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Chapter 1410643

Optical Elements and Keywords, Complements10644

Abstract This chapter is not a review of the 60+ optical elements of zgoubi’s10645

library. They are described in the Users’ Guide. One aim here is, regarding some of10646

them, to briefly recall some aspects which may not be found in the Users’ Guide and10647

yet addressed, or referred to, in the theoretical reminder sections and in the exercises.10648

This chapter is not a review of the 40+ monitoring and command keywords available10649

in zgoubi, either. However it reviews some of the methods used, by keywords such10650

as MATRIX (computation of transport coefficients from sets of rays), FAISCEAU10651

(which produces beam emittance parameters), and others. This chapter in addition10652

recalls the basics of transport and beam matrix methods, in particular it provides the10653

first order transport matrix of several of the optical elements used in the exercises, in10654

view essentially of comparisons with transport coefficients drawn from raytracing,10655

in simulation exercises.10656

14.1 Introduction10657

Optical elements are the basic bricks of charged particle beam lines and accelerators.10658

An optical element sequence is aimed at guiding the beam from one location to10659

another while maintaining it confined in the vicinity of a reference optical axis.10660

Zgoubi library offers of collection of about 100 keywords, amongst which about10661

60 are optical elements, the others being commands (to trigger spin tracking, trigger10662

synchrotron radiation, print out particle coordinates, compute beam parameters,10663

etc.). This library has built over half a century, so it allows simulating most of10664

the optical elements met in real life accelerator facilities. Quite often, elements10665

available provide different ways to model a particular optical component. A bending10666

magnet for instance can be simulated using AIMANT, or BEND, CYCLOTRON,10667

DIPOLE[S][-M], FFAG, FFAG-SPI, MULTIPOL, QUADISEX, or a field map and10668

TOSCA, CARTEMES or POLARMES to handle it. These various keywords have10669

their respective subtleties, though, more on this can be found in the “Optical Elements10670

Versus Keywords” Section of the guide [1, page 227], which tells “Which optical10671
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component can be simulated. Which keyword(s) can be used for that purpose”. For10672

a complete inventory of optical elements, refer to the “Glossary of Keywords” found10673

at the beginning of PART A [1, page 9] or PART B of the Users’ Guide [1, page 227].10674

Optical elements in zgoubi are actually field models, or field modeling methods10675

such as reading and handling field maps. Their role is to provide the numerical10676

integrator with the necessary field vector(s) to push a particle further, and possibly10677

its spin, along a trajectory. The following sections introduce the analytical field10678

models which the simulation exercises resort to.10679

Zgoubi’s coordinate nomenclature, as well as the Cartesian or cylindrical refer-10680

ence frames used in the optical elements and field maps, have been introduced in10681

Sect. 1.2 and Fig. 1.5.10682

14.2 Drift Space10683

This is the DRIFT, or ESL (for the French “ESpace Libre”) optical element, through10684

which a particle moves on a straight line. From the geometry and notations in10685

Fig. 14.1, with L the length of the drift, coordinate transport satisfies10686 ��������
Xf − Xi = L

Yf − Yi = L tanT

Z f − Zi = L tan P/cosT

path length d = L/(cosT cos P)
(14.1)

Fig. 14.1 An L-long drift

in zgoubi (O;X,Y,Z) frame,

with origin at the start of the

drift. A particle flies from

A(Yi, Zi ) to B(Yf , Z f ), at an

angle P to the (X,Y) plane.

Projection W of its straight

path in (X,Y) plane is at an

angle T to the X axis
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Linear approach10687

Coordinate transport from initial to final position in the linear approximation is10688

written (with z standing indifferently for x or y, subscripts i for initial and f for final10689

coordinates) (Fig. 14.2)

Fig. 14.2 A drift section

with length L = s f − si ,

and projection of a straight

trajectory in the (s, z) plane,

at an angle z′ (standing for x′

or y′ ) to the s axis

s

L

z’
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z
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z
f

ss
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10690

����������

z f = zi + L z′
i

z′
f
= z′

i

δlf − δli = βcδt =
L

γ2

δp

p
δp f /p = δpi/p

or, Tdrift =

©«

1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1
L

γ2

0 0 0 0 0 1

ª®®®®®®®®®¬

(14.2)

where βc is the particle velocity, p = γmβc its momentum, γ is the Lorentz rela-10691

tivistic factor.10692

14.3 Guiding10693

Beam guiding is in general assured using dipole magnets to provide a uniform field,10694

normal to the bend plane. Gradient dipoles combine guiding and focusing in a single10695

magnet, this is the case in cyclotrons, this is also the case in some synchrotrons,10696

for instance the BNL AGS [2], the CERN PS [3]. By principle, FFAG dipoles have10697

pole faces shaped to provide a highly non-linear dipole field, B ∝ rk (Sect. 10).10698

Dipole magnets sometimes include a sextupole component for the compensation of10699

chromatic aberrations [4]. Non-linear optical effects may be introduced by shaping10700

entrance and or exit EFBs, a parabola for instance for x2 field integral dependence,10701

a cubic curve for x3 dependence (see Chap. 13).10702

Low energy beam guiding also uses electrostatic deflectors, shaped to provide a10703

field normal to the trajectory arc, and focusing properties. Plane condensers may be10704
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used for beam guiding as well. They are also used at higher energies for some special10705

functions, such as pretzel orbit separation, extraction septa, etc.10706

Guiding optical elements are dispersive systems: trajectory deflection has a first10707

order dependence on particle momentum.10708

14.3.1 Dipole Magnet, Curved10709

This is the DIPOLE element (an evolution of the 1972’s AIMANT [1]) or variants:10710

DIPOLES, DIPOLE-M. Lines of constant field are isocentric circle arcs. The magnet10711

reference curve is a particular arc, at a reference radius r0. The field in the median10712

plane can be written10713

BZ (r, θ) = G(r, θ) B0

(
1 + N

r − r0

r0

+ N ′
(
r − r0

r0

)2

+ N ′′
(
r − r0

r0

)3

+ ...

)

(14.3)

N (n) = dnN/dYn are the field index and derivatives. G(X) describes the longitudinal10714

shape of the field, from a plateau value in the body to zero away from the magnet10715

(Fig. 14.3). It can be written under the form10716

G(X) = G0 F(d(X)) with G0 =
B0

rn−1
0

(14.4)

where B0 is the field at pole tip at r0, and F(d) a convenient model for the field10717

fall-off, e.g. (the Enge model, Sect. 14.3.3),10718

F(d) = 1

1 + exp[P(d)] , P(d) = C0 + C1

(
d

g

)
+ C2

(
d

g

)2

+ C3

(
d

g

)3

+ ... (14.5)

with d (an X-dependent quantity) the distance from (X,Y, Z) location to the magnet10719

EFB, g the characteristic extent of the field fall-off.10720

Linear approach10721

The first order transport matrix of a sector dipole with curvature radius ρ, deflection10722

α and index n, in the hard-edge model, writes10723

Tbend =

©«

Cx Sx 0 0 0
r 2
x

ρ
(1 −Cx )

C′x S′x 0 0 0 1
ρ
Sx

0 0 Cy Sy 0 0

0 0 C′y S′y 0 0

1
ρ
Sx

r 2
x

ρ
(1 −Cx ) 0 0 1

r 3
x

ρ2 (ρα − Sx )
0 0 0 0 0 1

ª®®®®®®®¬
with



C = cos
ρα

r

C′ = dC
ds
=

1
ρ

dC
dα
=
−S
r 2

S = r sin
ρα

r

S′ = dS
ds
=

1
ρ

dS
dα
= C

(∗)x : r = ρ/
√

1 − n
(∗)y : r = ρ/

√
n

(14.6)
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or, explicitly,10724

Tbend =

©«

cos
√

1 − nα
ρ√

1−n
sin
√

1 − nα 0 0 0
ρ

1−n (1 − cos
√

1 − nα)

