡ BZ (R, θ, Z = 0) at the projected m(R, θ, Z = 0) ion location (Fig. 4.18), while1236

B(R, θ, Z) at particle location is obtained by extrapolation.1237

(a) Simulate a 180o sector dipole; DIPOLE requires a reference radius [14,1238

Eqs. 6.3.19-21], noted R0 here; for the sake of consistency with other exercises, it is1239

suggested to take R0 = 50 cm. Take a constant axial field BZ = 0.5 T.1240
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Fig. 4.18 DIPOLE provides
the value BZ (m) of the
median plane field at m,
projection of particle position
M(R, θ, Z) in the median
plane. B(R, θ, Z) is obtained
by extrapolation

z
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Explain the various data that define the field simulation in DIPOLE: geometry,1241

role of R0, field and field indices, fringe fields, integration step size, etc.1242

Produce a graph of BZ (R, θ).1243

(b) Repeat question (b) of exercise 4.1.1244

(c) Repeat question (c) of exercise 4.1.1245

(d) As in question (e) of exercise 4.1, check the effect of the integration step size1246

on the accuracy of the trajectory and time-of-flight computation.1247

Repeat question (f) of exercise 4.1.1248

(e) From the two series of results (exercise 4.1 and the present one), comment on1249

various pros and cons of the two methods, field map versus analytical field model.1250

4.3 Resonant Acceleration1251

Solution: page 2721252

Based on the earlier exercises, using indifferently a field map (TOSCA) or an1253

analytical model of the field (DIPOLE), introduce a sinusoidal voltage between the1254

two dees, with peak value 100 kV. Assume that ion motion does not depend on RF1255

phase: the boost through the gap is the same at all passes, use CAVITE[IOPT=3] [14,1256

cf. INDEX] for that. Note that using CAVITE requires prior PARTICUL in order to1257

specify ion species and data, necessary to compute the energy boost (Eq. 4.2).1258

(a) Accelerate a proton with initial kinetic energy 20 keV, up to 5 MeV, take1259

harmonic h=1. Produce a graph of the accelerated trajectory in the laboratory frame.1260

(b) Provide a graph of the proton momentum p and total energy E as a function1261

of its kinetic energy, both from this numerical experiment (ray-tracing data can be1262

stored using FAISTORE) and from theory, all on the same graph.1263

(c) Provide a graph of the normalized velocity β = v/c as a function of kinetic1264

energy, both numerical and theoretical, and in the latter case both classical and1265

relativistic.1266

(d) Provide a graph of the relative change in velocity∆β/β and orbit length∆C/C1267

as a function of kinetic energy, both numerical and theoretical. From their evolution,1268

conclude that the time of flight increases with energy.1269

(e) Repeat the previous questions, assuming a harmonic h=3 RF frequency.1270
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4.4 Spin Dance1271

Solution: page 2751272

Cyclotron modeling in the present exercise can use Exercise 4.1 or Exercise 4.21273

technique (i.e., a field map or an analytical field model), indifferently.1274

(a) Add spin transport, using SPNTRK [14, cf. INDEX]. Produce a listing1275

(zgoubi.res) of a simulation, including spin outcomes.1276

Note: PARTICUL is necessary here, for the spin equation of motion (Eq. 4.27) to1277

be solved [14, Sect. 2]. SPNPRT can be used to have local spin coordinates listed in1278

zgoubi.res (at the manner that FAISCEAU lists local particle coordinates).1279

(b) Consider proton case, take initial spin longitudinal, compute the spin preces-1280

sion over one revolution, as a function of energy over a range 12 keV→5 MeV. Give1281

a graphical comparison with theory.1282

FAISTORE can be used to store local particle data, which include spin coor-1283

dinates, in a zgoubi.fai style output file. IL=2 [14, cf. INDEX] (under DIPOLE or1284

