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Chapter 95953

Strong Focusing Synchrotron5954

Abstract This Chapter introduces the strong focusing alternating gradient (AG)5955

and separated function synchrotrons. It provides the theoretical material which the5956

simulation exercises lean on. The chapter begins with a brief reminder of the histor-5957

ical context, and continues with beam optics, chromaticity, acceleration, resonances5958

and resonant extraction, dynamical effects of synchrotron radiation (SR), the elec-5959

tromagnetic SR impulse, and depolarizing resonances. This resorts to basic charged5960

particle optics, acceleration, and dynamics in magnetic fields introduced in the pre-5961

vious Chapters.5962

The simulation of a strong focusing AG synchrotron requires just two optical el-5963

ements from zgoubi library: DIPOLE or MULTIPOL to simulate a combined5964

function dipole, and DRIFT to simulate straight sections. Main dipoles in a sep-5965

arated function synchrotron can use BEND. It requires in addition quadrupoles,5966

simulated using QUADRUPO or MULTIPOL. The latter can simulate higher order5967

lenses, which can otherwise resort to SEXTUPOL, OCTUPOLE, etc. Acceleration5968

uses CAVITE. Accounting for synchrotron radiation (SR) energy loss requires SR-5969

LOSS. Monte Carlo SR monitoring can use SRPRNT, which logs data in zgoubi.res.5970

SRPRNT[PRINT] in addition logs data in zgoubi.SRPRNT.Out. Computation of5971

synchrotron radiation (SR) Poynting and spectral brightness uses zpop. Particle5972

monitoring requires keywords introduced in the previous Chapters, including FAIS-5973

CEAU, FAISTORE, possibly PICKUPS, and some others. Spin motion computation5974

and monitoring resort to SPNTRK, SPNPRT, FAISTORE. Optics matching and op-5975

timization use FIT[2]. INCLUDE is used, mostly here in order to simplify the input5976

data files. SYSTEM is used to, mostly, resort to gnuplot so as to end simulations with5977

some specific graphs. Data for the latter are read from output files filled up during5978

the execution of the code, such as zgoubi.fai (resulting from the use of FAISTORE),5979

zgoubi.plt (resulting from IL=2), or other zgoubi.*.out files resulting from a PRINT5980

command. Stepwise particle data logged in zgoubi.plt are used by the interface zpop5981

to compute the electric field impulse of SR and subsequent spectral angular energy5982

density of the radiation.5983
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Notations used in the Text5984

B; Bx,y,s; B field vector; its components in the moving frame; its modulus

Bρ = p/q; Bρ0 particle rigidity; reference rigidity

C; C0 orbit length; C = 2πR +
[ straight
sections

; reference, C0 = C(p = p0)
E; Eσ , Eπ SR electric field impulse; its parallel and normal components

E; Es particle energy, E = γm0c2; synchronous energy

EFB Effective Field Boundary

frev, frf = h frev revolution and RF voltage frequencies

G gyromagnetic anomaly, G = 1.792847 for proton

G; K = G/Bρ quadrupole gradient; focusing strength

h RF harmonic number

m; m0; M particle mass; rest mass; in units of MeV/c2

n = − ρ

B
∂B
∂x

focusing index

n0 stable spin precession direction

P = E × B SR Poynting vector

Pi, Pf beam polarization, initial, final

p; p; p0 momentum vector; its modulus; reference

q particle charge

r; R orbital radius ; average radius, R = C/2π
S periodicity of the lattice; or sextupole strength

s path variable

Us SR energy loss

v; v particle velocity vector; its modulus

V(t); V̂ oscillating voltage; its peak value

x, x’, y, y’, l,
dp

p
particle coordinates in the moving frame, [(∗)′ = d(∗)/ds]

α momentum compaction; or trajectory deviation;

or depolarizing resonance crossing speed

β = v/c; β0; βs normalized particle velocity; reference; synchronous

βu betatron functions (u : x, y,Y, Z)

γ = E/m0c2 Lorentz relativistic factor

γtr transition γ, γtr = 1/
√
α

δp, ∆p momentum offset

ǫc critical energy of SR, ǫc = ~ωc = hc/λc
ε wedge angle

εu/π Courant-Snyder invariant; emittance//π (u : x, y, l)

ǫR strength of a depolarizing resonance

η phase slip factor, η = 1
γ2 − α

µu betatron phase advance per period, µu =

∫
period

ds
βu(s) (u : x, y)

νu wave numbers, horizontal, vertical, synchrotron (u : x, y, l)

ρ; ρ0 curvature radius; reference

σ beam matrix

φ; φs particle phase at voltage gap; synchronous phase

ϕu betatron phase advance, ϕu =

∫
ds/βu (u : x, y,Y, or Z)

ϕ spin angle to the vertical axis

ωc critical angular frequency of SR, ωc = 3γ3c/2ρ
ωs; Ωs 2π frev; synchrotron frequency

5985



D
R
A
FT

9.1 Introduction 307

9.1 Introduction5986

In the very manner that the 1930s-1940s cyclotron, betatron, microtron, weak fo-5987

cusing synchrotron, which are still in use today, have since essentially not changed5988

in their concepts and design principles, today the gap profile, yoke and current coil5989

geometry of combined function alternating-gradient (AG) dipoles remain essentially5990

as patented in 1950 (Fig. 9.1) [1].5991

Fig. 9.1 Bending magnet pole

profiles for a focusing system

for ions and electrons [1].