−
√

1−n
ρ sin

√
1 − nα cos

√
1 − nα 0 0 0 1√

1−n
sin
√

1 − nα

0 0 cos
√
nα

ρ√
n

sin
√
nα 0 0

0 0 −
√
n
ρ sin

√
nα cos

√
nα 0 0

1√
1−n

sin
√

1 − nα
ρ

1−n (1 − cos
√

1 − nα) 0 0 1
ρ

(1−n)3/2
(
√

1 − nα − sin
√

1 − nα)

0 0 0 0 0 1

ª®®®®®¬
(14.7)

Cancel the index in the previous sector dipole, introduce a wedge angle ε at10725

entrance and exit EFBs. The first order transport matrix, accounting for the entrance10726

and exit EFB wedge focusing (see Sect. 14.4.1), writes10727

Tbend =

©«

cos(α−ε)
cos ε

ρ sinα 0 0 0 ρ(1 − cosα)
− sin(α−2ε)

ρ cos2 ε

cos(α−ε)
cos ε

0 0 0
sin(α−ε)+sin ε

cos ε

0 0 1 − α tan ε ρα 0 0

0 0 − tan ε
ρ
(2 − α tan ε) 1 − α tan ε 0 0

sinα 0 0 0 1 ρ(α − sinα)
0 0 0 0 0 1

ª®®®®®®®®¬
(14.8)

10728

14.3.2 Dipole Magnet, Straight10729

This is the MULTIPOL element. Lines of constant field are straight lines. An early in-10730

stance of a straight dipole magnet is the AGS main dipole (Fig. 9.2), which combines10731

steering and focusing, and features in addition a noticeable sextupole component [5].10732

The multipole components Bn(X,Y, Z) [n=1 (dipole), 2 (quadrupole), 3 (sextupole),10733

...] in the Cartesian frame of the straight dipole derive, by differentiation, from the10734

scalar potential10735

Vn(X,Y, Z) = (n!)2 ©«
∞∑

q=0

(−1)q G
(2q)(X)(Y2

+ Z2)q
4qq!(n + q)!

ª®¬
©«

n∑
m=0

sin
(
m
π

2

)
Yn−mZm

m!(n − m)!
ª®®¬

(14.9)

where G(2q)(X) = d2qG(X)/dX2q . In the case of pure dipole field for instance10736

V1(X,Y, Z) = G(X) Z − G
′′(X)
8
(Y2
+ Z2) + G

(4)(X)
512

(Y2
+ Z2) Z ... (14.10)

and10737
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BX (X,Y, Z) = −∂V1

∂X
= G′(X) Z − G

′′′(X)
8
(Y2
+ Z2) ...

BY (X,Y, Z) = −∂V1

∂Y
= −G

′′(X)
4

Y +
G(4)(X)

256
Y Z ..

BZ (X,Y, Z) = −∂V1

∂Z
= G′(X) − G

′′(X)
4

Z +
3G(4)(X)

512
Z2 ... (14.11)

G(r, θ) is a longitudinal form factor to account for the field fall-offs at the ends of the10738

magnet, modeled using Eq. 14.5, with distance d to the EFB in the latter, a function10739

of r and θ.10740

Fig. 14.3 Longitudinal field

form factor (Eq. 14.4 - nor-

malized to one) in BNL AGS

main bend, taken along the

magnet reference axis. Solid

line: from Eq. 14.4 with g

and Ci values from Eq. 14.14.

Squares : measured field data.

X = 0 is the origin in the field

map frame, the vertical dashed

line at XEFB = −5.62 cm is

the location of the EFB.
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14.3.3 Fringe Field, Modeling, Overlapping10741

A fringe field model is described here, which is resorted to in several optical elements10742

of zgoubi’s library.10743

Field shape at the EFBs of magnetic or electrostatic devices can be simulated10744

using a hard-edge model (the field is assumed to change following a Heaviside step).10745

When using stepwise ray-tracing techniques however, a smooth change of the field10746

can easily be accounted for. An efficient model is Enge’s field form factor [6].10747

F(d) = 1

1 + exp P(d) (14.12)

P(d) = C0 + C1

(
d

λ

)
+ C2

(
d

λ

)2

+ C3

(
d

λ

)3

+ C4

(
d

λ

)4

+ C5

(
d

λ

)5
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where d is the distance to the field boundary and λ is the extent of the fall-off,10748

normally commensurate with gap aperture in a dipole, the radius at pole tip in a10749

quadrupole, etc.10750

As an illustration, Fig. 14.3 shows F(d) as matched to the measured end fields of10751

BNL AGS main magnet (Fig. 14.3) [7, 8], using10752

λ = gap aperture ≈ 10 cm and (14.13)

C0 = 0.45473, C1 = 2.4406, C2 = −1.5088, C3 = 0.7335, C4 = C5 = 0

These Ci coefficient values result from an interpolation to measured field data, which10753

are also represented in the figure. The location of the EFB results from the following10754

constraint, which is part of the matching: the field integral on the down side of the10755

fall-off (the region from A to X=0 in Fig. 14.3) is equal to the complement to 1 of10756

the field integral on the rising side of the fall-off (X=0 to B region in the figure),10757

which writes10758 ∫ XEFB

XA

F(X) dX =

∫ XB

XEFB

dX −
∫ B

XEFB

F(X) dX ⇒ XEFB = XB −
∫ B

A

F(X) dX

(14.14)

A convenient property of this model is that changing the slope of the fall-off (i.e.,10759

changing λ) will not affect the location of the EFB.10760

Inward fringe field extents may overlap when simulating an optical element10761

(Fig. 14.4). A way to ensure continuity of the resulting field form factor in such10762

case is to use10763

F = FE + FS − 1 or F = FE ∗ FS (14.15)

where FE (FS) is the entrance (exit) form factor and follows Eq. 14.12. Both expres-10764

sions can be extended to more than two EFBs (for instance 4, to account for the 410765

faces of a dipole magnet: entrance and exit faces, inner and outer radial boundaries).10766

Note that in that case of overlapping field extents, the field integral is affected, lower-10767

ing with more pronounced overlapping, it is therefore necessary to change the field10768

value (B0 in Eq. 14.4 for instance) to recover the proper integrated strength.10769

Overlapping Fringe Fields10770

Zgoubi allows a superposition technique to simulate the field in a series of neighbor-10771

ing magnets. The method consists in computing the mid-plane field at any location10772

(R, θ) by adding individual contributions, namely [9]10773

BZ (r, θ) =
∑

i=1,N

BZ,i(r, θ) =
∑

i=1,N

BZ,0,i Fi(r, θ) Ri(r)

∂k+lBZ (r, θ)
∂θk∂r l

=

∑
i=1,N

∂k+lBZ,i(r, θ)
∂θk∂r l

(14.16)
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with Fi(r, θ) and Ri(r) in each individual dipole in the series (Eqs. 10.7, 10.15).10774

Note that, in doing so it is not meant that field superposition would apply in reality10775

(FFAG magnets are closely spaced, cross-talk may occurs), however it appears to10776

allow closely reproducing magnet computation code outcomes.10777

Short Optical Elements10778

In some cases, an optical element in which fringe fields are taken into account (of10779

any kind: dipole, multipole, electrostatic, etc.) may be given small enough a length,10780