TOSCA, whichever modeling is used) can be used to obtain a print out of particle1285

and spin motion data to zgoubi.plt during stepwise integration.1286

(c) Inject a proton with longitudinal initial spin Si . Give a graphic of the lon-1287

gitudinal spin component value as a function of azimuthal angle, over a few turns1288

around the ring. Deduce the spin tune from this computation. Repeat for a couple of1289

different energies.1290

Place both FAISCEAU and SPNPRT commands right after the first dipole sector,1291

and use them to check the spin rotation and its relationship to particle rotation, right1292

after the first passage through that first sector.1293

(d) Spin dance: the input data file optical sequence here is assumed to model a1294

full turn. Inject an initial spin at an angle from the horizontal plane (this is in order1295

to have a non-zero vertical component), produce a 3-D animation of the spin dance1296

around the ring, over a few turns.1297

(e) Repeat questions (b-d) for two additional ions: deuteron (much slower spin1298

precession), 3He2+ (much faster spin precession).1299

4.5 Synchronized Spin Torque1300

Solution: page 2811301

A synchronized spin kick is superimposed on orbital motion. An input data file for1302

a complete cyclotron is considered as in question 4.4 (d), for instance six 60 degree1303

DIPOLEs, or two 180 degree DIPOLEs.1304

Insert a local spin rotation of a few degrees around the longitudinal axis, at the1305

end of the optical sequence (i.e., after one orbit around the cyclotron). SPINR can1306

be used for that, to avoid any orbital effect. Track 4 particles on their closed orbit,1307

with respective energies 0.2, 108.412, 118.878 and 160.746 MeV.1308

Produce a graph of the motion of the vertical spin component Sy along the circular1309

orbit.1310

Produce a graph of the spin vector motion on a sphere.1311

4.6 Weak Focusing1312

Solution: page 2851313
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(a) Consider a 60o sector as in earlier exercises (building a field map and using1314

TOSCA as in exercise 4.1, or using DIPOLE as in exercise 4.2), construct the sector1315

accounting for a non-zero radial index k in order to introduce axial focusing, say1316

k = −0.03, assume a reference radius R0 for a reference energy of 200 keV (R0 and1317

B0 are required in order to define the index k, Eq. 4.10). Ray-trace that 200 keV1318

reference orbit, plot it in the lab frame: make sure it comes out as expected, namely,1319

constant radius, final and initial angles zero.1320

(b) Find and plot the radius dependence of orbit rigidity, BR(R), from ray-tracing1321

over a BR range covering 20 keV to 5 MeV; superpose the theoretical curve. REBE-1322

LOTE can be used to perform the scan.1323

(c) Produce a graph of the paraxial axial motion of a 1 MeV proton, over a few1324

turns (use IL=2 under TOSCA, or DIPOLE, to have step by step particle and field1325

data logged in zgoubi.plt). Check the effect of the focusing strength by comparing1326

the trajectories for a few different index values, including close to -1 and close to 0.1327

(d) Produce a graph of the magnetic field experienced by the ion along these1328

trajectories.1329

4.7 Loss of Isochronism1330

Solution: page 2941331

Compare on a common graphic the revolution period Trev(R) for a field index1332

value k ≈ −0.95, −0.5, −0.03, 0−. The scan method of exercise 4.6, based on1333

REBELOTE, can be referred to.1334

4.8 Ion Trajectories1335

Solution: page 2961336

In this exercise individual ion trajectories are computed. DIPOLE or TOSCA1337

magnetic field modeling can be used, indifferently. No acceleration here, ions cycle1338

around the cyclotron at constant energy.1339

(a) Produce a graph of the horizontal and vertical trajectory components x(s)1340

and y(s) of an ion with rigidity close to BR(R0) (R0 is the reference radius in the1341

definition of the index k), over a few turns around the cyclotron. From the number of1342

turns, give an estimate of the wave numbers. Check the agreement with the expected1343

νR(k), νy(k) values (Eq. 4.15).1344

(b) Consider now protons at 1 MeV and 5 MeV, far from the reference energy1345

E(R0); the wave numbers change with energy: consistency with theory can be1346

checked. Find their theoretical values, compare with numerical outcomes.1347

(c) Consider proton, 200 keV energy, plot as a function of s the difference between1348

x(s) from raytracing and its values from Eq. 4.13. Same for y(s) compared to Eq. 4.14.1349

IL=2 can be used to store in zgoubi.plt the step-by-step particle coordinates across1350

DIPOLE.1351

(d) Perform a scan of the wave numbers over 200 keV−5 MeV energy interval,1352

computed using MATRIX, and using REBELOTE to repeat MATRIX for a series1353

of energy values.1354
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4.9 RF Phase at the Accelerating Gap1355

Solution: page 3021356

Consider the cyclotron model of exercise 4.6: field index k = −0.03 defined at1357

R0 = 50 cm, field B0 = 5 kG on that radius. two dees, double accelerating gap.1358