Assuming curvature center to

the left, the left (respectively

right) profile is defocusing

(resp. focusing), the middle

profile has zero index

Fig. 9.2 Top: the AGS combined function main dipole. The hyperbolic profile poles are visible,

partly hidden by the field coils. Bottom: the 809 m circumference AGS synchrotron, comprised of

240 such dipoles [2]

In 1952, in the context of studies concerning the Cosmotron, strong focusing5992

was devised at the Brookhaven National Laboratory (BNL): “Strong focusing forces5993

result from the alternation of large positive and negative n-values in successive5994

sectors of the magnetic guide field in a synchrotron. This sequence of alternately5995
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converging and diverging magnetic lenses [...] leads to significant reductions in5996

oscillation amplitude” [3]. It led to the construction of the first two high-energy AG5997

proton synchrotrons (PS), in the 30 GeV range, in the late 1950s: the CERN PS, and5998

the AGS at BNL (Fig. 9.2). Both remain major pieces, 60 years later, of the respective5999

injection chains of the two largest colliders in operation, the LHC and RHIC. Early6000

works at BNL provided theoretical formalism, still at work today, for the analysis of6001

beam dynamics in synchrotrons [4].6002

Fig. 9.3 SATURNE 2 strong

focusing 3 GeV synchrotron

at Saclay [5], successor in the

late 1970s of SATURNE 1

weak focusing synchrotron

(Fig. 8.1). It was the first

strong focusing synchrotron

to accelerate polarized ion

beams

Fig. 9.4 A quadrupole magnet

at LBL in 1957, used for

beam lines at the 184-inch

cyclotron. An early specimen

here, obviously, being a spin-

off of the early 1950s concept

of strong focusing [6]

Separated function focusing, whereby beam guiding is ensured by uniform field6003

dipoles while focusing is ensured separately by quadrupoles (Fig. 9.3), followed from6004

the development of the latter (Fig.9.4), a spin-off of the strong index technology [7].6005

The dramatic reduction of transverse beam size by strong focusing allows guid-6006

ing and focusing magnets with small aperture, from lowest energies: medical syn-6007

chrotrons in the 100 MeV range for instance, to highest ones: hundreds of GeV to6008

multi-TeV range particle physics and nuclear physics colliders (Fig. 9.5). Beams in6009

all these machines are essentially confined in a sub-centimeter or sub-millimeter6010

scale transverse space. A synchrotron is a string of dipole and multipole magnets6011

through which runs a vacuum pipe of a few centimeters diameter (hadron rings) or6012
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a few millimeters (electrons). The size of the ring is essentially determined by its6013

circumference, proportional to the magnetic rigidity. This revolutionized the race to6014

high energies, from the prior few GeV weak focusing synchrotrons and their huge6015

magnets, to todays 7 TeV, 27 km long LHC and with further plans for 100 TeV, 100 km6016

circumference colliders [8]. Strong focusing fostered the development of high en-6017

ergy synchrotron light sources around the world, with high brightness synchrotron6018

radiation (SR) from UV to gamma rays produced in electron storage rings in up to6019

multi-GeV energy range.6020

Fig. 9.5 In RHIC tunnel

at the Brookhaven National

Laboratory [2]. The two rings

of the 255 GeV polarized

proton beams and heavy

ion collider run parallel

over 3.8 km, and intersect

at two experiments, STAR and

SPHENIX

Fig. 9.6 The ion rapid cycling

medical synchrotron (iR-

CMS) [9], an ion beam RCS

for the treatment of cancer

tumors

AG focusing is still resorted to today, for instance in the hadrontherapy application6021

(Fig. 9.6), light source lattice [10], and other high energy collider design [11], as6022

it has the merit of compactness. On the other hand, the flexibility of separated6023

function optics made it more popular: it allows to introduce modular functions in6024

complex ring designs such as dispersion suppression sections, low-beta or insertion6025

device sections, long straights, et cetera. Low-emittance, high-brightness light source6026

lattices have complicated focusing further, by introducing longitudinal field gradient6027

bending systems to minimize equilibrium beam emittance [12].6028

Due to the necessary ramping of the field in order to maintain a constant orbit,6029

synchrotron accelerators are pulsed, storage rings in some cases as well, high energy6030

colliders in particular to bring beams to highest store energy. The acceleration is6031
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cycled and the accelerating voltage frequency as well in ion accelerators, from6032

injection to top energy. If the ramping uses a constant electromotive force, then6033