L, that it finds itself in the configuration schemed in Fig. 14.4: the entrance and/or10781

the exit EFB field fall-off extends inward enough that it overlaps with the other EFB’s10782

fall-off. In zgoubi notations, this happens if L < XE + XS . As a reminder [1]: in10783

the presence of fringe fields, XE (resp. XS) is the stepwise integration extent added10784

upstream (resp. added downstream) of the actual extent L of the optical element.10785

In such case, zgoubi computes field and derivatives along the element using a10786

field form factor F = FE × FS . FE (respectively FS) is the value of the Enge model10787

coefficient (Eq. 14.12) at distance dE (resp. dS) from the entrance (resp. exit) EFB.10788

This may have the immediate effect, apparent in Fig. 14.4, that the integrated10789

field is not the expected value B × L from the input data L and B, and may require10790

adjusting (increasing) B so to recover the required BL.10791

Fig. 14.4 A sketch of overlap-

ping entrance field form factor

FE (dE ) (at the entrance

“EFB-E”) and exit FS (dS ) (at

the exit “EFB-S”), and result-

ing form factor F = FE × FS

accounted for in modeling

the field within the optical

element

0E 0S

FE(dE) FS(dS)

EFB-E EFB-S

dE,dS

F=FE*FS

14.3.4 Toroidal Condenser10792

This is the ELCYLDEF element in zgoubi. With proper parameters, it can be used10793

as a spherical, a toroidal or a cylindrical deflector.10794

Motion along the optical axis, an arc of a circle of radius r normal to electric field

E, satisfies

Er = v
p

q
= v(Bρ)

with p = mv the particle momentum, q its charge and (Bρ) = p/q the particle10795

rigidity.10796
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The first order transport matrix of an electrostatic bend writes10797

Tcondenser =

©«

Cx Sx 0 0 0
2−β2

p2
x
r0(1 −Cx )

C′x S′x 0 0 0
2−β2

r0
Sx

0 0 Cy Sy 0 0

0 0 C′y S′y 0 0

− 2−β2

r0
Sx − 2−β2

p2
x
r0(1 −Cx ) 0 0 1 r0α

[
1
γ2 −

(
2−β2

p2
x

)2

(1 − Sx

r0α
)
]

0 0 0 0 0 1

ª®®®®®®®®¬
(14.17)

with



α = deflection angle

C = cos pα

C ′ = dC
ds
= − p2

r2 S

S = r
p

sin pα

S′ = dS
ds
= C

(∗)x : p = px =

√
2 − β2 − r0/R0

(∗)y : p = py =
√

r0/R0

14.4 Focusing10798

Particle beams are maintained confined along a reference propagation axis by means10799

of focusing techniques and devices. Methods available in zgoubi to simulate those10800

are addressed here.10801

14.4.1 Wedge Focusing10802

Wedge focusing is sketched in Fig. 14.5. A wedge angle ε causes a particle at local10803

excursion x to experience a change
∫

By ds = xBy tan ε of the field integral compared10804

the field integral through the sector magnet, thus in the linear approximation a change10805

in trajectory angle10806

∆x ′ =
1

Bρ

∫
By ds = x

tan ε

ρ0

(14.18)

with Bρ the particle rigidity and ρ0 its trajectory curvature radius in the field B010807

of the dipole. Vertical focusing results from the non-zero off-mid plane radial field10808

component Bx in the fringe field region (Fig. 14.7): from (Maxwell’s equations)10809

∂
∂y

∫
Bx ds = ∂

∂x

∫
By ds and Eq. 14.18 the change in trajectory angle comes out to10810

be10811

∆y
′
=

1

Bρ

∫
Bx ds = −y tan ε

ρ0

(14.19)
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α

O
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field is
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x

ε<0

α

O
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x

ε>0

field is

missing
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Fig. 14.5 Left: a focusing wedge (ε < 0 by convention); opening the sector increases the horizontal

focusing. Right: a defocusing wedge (ε > 0); closing the sector decreases the horizontal focusing.

The effect is the opposite in the vertical plane, opening/closing the sector decreases/increases the

vertical focusing.

Fig. 14.6 Field components

in the By (s) fringe field region

at a dipole EFB

y B

Bs

B

Bs

By

By

s

B (s)y

IRON

B                 

B                 //

qv x B  force
qv x B  force ρ

0

s
B                 s B                   x

xB                 

x

defocusing

toward y>0

defocusing

toward y>0
x

Fig. 14.7 Field components in the fringe field region at the ends of a dipole (y > 0, here, referring

to Fig. 14.6). B// is parallel to the particle velocity. This configuration is vertically defocusing: a

charged particle traveling off mid-plane is pulled away from the the latter under the effect of v×Bx

force component. Inspection of the y < 0 region gives the same result: the charge is pulled away

from the median plane
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A first order correction ψ to the vertical kick accounts for the fringe field extent10812

(it is a second order effect for the horizontal kick):10813

∆y
′
= −y tan(ε − ψ)

ρ0

(14.20)

with10814

ψ = I1

λ

ρ0

1 + sin2 ε

cos ε
with I1 =

∫
edge

B(s) (B0 − B(s))
λ B2

0

ds (14.21)

λ is the fringe field extent (Sect. 14.3.3), I1 quantifies the flutter (see Sect. 4.2.1); a10815

longer/shorter field fall-off (smaller/greater flutter) decreases/increases the vertical10816

focusing.10817

Linear approach10818

A wedge focusing first order transport matrix writes10819

Twedge =

©«

1 0 0 0 0 0
tan ε
ρ

1 0 0 0 0

0 0 1 0 0 0

0 0 − tan ε
ρ

1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ª®®®®®®®¬
(14.22)

Substitute ε−ψ to ε in the R43 coefficient, when accounting for fringe field extent λ.10820

14.4.2 Quadrupole10821

Most of the time in beam lines and cyclic accelerators, guiding and focusing are10822

separate functions, focusing is assured by quadrupoles, magnetic most frequently,10823

possibly electrostatic at low energy. Quadrupoles are the optical lenses of charged10824

particle beams, they ensure confinement of the beam in the vicinity of the optical10825

axis.10826

The field in quadrupole lenses results from hyperbolic equipotentials, V = axy.10827

Pole profiles in quadrupole lenses follow these equipotentials, in a 2π/4-symmetrical10828

arrangement for technological simplicity.10829

14.4.2.1 Magnetic Quadrupole10830

Magnetic quadrupoles are the optical lenses of high energy beams.10831
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F
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NS
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y

F

F

F

x

Fig. 14.8 Left: a quadrupole magnet [11]. Right: field lines and forces (assuming positive charges

moving out of the page) over the cross section of an horizontally focusing / vertically defocusing

quadrupole

The theoretical field in a quadrupole can be derived from Eq. 14.9 for the scalar10832

potential, with n = 2 which yields10833

V2(X,Y, Z) = G(X)Y Z− G
′′(X)
12

(Y2
+Z2)Y Z+

G(4)(X)
384

(Y2
+Z2)2Y Z− ... (14.23)

and10834

BX (X,Y, Z) = −∂V2

∂X
= G′(X)Y Z − G

′′′(X)
12

(Y2
+ Z2)Y Z + ... (14.24)

BY (X,Y, Z) = −∂V2

∂Y
= G(X)Z − G

′′(X)
12

(3Y2
+ Z2)Z + ... (14.25)

BZ (X,Y, Z) = −∂V2

∂Z
= G(X)Y − G

′′(X)
12

(Y2
+ 3Z2)Y + ... (14.26)

G(X) is given by Eq. 14.4 whereas10835

G0 =
B0

r0

and K = G0/Bρ (14.27)

define respectively the quadrupole gradient and strength, the latter relative to the10836

rigidity Bρ. The quadrupole is horizontally focusing and vertically defocusing if10837