Accelerate a proton from 1 to 5 MeV: get the turn-by-turn phase-shift at the gaps;1359

use CAVITE[IOPT=7] to simulate the acceleration. Compare the half-turn ∆φ so1360

obtained with the theoretical expectation (Eq. 4.22). Produce similar graphs B(R)1361

and ∆W(φ) to Fig. 4.13.1362

Accelerate over more turns, observe the particle decelerating.1363

4.10 The Cyclotron Equation1364

Solution: page 3041365

The cyclotron model of exercise 4.3 is considered: two dees, double accelerating1366

gap, uniform field B = 0.5 T, no gradient.1367

(a) Set up an input data file for the simulation of a proton acceleration from1368

0.2 to 20 MeV. In particular, assume that cos(φ) reaches its maximum value at1369

Wm = 10 MeV; find the RF voltage frequency from d(cos φ)/dW = 0 at Wm.1370

(b) Give a graph of the energy-phase relationship (Eq. 4.23), for φi =
3π
4 ,

π
2 ,

π
4 ,1371

from both simulation and theory.1372

4.11 Cyclotron Extraction1373

Solution: page 3061374

(a) Acceleration of a proton in a uniform field B=0.5 T is first considered (field1375

hypotheses as in exercise 4.3). RF phase is ignored: CAVITE[IOPT=3] can be used1376

for acceleration. Take a 100 kV gap voltage.1377

Compute the distance ∆R between turns, as a function of turn number and of1378

energy, over the range E : 0.02 → 5 MeV. Compare graphically with theoretical1379

expectation.1380

(b) Assume a beam with Gaussian momentum distribution and rms momentum1381

spread δp/p = 10−3. An extraction septum is placed half-way between two successive1382

turns, provide a graph of the percentage of beam loss at extraction, as a function of1383

extraction turn number - COLLIMA can be used for that simulation and for particle1384

counts, it also allows for possible septum thickness.1385

(c) Repeat (a) and (b) considering a field with index: take for instance B0 = 0.5 T1386

and k = −0.03 at R0 = R(0.2 MeV) = 12.924888 cm.1387

(d) Investigate the effect of injection conditions (Yi,Ti) on the modulation of the1388

distance between turns.1389

Show numerically that, with slow acceleration, the oscillation is minimized for1390

an initial |Ti | = | x0νR

R
| (after Ref. [9, p. 133]).1391

4.12 Acceleration and Extraction of a 6-D Polarized Bunch1392

Solution: page 3111393

The cyclotron simulation hypotheses of exercise 4.10-a are considered.1394
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Add a short “high energy” extraction line, say 1 meter, following REBELOTE in1395

the optical sequence, ending up with a “Beam_Dump” MARKER for instance.1396

(a) Create a 1,000 ion bunch with the following initial parameters:1397

- random Gaussian transverse phase space densities, centered on the closed orbit,1398

truncated at 3 sigma, normalized rms emittances εY = εZ = 1 πµm, both emittances1399

matched to the 0.2 MeV orbit optics,1400

- uniform bunch momentum density 0.2×(1−10−3) ≤ p ≤ 0.2×(1+10−3)MeV,1401

matched to the dispersion, namely (Eq. 4.18), ∆x = D
∆p

p
,1402

- random uniform longitudinal distribution −0.5 ≤ s ≤ 0.5 mm,1403

Note: two ways to create this object are, (i) using MCOBJET[KOBJ=3] which1404

generates a random distribution, or (ii) using OBJET[KOBJ=3] to read an external1405

particle coordinate file.1406

Add spin tracking request (SPNTRK), all initial spins normal to the bend plane.1407

Produce a graph of the three initial 2-D phase spaces: (Y,T), (Z,P), (δl,δp/p),1408

matched to the 200 keV periodic optics. Provide Y, Z, dp/p, δl and SZ histograms,1409

check the distribution parameters.1410

(b) Accelerate this polarized bunch to 20 MeV, using the following RF conditions:1411

- 200 kV peak voltage,1412

- RF harmonic 1,1413

- initial RF phase φi = π/4.1414

Produce a graph of the three phase spaces as observed downstream of the extrac-1415

tion line. Provide the Y, Z, dp/p, δl and SZ histograms. Compare the distribution1416

parameters with the initial values.1417

What causes the spins to spread away from vertical?1418
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