(Eq. 8.3)6034

B(t) ≈ t

τ
(9.1)

ÛB = dB/dt does not exceed a few Tesla/second, thus the repetition rate of the6035

acceleration cycle if of the order of a Hertz. If instead the magnet winding is part of6036

a resonant circuit then the field oscillates,6037

B(t) = B0 +
B̂

2
(1 − cosωt) (9.2)

so that, in the interval of half a voltage repetition period (i.e., t : 0 → π/ω) the6038

field increases from an injection threshold value to a maximum value at highest6039

rigidity, B(t) : B0 → B0 + B̂. The latter determines the highest achievable energy:6040

Ê = pc/β = qB̂ρc/β. The repetition rate with resonant magnet cycling can reach a6041

few tens of Hertz, a technique known as a rapid-cycling synchrotron (RCS). In both6042

cases anyway B imposes its law and other parameters, comprising the acceleration6043

cycle, the RF frequency in particular, will follow B(t).6044

Fig. 9.7 Cornell rapid cycling

synchrotron, 5 GeV injector of

CESR storage ring [13]

Instances of RCS rings include Cornell 12 GeV, 60 Hz electron AG synchrotron [14]6045

(Fig. 9.7), commissioned in 1967 with a 7 GeV beam, a world record at the time, and6046

still in operation half a century later as the injector of Cornell 5 GeV storage ring6047

(CESR/CHESS) [15]; Fermilab 8 GeV, 60 Hz Booster, which provides protons for6048

the production of neutrino beams; the 30 GeV 500 kW proton beam J-PARC facility6049

in Japan. Rapid cycling is also considered in ion-therapy applications (Fig. 9.6).6050

To conclude on these preliminaries, lets mention the giants among accelerator6051

facilities which nuclear (NP) and particle (HEP) physics research laboratories are:6052

so far, strong focusing synchrotrons happen to be the building blocks from which6053
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Fig. 9.8 RHIC complex at the Brookhaven National Laboratory (left) [2], a cascade of 4 strong

focusing ion synchrotrons: the AGS and its Booster, and the 3.8 km circumference intersecting

RHIC rings, in motion towards the EIC project (right) [16] which will add 2 electron synchrotrons:

an 18 GeV storage ring and its RCS injector

they are constructed. This is so at the CERN LHC complex. This is apparent also in6054

Fig. 9.8 which shows RHIC heavy ion collider complex, and its planned evolution,6055

the Electron-Ion Collider [17]1 The next colliders could be linacs, it was at SLAC6056

with the SLC [18], it was the plan with such projects as TESLA [19], the NLC [20].6057

The interest of NP and HEP will decide on the research tools: more large synchrotron6058

rings for a muon collider [21], an FCC-ee, -hh and other -eh [8], or high gradient6059

linacs for the ILC [22]. or for ReLic e+e− collider [23]. Or new acceleration methods6060

and technologies?6061

9.2 Basic Concepts and Formulæ6062

Alternating gradient focusing is sketched in Fig. 9.9. An order of magnitude of

Fig. 9.9 Horizontally focus-

ing lenses (field index n ≫ 0,

the solid red trajectory) are

vertically defocusing (n ≪ 0,

the dashed blue trajectory),

and vice versa. This imposes

alternating gradients in order

for a sequence to be globally

focusing, for both planes

s

1 Beam polarization studies have been using zgoubi in all five EIC synchrotrons.
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6063

the focusing index can be estimated from the fields met in these structures: say a6064

maximum B∼1 Tesla in the dipole gap, same at pole tip in quadrupoles ∼10 cm off6065

axis. The latter results in ∆B
∆x

∼10 T/m, the former in meters to tens of meters dipole6066

curvature radius. All in all, in absolute value,6067

n = − ρ
B

∂B

∂x
∼

100∼2
[m]

1[T]
× 10[T/m] ∼101∼3 ≫ 1 (9.3)

much greater than in a weak focusing structure, characterized by 0 < n < 1.6068

9.2.1 Components of the Strong Focusing Optics6069

Combined function (AG) optics6070

This is, typically, the BNL AGS and CERN PS optics, using dipoles that ensure both6071

beam guiding and focusing (Fig. 9.2). Separate quadrupole and multipole lenses have6072

later been introduced as they provide knobs for the adjustment of optical functions6073

and other parameters. AG optics is still topical in modern designs, as in the iRCMS6074

whose six 60 deg arcs are comprised of a sequence of five focusing and defocusing6075

combined function dipoles [9], Fig. 9.6.6076

Field6077

Referring to normal conducting magnet technology, a hyperbolic pole profile

(Fig. 9.1) is an equipotential (a line of constant scalar potential V) of equation

Vpole = A xy

at the origin of a magnetic field B = grad V , everywhere perpendicular to the

equipotential. A combined function dipole with mid-plane geometrical symmetry is

defined by materializing two equipotentials, at ±Vpole (Fig. 9.10). This results in a

Fig. 9.10 Symmetric materi-

alization of pole profiles, at

±V . Nothing would preclude

materializing poles at V1 and

−V2 potentials, with the same

resulting field between the

poles

−V2

y

x

−V1

V1

V2
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vertical field component By = ∂V/∂y = Ax, and therefore a radial field index

n = − ρ

By

∂By

∂x

����
y=0

=

ρ

By

A

A is a constant, typically up to ∼ 10 T/m, cf. Eq. 9.3. The pole profile opens up6078

either inward (toward the center of curvature, a horizontally focusing dipole, verti-6079

cally defocusing) or outward (a vertically focusing dipole, horizontally defocusing),6080

Fig. 9.11.