K > 0, and the reverse if K < 0, this is illustrated in Fig. 14.9 which shows a doublet10838

of quadrupoles with focusing strengths of opposite signs.10839

Linear approach10840

The first order transport matrix of a quadrupole with length L, gradient G and10841

strength K = G/Bρ writes10842
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Fig. 14.9 Horizontal and ver-

tical projections of particle

trajectories across a stigmatic

quadrupole doublet. The first

quadrupole (QF) is horizon-

tally focusing (K > 0; thus

vertically defocusing), the sec-

ond one (QD) has the reverse

sign (K < 0)
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Tquad =

©«

Cx Sx 0 0 0 0

C ′x S′x 0 0 0 0

0 0 Cy Sy 0 0

0 0 C ′y S′y 0 0

0 0 0 0 1
L

γ2

0 0 0 0 0 1

ª®®®®®®®®®¬

with



Cx = cos L
√

K; C ′x =
dCx

dL
= −KSx

Sx =
1√
K

sin L
√

K; S′x =
dSx

dL
= Cx

Cy = coshL
√

K; C ′y =
dCy

dL
= KSy

Sy =
1√
K

sinhL
√

K; S′y =
dSy

dL
= Cy

(14.28)

K > 0 for a focusing quadrupole (by convention, in the (x, x ′) plane, thus defocusing10843

in the (y, y′) plane). Permute the horizontal and vertical 2 × 2 sub-matrices in the10844

case of a defocusing quadrupole.10845

14.4.2.2 Electrostatic Quadrupole10846

The hypotheses are those of Sect. 2.2.2: paraxial motion, field normal to velocity,10847

etc. Take the notations of Eqs. 2.25, 2.26 for the field and potential, electrodes in10848

the horizontal and vertical planes (Fig. 2.14). Electrode potential is ±V/2, pole tip10849

radius a, so that K = −V/2a2 in Eq. 2.26. The equations of motion then write10850 [
d2x
ds2 + Kx x = 0
d2y

ds2 + Ky y = 0
with Kx = −Ky =

−qV

a2mv2
= ± V

a2

1

|Eρ|︸︷︷︸
electrical

rigidity

(14.29)

With that K = V
a2

1
|Eρ | =

V
a2

1
v(Bρ) value ((Bρ) = p/q is the particle magnetic10851

rigidity), the transport matrix is the same as for the magnetic quadrupole, Eq. 14.28.10852
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14.4.3 Solenoid10853

Assume a solenoid magnet with (OX) its longitudinal axis, and revolution symmetry,10854

With (O; X, r, φ) cylindrical frame, radius r, and angle φ the coordinates in the X-10855

normal plane, Bφ(X, r, φ) ≡ 0. Take solenoid length L, mean coil radius r0 and an10856

asymptotic field B0 = µ0NI/L with NI = number of ampere-Turns, µ0 = 4π × 10−7.10857

The asymptotic field value is defined by10858 ∫ ∞

−∞
BX (X, r < r0) dX = µ0NI = B0L independent of r (14.30)

There is a variety of methods to compute the field vector B(X, r). Opting for one10859

in particular may be a matter of compromise between computing speed and field10860

modeling accuracy. A simple model is the on-axis field10861

BX (X, r = 0) = B0

2


L/2 − X√

(L/2 − X)2 + r2
0

+

L/2 + X√
(L/2 + X)2 + r2

0


(14.31)

with X = r = 0 taken at the center of the solenoid. This model assumes that the coil10862

thickness is small compared to its mean radius r0. The magnetic length comes out10863

to be10864

Lmag ≡
∫ ∞
−∞ BX (X, r < r0)dX

BX (X = r = 0) = L

√
1 +

4r2
0

L2
> L (14.32)

so satisfying

on-axis BX (X = r = 0) = µ0NI

L

√
1 +

4r2
0

L2

r0≪XL

−−−−−−→ µ0NI

L

Maxwell’s equations and Taylor expansions provide the off-axis field B(X, r) =10865

(BX (X, r), Br (X, r)). One has in particular in the r0 ≪ XL limit,10866

BX (X, r) =
µ0NI

L
and Br (X, r) =

−r

2

dBX

dX
(14.33)

An other way to compute the field vector B(X, r) is the elliptic integrals technique10867

developed in [12], which constructs BX (X, r) and Br (X, r) from respectively10868

BX (X, r) =
µ0NI

4π

ck

r
X

[
K +

r0 − r

2r0

(Π − K)
]

(14.34)

Br (X, r) = µ0NI
1

k

√
r0

r

[
2(K − E) − k2 K

]
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wherein K , E and Π are the three complete elliptic integrals, X is an X- and L-

dependent form factor, and

k = 2
√

r0r/
√
(r0 + r)2 + X2 ; c = 2

√
r0r/(r0 + r)

Fig. 14.10 A sketch of a

solenoid, and quantities used

to define it L

X

r
0

O

NI

10869
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Fig. 14.11 Left: Horizontal (Y) and vertical (Z) projections of a particle trajectory across a L = 1 m

solenoid, with additional 1 m extents upstream and downstream of the coil. The particle is launched

with zero incidence, from transverse position Y = Z = 0.5 mm. Sample solenoid radius/length

values in the range 0.001 ≤ r0/L ≤ 0.2 show that only for smallest r0/L = 0.001 does the trajectory

end with Y = Z = 0.5 mm and quasi-zero incidence (the thicker Y(X) and Z(X) curves), whereas

greater r0/L causes final Y(X) and Z(X) to be kicked away. Right: field BX (X, r) experienced

along the trajectory for the various r0/L values, the steep fall-off case is for r0/L = 0.001.

As an illustration, Fig. 14.11 displays a trajectory across a L = 1 m solenoid10870

and its fringe field extents, and the field experienced along that trajectory, in the10871

axial model of Eq. 14.31. In the paraxial approximation, a pitch requires a distance10872

l = 2π/K , with K = B0/Bρ the solenoid strength, which is a condition satisfied here10873

if the fringe field extent is short enough (r0 is small enough).10874
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Linear approach10875

The equations of motion write, to the first order in the coordinates, in respectively10876

the central region (field Bs) and at the ends (at s = sEFB),10877

���� x ′′ − K z′ = 0

z′′ + K x ′ = 0
and

�������
x ′′ − K

2
z δ(s − sEFB) = 0

z′′ +
K

2
x δ(s − sEFB) = 0

(14.35)

The first order transport matrix of a solenoid with length L writes10878

Tsol =

©«

C2 2
K
SC SC 2

K
S2 0 0

−K
2
SC C2 −K

2
S2 SC 0 0

−SC − 2
K
S2 C2 2

K
SC 0 0

K
2
S2 −SC −K

2
SC C2 0 0

0 0 0 0 1
L

γ2

0 0 0 0 0 1

ª®®®®®®®®®¬

with


K =

Bs

Bρ

C = cos KL
2

S = sin KL
2

(14.36)

A solenoid rotates the decoupled axis longitudinally by an angle α = KL/2 =10879

BsL/2Bρ.10880

14.5 Data Treatment Keywords10881

14.5.1 Concentration Ellipse: FAISCEAU, FIT[2], MCOBJET, ...10882

It is often useful to associate the projection of a particle bunch in the horizontal,10883

vertical or longitudinal phase space with an rms phase space concentration ellipse10884

