Homework 1. PHY 564 August 312015

Due September 9, 2015

Problem 1.2 points. Lorentz transformations

Show explicitly that two successive Lorentz transformations in the same direction are equivalent to a single Lorentz transformation with $v=\frac{v_{1}+v_{2}}{1+\left(v_{1} v_{2} / c^{2}\right)}$.

Problem 2. 2 points. 4-invarints

Show that trace of a tensor is 4-invariant, i.e. $F_{i}^{i} \equiv \sum_{i=0}^{3} F_{i}^{i}=i n v$.

Problem 3. Lorentz group

a) $\mathbf{5}$ points. For the Lorentz boost and rotation matrices \mathbf{K} and \mathbf{S} show that

$$
\begin{gathered}
(\vec{\varepsilon} \overrightarrow{\mathbf{S}})^{3}=-\vec{\varepsilon} \overrightarrow{\mathbf{S}} ;(\vec{\varepsilon} \vec{K})^{3}=\vec{\varepsilon} \vec{K} ; \forall \vec{\varepsilon}=\vec{\varepsilon}^{*} ;|\vec{\varepsilon}|=1 ; \\
\text { or }(\vec{a} \overrightarrow{\mathbf{S}})^{3}=-\vec{a} \overrightarrow{\mathbf{S}} \cdot \vec{a}^{2} ;(\vec{a} \overrightarrow{\mathbf{K}})^{3}=\vec{a} \overrightarrow{\mathbf{K}} \cdot \vec{a}^{2} ; \forall \vec{a}=\vec{a} .
\end{gathered}
$$

b) $\mathbf{5}$ points. use this results to show that

$$
\begin{aligned}
& e^{\vec{\omega} \overrightarrow{\mathbf{S}}}=I-\frac{\vec{\omega} \overrightarrow{\mathbf{S}}}{|\vec{\omega}|} \sin |\vec{\omega}|+\frac{(\vec{\omega} \overrightarrow{\mathbf{S}})^{2}}{\vec{\omega}^{2}}(\cos |\vec{\omega}|-1) \\
& e^{\vec{\beta} \vec{\beta}}=I-\frac{\vec{\beta} \overrightarrow{\mathbf{K}}}{|\vec{\beta}|} \sinh |\vec{\beta}|+\frac{(\vec{\beta} \overrightarrow{\mathbf{K}})^{2}}{\vec{\beta}^{2}}(\cosh |\vec{\beta}|-1)
\end{aligned}
$$

Draw connection to Lorentz transformations (e.g. boosts and rotations).