Fig. 9.11 Beam focusing in combined

function dipoles. The center of curva-

ture is to the left. The pole profile fol-

lows an equipotential V = Axy. Top:

the pole profile opens up towards the

center of curvature → the dipole is hor-

izontally converging (vertically diverg-

ing: current I comes out of the page,

force F results from field B). Bottom:

pole profile closing toward the center of

curvature → the dipole is horizontally

diverging, vertically converging

B

F

center
Toward

of ring

smaller gap,
I

vacuum pipe
weaker curvature.

stronger curvature.       
stronger field,

lower field,
larger gap,

N

S

CONVERGING SECTOR

center
Toward

of ring

IF

DIVERGING SECTOR

S

N

B

6081

In a bent AG dipole a line of constant field is an arc of a circle; the field guides6082

the reference particle along the arc in the median plane. The mid-plane field can be6083

expressed under the form6084

By(r, θ) = G(r, θ) B0

(
1 + n

r − r0

r0

+ n′
(
r − r0

r0

)2

+ n′′
(
r − r0

r0

)3

+ ...

)
(9.4)

with r0 the reference (normally the orbit) radius. Higher order indices, sextupole n′,6085

octupole n′′, ..., may be residual effects from fabrication tolerances, magnetic satu-6086

ration, deformation of yoke with years, etc., or included by design, with significant6087

value.6088

In a straight AG dipole, a line of constant field is a straight line; an instance6089

is the AGS main magnet (Fig. 9.2). Another instance is the Fermilab recycler arcs6090

permanent magnet dipole, which includes quadrupole and sextupole components [24,6091

25]. The modeling of the field in a straight combined function dipole can be derived6092

from the scalar potential of Eq. 9.5.6093
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9.2.2 Transverse Motion6124

The transverse motion of a particle in the S-periodic lattice of a cyclic accelerator,6125

at design momentum p0 and with curvature radius ρ0, satisfies Hill’s equations26126

d2x

ds2
+ Kx(s)x =

1

ρ0

∆p

p0

,
d2

y

ds2
+ Ky(s)y = 0 (9.7)

where Kx(s), Ky(s) have the periodicity of the lattice (K
x
y

(s + S) = K
x
y

(s)), and6127

depend locally on the nature of the optical elements, in the following way.6128

Case of6129

− dipole :




Kx =
1 − n

ρ2
0

Ky =
n

ρ2
0

(
n = − ρ0

B0

∂By

∂x

)
(9.8)

6130

− a wedge at s = sw :

{
K

x
y

= ± tan ε

ρ0

δ(s − sw)
(
with ε <> 0 if

focusing
defocusing

)

6131

− quadrupole : K
x
y

=

±G

Bρ
;

1

ρ0

= 0

(
gradient G =

field at pole tip

radius at pole tip

)

6132

− drift space : Kx = Ky = 0;
1

ρ0

= 0

By contrast with the betatron and weak focusing technologies, strong focusing6133

with its independent focusing (G > 0) and defocusing (G < 0) gradient families6134

allows separate adjustment of the horizontal and vertical focusing strengths, and6135

wave numbers as a consequence.6136

The on-momentum (p = p0) closed orbit coincides with the reference axis of6137

the optical elements. The betatron motion for an on-momentum particle satisfies6138

Eq. 9.7 with ∆p = 0. Solving the latter (see Sect. 8.2.1.3) requires introducing two6139

independent solutions u 1
2
(s) (Eq. 8.12), the linear combination of which yields the6140

pseudo harmonic motion (Eq. 8.14)6141

��������

u(s) =
√
βu(s)εu/π cos

(∫ ds

βu(s)
+ ϕu

)

u′(s) = −
√
εu/π
βu(s)

sin

(∫ ds

βu(s)
+ ϕu

)
+ α(s) cos

(∫ ds

βu(s)
+ ϕu

) (9.9)

The motion satisfies the Courant-Snyder invariant, namely (Fig. 9.12)6142

2 Acceleration, or deceleration, adds a velocity term, betatron damping results. This is addressed in

“Betatron damping”, Sect. 10.2.3, where it accounts in addition for a non-constant varying orbital

radius.
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γu(s)u2
+ 2αu(s)uu′

+ βu(s)u′2
=

εu

π
(9.10)

i.e., the surface of the phase space ellipse is a constant of the motion. Its form6143

and orientation (Fig. 9.12) change along the period as a consequence of the strong6144

modulation of the betatron functions (Fig. 9.13), far more than in a weak focusing6145

lattice which features weak betatron modulation: αu(s) ≈ 0 and βu(s) ≈constant6146