(CE). Various keywords in zgoubi resort to concentration ellipses:10885

- FAISCEAU for instance prints out, in zgoubi.res, CE parameters drawn from10886

individual particle coordinates10887

- random particle distributions by MCOBJET are defined using CE parameters.10888

- ellipse parameters computed from CEs are possible constraints in FIT[2] pro-10889

cedures.10890

Transverse phase space graphs by zpop also compute CEs.10891

The CE method is resorted to in various exercises, for instance for comparison10892

of the ellipse parameters it gets from the rms matching of a bunch, with theoretical10893

beam parameters, as derived from first order transport formalism or computed from10894

rays by MATRIX, or TWISS.10895

The method used in these various keywords and data treatment procedures is the10896

following. Let zi(s), z′
i
(s) be the phase space coordinates of i = 1, n particles in a set10897

observed at some azimuth s along a beam line or in a ring. The second moments of10898

the particle distribution are10899
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z2(s) = 1

n

n∑
i=1

(zi(s) − z(s))2

zz′(s) = 1

n

n∑
i=1

(zi(s) − z(s))(z′i (s) − z′(s)) (14.37)

z′2(s) = 1

n

n∑
i=1

(z′i (s) − z′(s))2

From these, a concentration ellipse (CE) is drawn, encompassing a surface Sz(s),10900

with equation10901

γc(s)z2
+ 2αc(s)zz′ + βc(s)z′2 = Sz(s)/π (14.38)

Noting ∆ = z2(s) z′2(s) − zz′
2(s), the ellipse parameters write10902

γc(s) =
z′2(s)
√
∆

, αc(s) = −
zz′(s)
√
∆

, βc(s) =
z2(s)
√
∆

, Sz(s) = 4π
√
∆ (14.39)

With these conventions, the rms values of the z and z′ projected densities satisfy10903

σz =

√
βz

Sz

π
and σz′ =

√
γz

Sz

π
(14.40)

14.5.2 Transport Coefficients: MATRIX, OPTICS, TWISS, etc.10904

Zgoubi does not know about matrix transport, it does not define optical elements10905

by a transport matrix, it defines them by electrostatic and/or magnetic fields in10906

space (and time possibly). Well, except for a couple of optical elements, for instance10907

TRANSMAT, which pushes particle coordinates using a matrix, or SEPARA, an10908

analytical mapping through a Wien filter. Zgoubi does not transport particles using10909

matrix products either, it does that by numerical integration of Lorentz force equation.10910

However it is often useful to dispose of a matrix representation of an optical10911

element, of the transport matrix of a beam line, or the first or second order one-turn10912

matrix of a ring accelerator. It may also be useful to compute the beam matrix and its10913

transport. Several commands in zgoubi perform the necessary particle coordinates10914

treatment to derive these informations. Examples are MATRIX: computation of10915

matrix transport coefficients up to 3rd order, from initial and current coordinates of10916

a particle sample. OPTICS transports a beam matrix, given its initial value using10917

OBJET[KOBJ=5.1] (see Sect. 14.5.2.2). TWISS derives a periodic beam matrix10918

from a 1-turn mapping of a periodic sequence, and transports it from end to end so10919

generating the optical functions along the sequence (Sects. 14.5.2.2, 14.5.2.3).10920

These capabilities are used the exercises. It may be required for instance to10921

compare transport coefficients derived from raytracing, with the matrix model of the10922

optical element(s) concerned. Or to compute a periodic beam matrix in a periodic10923
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optical sequence, this is how betatron functions are produced, often for the mere10924

purpose of comparisons with matrix code outcomes, or with expectations from10925

analytical models.10926

14.5.2.1 Coordinate Transport10927

In the Gauss approximation (i.e., with θ the angle of a trajectory to the reference10928

axis, sin θ ∼ θ), particles follow paths which can be described with simple functions:10929

parabolic, sinusoidal or hyperbolic. A consequence is that a string of optical elements,10930

and coordinate transport through the latter, can be handled with a simple mathematics10931

toolbox. Taylor expansion (also known as transport) techniques are part of it, whereby10932

a coordinate excursion v2i (with index i = 1 → 6 standing for x, x ′, y, y
′, δs or10933

δp/p) from some reference trajectory at a location s2 along the line is obtained from10934

the excursions v1i at an upstream location s1, via10935

v2i =

6∑
j=1

Ri j v1 j +

6∑
j,k=1

Ti jk v1 j v1k +

6∑
j,k,l=1

v1i jkl v1 j v1k v1l + ... (14.41)

This Taylor development can be written under matrix form, for instance to the10936

first order in the coordinates, for non-coupled motion,10937

©«

x

x ′

y

y
′

δs

δp/p

ª®®®®®®®¬2

=

©«

T11 T12 0 0 0 T16

T21 T22 0 0 0 T26

0 0 T33 T34 0 T36

0 0 T43 T44 0 T46

0 0 0 0 T55 T56

0 0 0 0 T65 T66

ª®®®®®®®¬

©«

x

x ′

y

y
′

δs

δp/p

ª®®®®®®®¬1

= T(s2 ← s1)

©«

x

x ′

y

y
′

δs

δp/p

ª®®®®®®®¬1

(14.42)

These are the objects keywords as MATRIX [1, cf. Sect. 6.5] and OPTICS [1,10938

cf. Sect. 6.4] compute: the values of the transport coefficients, or transport matrices10939

to first and high order, are drawn from particle coordinates. Transport matrices of10940

common optical elements (drift, dipole, quadrupole, etc., magnetic or electrostatic),10941

are resorted to in the exercises for comparison with their matrix representation.10942

14.5.2.2 Beam Matrix10943

OPTICS and TWISS keywords cause the transport of a beam matrix. The former10944

requires an initial matrix: it is provided as part of the initial object definition, by10945

OBJET. The latter derives a periodic beam matrix from initial and final coordinates10946

resulting from raytracing throughout an optical sequence. Basic principles are re-10947

called here, This is the way it works in zgoubi, and in addition they are resorted to10948

in the exercises.10949
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In the linear approximation, the transverse phase space ellipse associated with a10950

particle distribution (for instance, the concentration ellipse, Sect. 14.5.1) is written10951

(with z standing for indifferently x or y)10952

γz(s)z2
+ 2αz(s)zz′ + βz(s)z′2 =

εz

π
(14.43)

in which the ellipse parameters10953

βz(s), αz(s) = −
1

2

dβz

ds
, γz(s) =

1 + α2

βz
(14.44)

are functions of the azimuth s along the optical sequence. The surface εz of the ellipse10954

is an invariant if the beam travels in magnetic fields, however field non-linearities,10955

phase space dilution, etc. may distort the distribution and change the surface of its10956

rms matching concentration ellipse. In the presence of acceleration or deceleration10957

the invariant quantity is βγεz instead, with β = v/c and γ the Lorentz relativistic10958

factor.10959

The ellipse Eq. 14.43 can be written under the matrix form10960

1 = T̃ σ−1
z T (14.45)

with σz the beam matrix:10961

σz =
εz

π

(
βz −αz
−αz γz

)
(14.46)

The ellipse parameters can be transported from s1 to s2 using10962

σz,2 = T σz,1 T̃ (14.47)

with T = T(s2 ← s1) the transport matrix (Eq. 14.42) and T̃ its transposed. This can10963

also be written under the form10964

©«
βz
αz
γz

ª®¬2

=
©«

T2
11

−2T11T12 T2
12

−T11T21 T21T12 + T11T22 −T12T22

T2
21

−2T21T22 T2
22

ª®¬s2←s1

©«
βz
αz
γz

ª®¬1

(14.48)

(subscripts 1, 2 normally hold for horizontal plane motion, z = x: change to 3, 410965

for vertical motion, z = y). This beam matrix formalism can be extended to the10966

longitudinal phase space and coordinates (δs, δp/p), a 6 × 6 beam matrix can be10967

defined,10968

σ =

©«

σ11 σ12 0 0 0 σ16

σ21 σ22 0 0 0 σ26

0 0 σ33 σ34 0 σ36

0 0 σ43 σ44 0 σ46

0 0 0 0 σ55 σ56

0 0 0 0 σ65 σ66

ª®®®®®®®¬
(14.49)
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This can be generalized to non-zero anti-diagonal coupling terms, if motions are10969

coupled.10970

14.5.2.3 Periodic Structures10971

In the hypothesis of an S- periodic structure: a long beam line with repeating pattern,10972

a cyclic accelerator, transverse motion stability requires the transport matrix over a10973

period, from s to s + S to satisfy10974

[Ti j](s + S ← s) = I cos µ + J sin µ (14.50)

where µ =
∫
(S) ds/β is the betatron phase advance over the period (independent of10975

the origin),10976

I =

(
1 0

0 1

)
is the identity matrix, J =

(
αz(s) βz(s)
−γz(s) −αz(s)

)
(and J2

= −I) (14.51)

14.6 Exercises10977

14.1 Magnetic Sector Dipole10978

Solution: page 599.10979

(a) Simulate a ρ = 1 m radius, α = 60 degree sector dipole with n=-0.6 field10980

index, in both cases of hard edge and of soft fall-off fringe field model. Find the10981

reference arc, such that
∫
arc

B ds = BL with L the arc length in the hard-edge model10982

and B the field along that arc.10983

Make sure that the reference arc has the expected length.10984

Produce the field along the reference arc, for a few different values of the fringe-10985

field extent.10986

(b) A possible check of the first order: OBJET[KOBJ=5], MATRIX[IORD=1,IFOC=0]10987

can be used to compute the transport matrix from the rays. Compare what it gives10988

with theory.10989

Fig. 14.12 Symmetric point to point focusing

(c) Consider a sector dipole with parallel gap, uniform field. Show the well known10990

geometrical property of point-to-point focusing represented in Fig. 14.12.10991
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Test the convergence of the numerical solution versus integration step size.10992

(d) Transport a proton along the reference axis, injected with its spin tangent to10993

the axis. Compare spin rotation with theory.10994

Test the convergence of the numerical solution versus integration step size.10995

14.2 Quadrupole Doublet10996

Solution: page 604.10997

Reproduce Fig. 14.9.10998

14.3 Solenoid10999

Solution: page 605.11000

An introduction to SOLENOID.11001

(a) Reproduce Fig. 14.11. Use both fields models of Eqs. 14.31, 14.34 and compare11002

their outcomes, including the first order paraxial transport matrices, higher order as11003

well (computed from in and out trajectory coordinates).11004

(b) Compare final coordinates in (a) with outcomes from the first order transport11005

formalism (Sect. 14.4.3).11006

(c) Make a 1-dimensional (on-axis) field map of a r0 = 10 cm, L = 1 m solenoid11007

(namely, a map BX,i(Xi) of the field at the nodes of a X-mesh with mesh size11008

Xi+1 − Xi). Reproduce the trajectory in (a) (case r0 = 10 cm) using that field map,11009

with the keyword BREVOL. Check the convergence of the final particle coordinates,11010

using the field map, depending on the mesh size.11011

14.7 Solutions of Exercises of Chapter 3: Optical Elements and11012

Keywords, Complements11013

14.1 Magnetic Sector Dipole11014

DIPOLE input data.11015

(a) A simulation of a ρ = 0.5 m radius, 60 degree sector dipole with n=-0.611016

field index, in the hard-edge field model, is given in Tab. 14.1. A simulation which11017

includes fringe fields is given in Tab. 14.2.11018

A major difference between the two is in the angular extent of the field domain,11019

AT, in order to allow encompassing the fringe field extents, however there is more,11020

as follows.11021

Hard edge model11022

The effective field boundaries (EFB) have to be placed on the angular opening

limits, which means, in the representation of Fig. 14.13, and according to the users’

guide [13, see DIPOLE],
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Fig. 14.13 Parameters used to

define the geometry of a dipole

magnet with index, using

DIPOLE [13, see DIPOLE]
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>
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0
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R
1 >0

u 1
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(A)

u
1
<
0

ω+ = ACENT > 0, ω− = −ACENT < 0, ω+ − ω− = AT > 0

Otherwise, in the case AT would be greater than the magnet deflection angle α =11023

60 deg, particles would jump from zero field to plateau field value over the EFB,11024

and so miss part of the field integral. Note that for mere code-specific, geometry11025

computation reasons, it also requires that ACENT=AT/2, so that, in fine, ω+ =11026

−ω− = ACENT/2.11027

Soft edge model11028

AT has to be greater than the magnet deflection angle α = 60 deg in order to

encompass the fringe field extent beyond the entrance and exit EFBs, so that, in the

representation of Fig. 14.13, and according to the users’ guide,

ACENT > ω+, |ω− | < AT − ACENT

Integration-wise, particles will smoothly traverse the field fall-off regions, step by

step, no field discontinuity there. Note that motion integration accuracy requires the

step size to be small enough, compared to the fringe field extent. In the notations

of Fig. 14.13, the resulting additional optical axis lengths lE and lS within the AT

sector, on entrance and exit side respectively, to account for the field fall-offs, write

lE = RM × tan(ACENT − ω+), lS = RM × tan[AT − (ACENT − ω−)]

Checking back one fortunately finds
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atan

(
lE

RM

)
︸        ︷︷        ︸

entrance

fringe field

+ ω+ − ω−︸    ︷︷    ︸
magnet body

+ atan

(
lS

RM

)
︸        ︷︷        ︸

exit

fringe field

= AT

It also results from the fringe field modeling that the reference trajectory (which is

ideally the trajectory that coincides with R=RM in the body of the magnet) enters

the AT sector at radius RE, with an incidence TE. These two quantities have to be

accounted for in setting the entrance and exit reference frames, however this is user’s

matter, regarding the choice of reference frames: most often (in synchrotron rings for

instance) the reference curve is R=RM, so that Y and T coordinates of the reference

particle are zero (the moving frame has its origin at the origin of the polar frame

in which the field is defined, and rotates with the particle, clockwise in Fig. 14.13

representation). Thus, one has to set

TE = −(ACENT − ω+) < 0, RE = RM/cosTE

Note that, because of the small deflection due to fringe fields, RS and TS need be

adjusted if the DIPOLE process has to end up with the reference particle featuring

zero Y and T coordinates. Expectedly, that would be satisfied with RS and TS values

near

TS = AT − (ACENT − ω−) > 0, RS = RM/cosTS

The radius R of the reference arc, such that
∫
arc

B ds = BL with L the arc length in11029

the hard-edge model, has to be found. Same thing for the arcs at ±0.1% momentum11030

offset. FIT can be used for that.11031

(b) First order transport.11032

This is left to the reader. Theoretical matrices are given in Eqs. 14.7, 14.8.11033

Refer to exercises in earlier chapters, such comparison is often performed.11034

(c) Point-o-point focusing.11035

The DIPOLE of Tab. 14.1 can be used, with the following change and addenda:11036

- set the field index to zero in DIPOLE11037

- add OBJET[KOBJ=1,IMAX=41] so to generate 41 particles launched with11038

T0 ∈ [−20, 20]mrad, like so:11039

’OBJET’11040

64.6244440371798511041

111042

1 41 1 1 1 111043

0. 1. 0. 0. 0. 0.11044

50. 0. 0. 0. 0. 3.868505233911045

- add AUTOREF[I=2] after DIPOLE: that will cause the moving frame to move11046

to the waist formed by particles 1, 3 and 5.11047

- add FAISTORE[FNAME=zgoubi.fai,IP=1] after AUTOREF, before END. This11048

logs particle data at that location.11049
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Table 14.1 Input data file: definition of a dipole with index in the hard-edge field model. Definition

of the [#S_60dSectDip_hardE:#E_60dSectDip_hardE] segment, mostly for the purpose of possible

further INCLUDE. This file is used under the name sectorDIP_hardE.inc in subsequent exercises

! File sectorDIP.inc (hard-edege, here)

’MARKER’ #S_60dSectDip_hardE ! Label should not exceed 20 characters.