(Figs. 8.9, 8.10).6147

Fig. 9.12 Courant-Snyder

invariant and turn-by-turn

harmonic motion along the

invariant, observed at some

azimuth s. The aspect ratio

of the ellipse depends on the

observation azimuth s but its

area εu is invariant

T

dx/ds

x

ε/π=constant

CS invariant

1

2

5

63

4

7

Fig. 9.13 Optical functions

around SATURNE 2 syn-

chrotron, a 4-period FODO

cell lattice
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Beam envelopes are given by the extrema,6148

x̂env(s) = ±
√
βx(s)

εx

π
, ŷenv(s) = ±

√
βy(s)

εy

π
(9.11)
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Phase space motion6149

Write the two independent solutions u 1
2
(s) (Eq. 8.12) under the form6150

u1(s) = F(s)
︸︷︷︸

S−periodic

× e
iµ s

S︸︷︷︸
2πS
µ

−periodic

and u2(s) = u∗1(s) = F∗(s) e
−iµ s

S (9.12)

where6151

F(s) =
√
βu(s) e

i

(∫ s

0

ds

βu(s)
− µ

s

S

)

(9.13)

Introduce6152

ψu(s) =
∫ s

0

ds

βu(s)
− µ

s

S
(9.14)

so that F(s) =
√
βu(s) eiψu(s). Equation 9.9 thus takes the form6153

�������������

u(s) =

S−periodic

︷         ︸︸         ︷√
βu(s)εu/π

2πS
µ

−periodic

︷                       ︸︸                       ︷
cos

[
ν

s

R
+ ψu(s)︸︷︷︸

S−per.

+ϕu
]

u′(s) = −
√
εu/π
βu(s)

sin
[
ν

s

R
+ ψu(s) + ϕu

]
+ α(s) cos

[
ν

s

R
+ ψu(s) + ϕu

]

(9.15)

where ν =
Nµ

2π
. Thus, as the betatron function βu(s) and phase ψu(s) are S-periodic,6154

the turn-by-turn motion observed at a given azimuth s (i.e., u(s), u(s+ S), u(s+ 2S),6155

...) is sinusoidal and its frequency is ν = Nµ/2π. Successive particle positions6156

(u(s), u′(s)) in phase space lie on the Courant-Snyder invariant (Eq. 9.10). The6157

working point (νx, νy) fully characterizes the first order optical setting of the lattice.6158

Off-momentum motion6159

The motion of an off-momentum particle satisfies the inhomogeneous Hill’s hori-6160

zontal differential Eq. 9.7. The chromatic closed orbit6161

xch(s) = Dx(s)
δp

p
(9.16)

is a particular solution of the equation, its periodicity is that of the cell.6162

By contrast with a weak focusing lattice where chromatic closed orbits are parallel6163

(Eq. 8.26), in a strong focusing lattice they are distorted (Fig. 9.13), their excursion6164

depends on the distribution along the cell of (i) the dispersive elements which are6165

the dipoles, and (ii) the focusing.6166
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The horizontal motion of an off-momentum particle is a superposition of the par-6167

ticular solution (Eq. 9.16) and of the betatron motion, solution of the homogeneous6168

Hill’s equation (Eq. 9.15), namely6169

x(s) = xβ(s) + xch(s) =
√
βx(s)

εx

π
cos

(∫
ds

βx
+ ϕx

)
+ Dx(s)

δp

p0

(9.17)

whereas the vertical motion is unchanged (Eq. 9.15 taken for u(s) ≡ y(s)).6170

Chromaticity6171

The focusing strength of combined function dipoles and quadrupoles is a decreasing6172

function of particle rigidity Bρ = p/q (Eq. 9.8). In a ring this affects the horizontal6173

and vertical wave numbers, an effect quantified as the chromaticity, ξx,y. To the first6174

order in δp/p, this writes6175

δνx,y = ξx,y

δp

p
(9.18)

A linear lattice has a natural chromaticity. Over a distance L it is given by6176

ξx,y =
−1

4π

∫

L
βx,y(s)Kx,y(s)ds (9.19)

Use a circular integral,
∮

in the case of a ring. The natural chromaticity is a negative6177

quantity: focusing decreases with increasing momentum.6178

One consequence of the chromaticity is that beam momentum spread δp/p results6179

in a tune spread δνx,y = ξx,y × δp/p, a beam occupies an extended area in the tune6180

diagram. For this reason in particular, the chromaticity is usually corrected. This is6181

realized by placing sextupoles in dispersive sections, at least two families: a family6182

of horizontal lenses (strength Hx) located at large βx and a family of vertical lenses6183