’DIPOLE’ ! Analytical definition of a dipole field.

2 ! IL=2, only purpose is to logged trajectories to zgoubi.plt, for further plotting.

60. 50. ! Sector angle AT; reference radius RM.

30. 5. -0.6 0. 0. ! Reference azimuthal angle ACN; BM field at RM; indices, N=-0.6 at RM=50cm.

0. 0. ! EFB 1 is hard-edge,

4 .1455 2.2670 -.6395 1.1558 0. 0. 0. ! hard-edge only possible with sector magnet.

30. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 2.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

-30. 0. 1.E6 -1.E6 1.E6 1.E6

0. 0. ! EFB 3 (unused).

0 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.E6 -1.E6 1.E6 1.E6 0.

4 10.

0.5 ! Integration step size. The smaller, the more accurately the orbits close.

2 0. 0. 0. 0. ! Magnet positionning RE, TE, RS, TS.

’MARKER’ #E_60dSectDip_hardE ! Label should not exceed 20 characters.

’END’

Table 14.2 Input data file: definition of a dipole with index in the soft-edge field model. The

field extent in the Enge model (Eq. 14.5) is taken to be g = 5 cm (λE = λS = g in the guide’s

notations), so subtended by an angle atan(g/RM) = 5.71059 deg, thus well comprised in a

10 deg angular aperture. ACENT value is free, 30 deg as adopted here is arbitrary, it is just left

to the value it was given in the hard edge settings (Tab. 14.1). This input includes the definition

of the [#S_60dSectDip_softE:#E_60dSectDip_softE] segment. This file is used under the name

sectorDIP_softE.inc in subsequent exercises

! File sectorDIP.inc (soft-edege, here)

’MARKER’ #S_60dSectDip_softE ! Label should not exceed 20 characters.

’DIPOLE’ ! Analytical definition of a dipole field.

2 ! IL=2, only purpose is to logged trajectories to zgoubi.plt, for further plotting.

80. 50. ! Sector angle AT=60 deg deflection+2*10deg for fringes; reference radius RM.

30. 5. -0.6 0. 0. ! Reference angle ACENT (arbitrary value); field at RM; indices, N=-0.6 at RM=50cm.

5. 0. ! Entry EFB: lambda~gap=5 cm, well comprised in RM*tan(10deg)=; same gap at all R -> nappa=0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0. ! Enge coefficients at entry.

20. 0. 1.E6 -1.E6 1.E6 1.E6 ! omega^+ = +20 deg from ACENT leaves 10deg room (8.8cm) for entry fringe.

5. 0. ! Exit EFB: lambda~gap=5 cm, well comprised in RM*tan(10deg)=; same gap at all R -> nappa=0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0. ! Enge coefficients at exit.

-40. 0. 1.E6 -1.E6 1.E6 1.E6 ! omega^- =-40 deg from ACENT leaves 10deg room (8.8cm) for exit fringe.

0. 0. ! EFB 3 (unused).

0 0. 0. 0. 0. 0. 0. 0.

0. 0. 1.E6 -1.E6 1.E6 1.E6 0.

4 10.

0.5 ! Integration step size. The smaller, the more accurately the orbits close.

2 0. 0. 0. 0. ! Magnet positionning RE, TE, RS, TS.

’MARKER’ #E_60dSectDip_softE ! Label should not exceed 20 characters.

’REBELOTE’

’END’

The following gnuplot script will print the horizontal phase space (Fig. 14.14)11050

cm2m = 1e-2; mrd2rd = 1e-311051

plot ’./zgoubi.fai’ u ($10 *cm2m):($11 *mrd2rd) w p ps .9 pt ; pause 211052

In the execution listing zgoubi.res one finds:11053

3 Keyword, label(s) : AUTOREF11054

Change of reference, horizontal, XC = -0.0 cm , YC = 49.99999996 cm , A = -0.000000 deg11055

TRAJ 1 IEX,D,Y,T,Z,P,S,time : 1 3.869 3.2398E-22 0. 0. 0. 157.08 5.23961E-0311056

This indicates that AUTOREF found the waist11057

- at XC = 0, which means at the exit EFB of the dipole,11058

- at a radial excursion YC = 50 cm as expected (the origin of the Y axis is at11059

DIPOLE curvature center),11060
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Table 14.3 Input data file: find closed orbits, using FIT or FIT2, and log stepwise data in

zgoubi.plt. Closed orbits are found for the reference particle (a particle with rigidity Bρ =

5[kG] × 50[cm] kG cm) and for particles with ±δp/p momentum offset. FIT starts with initial

Y0 radius values resulting from a hard edge model, i.e., Y0 = Bρ/B = 250[kG cm]/5[kG] and

±0.1%. This file produces the field along these trajectories, an effect of DIPOLE[IL=2]. The

[#S_60dSectDip_softE:#E_60dSectDip_softE] segment of Tab. 14.2 is INCLUDEd; simply sub-

stitute [#S_60dSectDip_hardE:#E_60dSectDip_hardE] (as defined in Tab. 14.1) to work with the

hard edge model instead

Uniform field sector with index. Field on orbits at different momenta.

’MARKER’ DIPOLEField_S ! Just for edition purposes.

! First stage: find closed orbit at 1 MeV, for some k value.

’OBJET’

64.62444403717985 ! Reference Brho ("BORO" in the users’ guide) -> 200keV proton.

2 ! Particles are defined one by one.

3 1 ! 3 particles, classified in a single momentm set.

50. 0. 0. 0. 0. 3.8685052339 ’o’ ! Y_0=50cm is hard edge case -> 2.9886MeV proton.

50.125472 0. 0. 0. 0. 3.8723737392 ’p’ ! +0.001 mom. offset. Circular orbit Y_0 is hard edge case.

49.875465 0. 0. 0. 0. 3.8646367287 ’m’ ! -0.001 mom. offset. Circular orbit Y_0 is hard edge case.

1 1 1 ! As many ’1’ as there are particles (that dates from programs on punched cards!

’INCLUDE’

1

./sectorDIP.inc[#S_60dSectDip_softE:#E_60dSectDip_softE] ! DIPOLE with fringe, RM=50cm n=-0.6.

!./sectorDIP.inc[#S_60dSectDip_hardE:#E_60dSectDip_hardE] ! DIPOLE with hard-edge, RM=50cm n=-0.6.

’FIT’ ! This matching procedure finds the closed orbit radius.

3 nofinal

2 30 0 .9 ! Variable : Y_0. Variation allowed up to 90%.

2 40 0 .9 ! Variable : Y_0. Variation allowed up to 90%.

2 50 0 .9 ! Variable : Y_0. Variation allowed up to 90%.

3 1e-15 99 ! Penalty; max numb of calls to the function.

3.1 1 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0, particle 1.

3.1 2 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0, particle 2.

3.1 3 2 #End 0. 1. 0 ! Constraint : Y_final=Y_0, particle 3.

’MARKER’ DIPOLEField_E ! Just for edition purposes.