(strength Hy) located at large βy .6184

The effect leaned on is the following:6185

- betatron motion xβ(s) of particles with momentum p0 + ∆p is around an off-6186

centered, chromatic closed orbit xch(s) (Eq. 9.16);6187

- introducing a sextupole results in a local gradient as By ∝ (xch + xβ)2 =6188

x2
ch
+2xchxβ+x2

β
, namely,

∂By

∂x

���
x=xch

= 2xch = 2Dx
∆p

p
. This results in a focusing force6189

proportional to δp/p. Sextupoles contribute to chromaticity (or its compensation)6190

following6191

ξx,y =
1

4π

∫
Hx,y(s)βx,y(s)Dx(s)ds (9.20)
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9.2.3 Resonances6192

Consider the excitation of transverse beam motion by a generator of frequency Ω6193

located at some azimuth along the ring [29]. The action of the excitation S × sinΩt6194

on the oscillating motion u(t) can be written under the form6195

d2u

dt2
+ ω2u = S sinΩt (9.21)

Assume harmonic motion for simplicity (as in a weak focusing lattice). Take gen-6196

erator amplitude S =constant, the solution (superposition of the solution of the ho-6197

mogeneous differential equation and of a particular solution of the inhomogeneous6198

differential equation) writes6199

u(t) = U cos(ωt + ϕu) +
S

ω2 −Ω2
sinΩt (9.22)

If betatron motion and excitation are in synchronism, i.e. on the resonance, ω = Ω,

a particular solution of Eq. 9.21 is

ur (t) = − S t

2Ω
cosΩt

t

u
r
(t)

|St/2Ω|

the amplitude of the oscillatory motion grows rapidly with time, at a rate |St/2Ω|.6200

Assume the amplitude S to be T ′-periodic instead, angular frequencyω′
= 2π/T ′,

take its Fourier expansion

S(t) =
∞∑

p=0

ap cos(pω′t + ϕp)

the equation of motion thus writes6201

d2u

dt2
+ ω2u =

∑∞
p=0 ap cos(pω′t + ϕp) sinΩt =

∑∞
p=0

ap

2

[
sin[(Ω − pω′)t + ϕp] + sin[(Ω + pω′)t + ϕp]

] (9.23)

Resonance may occur at generator frequencies Ω = ω ± pω′, the strength depends6202

on the amplitude ap of the excitation harmonics. A generator at some point in the6203

lattice excites all harmonics with equal amplitudes ap . In the case of an extended6204

excitation source, low harmonics only matter.6205
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Sextupole and octupole resonances6206

The horizontal motion in the presence of sextupoles (By(θ)|y=0 = S(θ)x2) satisfies6207

d2x

dθ2
+ ν2

x x = S(θ)x2 (9.24)

Assume weak perturbation of the motion, so that x(θ) ≈ x̂ cos(νxθ+ϕx), the solution6208

for unperturbed motion. Assume also S(θ) 2π-periodic. Substitute its Fourier series6209

expansion S(θ) = ∑∞
p=0 ap cos(pθ + ϕp) in Eq. 9.24, develop to get6210

d2x

dθ2
+ ν2

x x =
x̂2

2

[∑∞
p=0 ap cos(pθ + ϕp) +

1
2

∑∞
p=0 ap

[
cos[(p − 2νx)θ + ϕp − 2ϕx] + cos[(p + 2νx)θ + ϕp + 2ϕx]

] ] (9.25)

Thus resonance may occur at the betatron frequency families νx = ±p, νx = ±(p −
2νx), and νx = ±(p + 2νx), i.e., [

νx = p

3νx = p

In the case of a single sextupole in the ring, all the harmonics p are excited with the6211

same amplitude ap .6212

An octupole introduces a field component By(θ)|y=0 = O(θ)x3. A similar devel-

opment yields


νx = p

2νx = p

4νx = p

Resonances in a general manner occur at betatron frequencies satisfying

mνx + nνy = integer

In this coupling regime one has6213

εx

m
−
εy

n
= constant, an invariant of the motion (9.26)

From this it results that,6214

- if m and n have opposite signs the resonance causes energy exchange between6215

the horizontal and vertical motions:
εx
|m | +

εy
|n | = constant, an increase of εx correlates6216

with a decrease of εy and vice-versa. In the presence of linear coupling for instance,6217

νx − νy = integer, εx + εy = constant. An increase in motion amplitude anyway may6218

cause particle loss, an issue in cyclotrons where the Walkinshaw resonance νx = 2νy6219

causes vertical beam loss due to the increase of εy;6220

- if m and n have the same sign the resonance is liable to induce motion instability:6221

εx
m

− εy
n
= constant, εx and εy may both increase with no limit.6222
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Resonant Extraction6223