’END’

Fig. 14.14 Aberration curve

at the focal point of a 180 deg

uniform field dipole: a second

order (sextupole) aberration,

Y ∝ T 2, typical of a bend

non-linearities
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Horizontal phase-space, from zgoubi.fai.

’./zgoubi.fai’ u ($10 *cm2m):($11 *mrd2rd):(i)

- with the reference frame X axis at an angle A = 0 to particle 1 direction of11061

motion.11062

QED.11063

In the case of an α = 60 deg dipole, the previous input data file can be used,11064

changing DIPOLE angles to AT = ω+ − ω− = 60 deg with for instance ω+ =11065

−ω− = 30 deg. Drifts of identical lengths, DRIFT[XL = RM/tan(α/2)], have to11066

be added upstream and downstream of DIPOLE in order to obtain the symmetrical11067

configuration of Fig. 14.12.11068
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Step size:11069

The method is the same as in exercise 2.2 (b), case of a toroidal condenser, which11070

can be referred to.11071

(d) Spin precession.11072

Add SPNTRK[KSO=1] at the begining of the input data file to traack spin, starting11073

aligned on the X axis. Tracking spin also requires PARTICUL, in order to define11074

particle’s mass, charge and anomalous magnetic moment.11075

The theoretical value of the spin precession angle in the moving frame is Gγα11076

(Eq. 3.32), with α = π or α = π/3 in the previous two deflection cases considered.11077

This is the value which the stepwise integration produces.11078

14.2 Quadrupole Doublet11079

The input dta file for this problem is given in Tab. 14.4.11080
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Table 14.4 Input data file: a double-focus quadrupole doublet
100 particles on an ellipse, through drift

’OBJET’

1000.

2

9 1

0. 0. 0. 0. 0. 1. ’o’

0. 1. 0. 0. 0. 1. ’a’

0. -1. 0. 0. 0. 1. ’b’

0. 2. 0. 0. 0. 1. ’c’

0. -2. 0. 0. 0. 1. ’d’

0. 0. 0. 1. 0. 1. ’e’

0. 0. 0. -1. 0. 1. ’f’

0. 0. 0. 2. 0. 1. ’g’

0. 0. 0. -2. 0. 1. ’h’

1 1 1 1 1 1 1 1 1 1

’FAISCEAU’

’MARKER’ dum .plt

’DRIFT’

70. split 100 2

’QUADRUPO’ QF

2

40. 10. 4.7907188 ! 11.1111

0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

1.

1 0 0 0

’DRIFT’

100. split 100 2

’QUADRUPO’ QD

2

40. 10. -4.7907188 ! -11.1111

0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

1.

1 0 0 0

’DRIFT’

70. split 100 2

’MARKER’ dum .plt

’FAISCEAU’

! ’FIT’ ! This FIT procedure

! 2 ! varies QF and QD fields so to get

! 5 12 0 .4 ! common focus point in both planes, 3.2 meters downstream of the object.

! 7 12 0 .4

! 4 1E-15

! 3 6 2 #End 0. 1. 0

! 3 11 2 #End 0. 1. 0

! 3 2 4 #End 0. 1. 0

! 3 3 4 #End 0. 1. 0

’IMAGE’

’IMAGEZ’

’DRIFT’

20. split 100 2

’END’

14.3 Solenoid11081

(a) The paraxial trajectory pitch is l = 2π Bρ/B0 (Sect. 14.4.3). Take L = 1 m11082

(Fig. 14.11) and Bρ = 1 T m for simplicity, thus B0 = 2π T. Assume a particle11083

launched from Y = Z = 1 mm with zero incidence. Scan the solenoid radius value11084

in the range 1 ≤ r0 ≤ 200 mm to reproduce the figure. The data to be plotted11085

(X, Y, Z, BX ) are read from zgoubi.plt.11086

The beam optics model is given in Tab. 14.5. Note the use of KOBJ=2 in OBJET,11087

which allows creating particles in an arbitrary number (just one, here), with arbitrary11088

initial coordinates. REBELOTE[IOPT=1] is used to repeat the sequence, varying11089

the parameter R0 under SOLENOID.11090
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Table 14.5 Input data file: a 1 m long solenoid, with 1 m upstream and downstream fringe field

extents. The initial coil radius is r0 = 0.1 cm, it is scanned (by REBELOTE) over the range

1 ≤ r0 ≤ 20 cm. For each r0 a particle is launched with initial position Y = Z = 1 mm and initial

angles T = P = 0

A 1 meter long solenoid.

’MARKER’ opticalLmntsProbSolenoA_S

’OBJET’

1000.

2 ! OBJET style KOBJ=2.

1 1

0.1 0. 0.1 0. 0. 1. ’o’ ! Initial coordinates Yo, To, Zo, Po, Xo, Do.

1

’SOLENOID’

200 ! Log particle data to zgoubi.plt, every other 100 steps.

100. .1 62.8318530718 ! length (cm); radius (cm); field (kG); [MODL=1] default.

100. 100. ! Extent of integration regions upstream and downstream of coil.

.01

1 0. 0. 0.

’FAISCEAU’

’REBELOTE’ ! Used to repeat the sequence.

10 0.1 0 1 ! Repeat 10 times.

1

SOLENOID 11 1.:20. ! Vary parameter 11 (= R0) under SOLENOID.

’MARKER’ opticalLmntsProbSolenoA_E

’END’

Table 14.6 Input data file: track a particle along the central axis of the solenoid, to generate a 3 m

long, 1D field map, with mesh step 5 cm

! A 3 meter long solenoid field map.

’MARKER’ opticalLmntsProbSolenoC_S

’OBJET’

1000.

2 ! OBJET style KOBJ=2.

1 1

0. 0. 0. 0. 0. 1. ’o’ ! Initial coordinates Yo, To, Zo, Po, Xo, Do.

1

’SOLENOID’

200 ! Log particle data to zgoubi.plt, every other 100 steps.

100. .1 62.8318530718 ! length (cm); radius (cm); field (kG); [MODL=1] default.

100. 100. ! Extent of integration regions upstream and downstream of coil.

5.

1 0. 0. 0.

’FAISCEAU’

’END’ 5

(b) To allow comparison, theoretical matrices (Eq. 14.36) must be computed for11091

the theoretical length, L, of the matrix transport solenoid model. Tracking must11092

extend upstream and downstream of the solenoid, over a distance much greater than11093

the solenoid diameter (the latter determines the field fall extent, Eq. 14.31).11094

(c) A 1-dimensional (on-axis) field map of the solenoid field, BX,i(Xi), can simply11095

be generated by tracking a particle along the solenoid axis. It has to extend upstream11096

and downstream of the solenoid, over a distance much greater than the solenoid11097

diameter. The integration step size will be the mesh size, take it in the centimeter11098

range (. r0), 5 cm here. An intermediate stage is necessary, which consists in11099

reading X, BX (X) from zgoubi.plt and re-writing it in a dedicated ASCII file in a11100

format proper for use by the keyword BREVOL.11101

The input file to generate the field and log to zgoubi.plt is given in Tab. 14.6.11102

Similar exercises, generating a 1D field map and using BREVOL, can be found11103

be found in zgoubi sourceforge repository [14].11104
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Table 14.7 Input data file: track a particle in the solenoid, in a similar manner to the input data file

of Tab. 14.6, using a field map model instead

A 1 meter long solenoid, 3 meter long field map.

’OBJET’

1000.

2

1 1

0. 0. 0. 0. 0. 1. ’o’

1

’BREVOL’

0 0

1. 1.

Test solenoid 1D field map

61 ! Number of nodes of the 1D mesh.

solenoid_1meter.map

0 0. 0. 0.

2

1.

1 0 0 0

’FAISCEAU’

’END’ 5
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