Resonant extraction is based on the effect of a non-linear force on a dynamical6224

system. A linear regime, under the effect of linear forces, satisfies Eq. 9.7. If x(s) is6225

a stable solution, so is λx(s) (λ a proportionality constant). Introducing a non-linear6226

force modifies the equation of motion, into for instance6227

⋄ d2x

ds2
+ Kx(s)x = S(s)x2: sextupole perturbation,6228

⋄ d2x

ds2
+ Kx(s)x = O(s)x3: octupole perturbation,6229

If x(s) is a stable solution, it may no longer be the case for λx(s). If x(s) is small6230

enough the motion, subject to linear and non-linear forces, is quasi-linear and stable.6231

However, increasing the motion amplitude will at some point result in unstable6232

motion. In the (x, x ′) phase space, the stable regime is bounded by a separatrix.6233

Outside the latter the motion is essentially unstable, or liable to reach amplitudes

Fig. 9.14 Horizontal motion

near a 3rd integer resonance.

Within the triangle separatrix

the motion is stable. Outside

the triangle, motion reaches

large amplitudes. An electro-

static septum extracts particles

which jump to the right of the

septum (into the extraction

channel) during their motion -0.02 0.0 0.02 0.04

-0.002

-0.001

0.0
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               M                        
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6234

beyond transverse acceptance of the accelerator (Fig. 9.14).6235

9.2.4 Acceleration. Synchrotron Motion6236

Particle motion in longitudinal phase space (phase,momentum) and its stability6237

are determined by the lattice and by the acceleration parameters, as introduced in6238

Sect. 8.2.2. They include the6239

- RF frf = h frev,6240

- voltage V(t) = V̂ sin
∫
ωrfdt,6241

- synchronous phase φs (phase of the particle in synchronism with the RF oscil-6242

lation), which increases by 2πh per turn,6243

- transition γtr = 1/
√
α (Fig. 8.15).

In the case of weakly modulated betatron functions (weak focusing lattice; AG lattice

to some extent), α ≈ 1/ν2
x so that
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γtr ≈ νx

This is the case of SATURNE 1: a weak focusing lattice (see Chap. 8 and simulation6244

exercises there) operated above transition as γtr = νx ≈ 0.6. In the AGS at BNL the6245

working point is νx ≈ 8.7 whereas γtr = 8.4 ≈ νx ; transition is crossed as proton6246

beams are accelerated from γ ≈ 3 to γ ≈ 25. Instead, SATURNE 2 strong focusing6247

lattice was operated at negative α, η = 1
γ2 − α does not cancel, γtr is pure imaginary.6248

The energy gain per turn at the cavity is

∆W = 2πR qρ ÛB = qV̂ sin φs

∆W is imposed by the field law in order to ensure that at all time the synchronous

particle momentum satisfies

ps(t) = qB(t)ρ

Phase stability6249

Particles with phase and momentum offsets (∆φ,∆p/ps) = (φ − φs, (p − ps)/ps)6250

in the vicinity of the synchronous particle at (φs, ps) undergo periodic longitudinal6251

oscillations. The longitudinal motion satisfies the differential equations

Fig. 9.15 In the presence of

RF, particles oscillate in the

vicinity of the synchronous

phase. Above transition, in

this schematic

V

φ
s

O φ

B

6252

d∆φ

dt
= hηωs

∆p

p
,

d(∆p/p)
dt

=

eV̂ωs

2πβ2
sEs

[sin φ − sin φs] (9.27)

If peak amplitudes are small the differential Eqs. 9.27 yield6253

d2
∆φ

dt2
+Ω

2
s∆φ = 0 (9.28)

the motion is sinusoidal, with a synchrotron angular frequency6254
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Ωs =
c

R

√
|η |hqV̂ cos φs

2πEs

(9.29)

The synchrotron tune, number of synchrotron oscillations per revolution, writes6255

νs =
Ωs

ωrev

=

1

βs

√
ηhqV̂ cos φs

2πEs

(9.30)

Synchrotron oscillations are slow compared to betatron oscillations, typically νs ∼
νx,y/102∼3. Motion stability requires Ω2

s > 0, or

η cos φs > 0

Longitudinal motion in (φ, Ûφ/Ωs) phase space is on a circle. The extent in phase and6256

energy, or momentum, of the small amplitude oscillations satisfy6257

∆̂φ =
hηEs

psRΩs

∆̂E

Es

=

hηEs

psRΩs

β2
s

∆̂p

p
(9.31)

The bunch length is6258

Lbunch =
R

h
∆̂φ (9.32)

Separatrix6259

If peak amplitudes are large the oscillations are non-linear and, assuming slow6260

acceleration, by combining Eqs. 9.27,6261

d2
∆φ

dt2
+Ω

2
s

sin φ − sin φs

cos φs
= 0 (9.33)

A first integral of this equation is the equation of the separatrix (Fig. 9.16)6262

Ûφ
2
−Ω2

s

cos φ + φ sin φs

cos φs
= −Ω2

s

cos(π − φs) + (π − φs) sin φs

cos φs
(9.34)

This defines two locations where Ûφ changes sign, i.e. Ûφ = 0, namely,6263

(i) φ1 = π − φs ,6264

(ii) φ2 such that cos φ2 + φ2 sin φs = cos(π − φs) + (π − φs) sin φs .6265

The motion is stable, oscillatory, within the domain φ ∈ [φ1, φ2], the “bucket”, and6266

unbounded beyond. The bucket height is obtained for φ = φs , namely, from Eq. 9.346267

Ûφmax

Ωs

=

√
2 [2 − (π − 2φs) tan φs] (9.35)

Expressed in momentum,6268
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Fig. 9.16 Longitudinal motion separatrix in (φ, dp/p) phase space, and some stable as well as

unbounded motions. Case of SATURNE 2 at injection energy, 50 MeV. From left to right: case of

φs = 0 (stationary bucket), φs = 15, 30, and 60 deg. Small motions are centered on φs , their

synchrotron tunes satisfy Eq. 9.30. The momentum acceptance (height of the separatrix) satisfies

Eq. 9.36, with respectively ± ∆̂p
p

≈ 0.00496, 0.00392, 0.00290 and 0.00107

Fig. 9.17 Dependence of

the momentum extent of

the bucket
(
normalized to

1
βs

√
qV̂

πhηEs

)
on the syn-

chronous phase φs . It takes

its value in
√

2 → 0 for

sinφs : 0 → 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1√[
2
c
o
s

φ s
-
(

π 
-
2

φ s
)
s
i
n

φ s
]

sin φ
s

± ∆̂p

p
= ± 1

βs

√
qV̂

πhηEs

[2 cos φs − (π − 2φs) sin φs] (9.36)

Its dependence on φs is represented in Fig. 9.17. Stationary bucket mode, i.e. sin φs =6269

0, has greatest acceptance. The latter decreases in accelerated bucket mode as φs →6270

π/2 (Fig. 9.16).6271

Adiabatic damping of synchrotron oscillations6272

The equation of motion, Eq. 9.33, assumes a slow acceleration rate, dTrev/dt ≪ 1,6273

such that ps(t), η, possibly V̂ , and thusΩs change slowly during synchrotron oscilla-6274

tions and therefore can be considered constant. The extreme phase and momentum6275

excursions during acceleration satisfy6276

∆̂φ ∝
(

η

R2γV̂ cos φs

)1/4

∆̂p

p
∝ 1

βs

(
V̂ cos φs

ηγ3R2

)1/4 (9.37)

In the case of acceleration on a fixed orbit (constant radius R),6277

∆̂φ × ∆̂p = constant (9.38)
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Adiabatic damping of the betatron oscillations6278

The mechanism is described in Sect. 8.2.2 (Fig. 8.14), the equations of motion6279

are addressed in Sect. 10.2.3. In the case of an adiabatic change of momentum6280

p = βγm0c (a slow change compared to the betatron motion oscillation frequency)6281

the transverse motion damping satisfies6282

p εu = constant, or βγεu = constant (9.39)

Coordinate damping satisfies (Eq. 10.22 with orbit radius R =constant)6283

x, y ∝ 1/√p, x ′, y′ ∝ 1/√p (9.40)

9.2.5 Synchrotron Radiation, Dynamical Effects6284

Emittance growth upon SR matters in high γ rings, electron rings so far, muon6285

collider possibly in the future [30] and other FCC lepton and hadron collider [8].6286

The stochastic nature of SR and the energy loss it results in, have been introduced6287

in Chap. 5. Dynamical effects in a synchrotron ring are further addressed here [31,6288

32].6289

Motion invariants6290

In the absence of perturbation by synchrotron radiation, particle motion satisfies the6291

Courant-Snyder (Eq. 9.41) and longitudinal (Eq. 9.42) phase-space invariants6292

εu = γu(s)u2
+ 2αu(s)uu′

+ βu(s)u′2 (u = x or y) (9.41)

6293

εl =
αEs

2Ωs

(
δ̂E

Es

)2

(9.42)

Under the effect of stochastic SR, individual invariants can in general not be de-6294

termined, averages over particle ensembles are considered instead (noted (∗) in the6295

following), they evolve according to6296

dεu

dt
= −εu

τu
+ Cu (9.43)

towards a stationary solution6297

εn,eq = Cu τu (9.44)

where Cu is a constant at fixed energy (storage ring), with characteristic time6298
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τu =
Trev Es

Us Ju
(9.45)

Jn=x,y,l are the partition numbers (lattice properties), respectively horizontal, vertical,6299

longitudinal,6300

Jx = 1 − D, Jy = 1, Jl = 2 +D (9.46)

where

D = Dx(1 − 2n)/ρ3

1/ρ2

In this expression, (∗) = 1
2πR

∫
dipoles

(∗)ds, n is the field index - case of combined6301

function dipoles, Dx is the dispersion function, The partition numbers satisfy the6302

Robinson theorem6303

Jx + Jy + Jl = 4 (9.47)

Table 9.1 Common expressions for the energy loss per turn, Us (E-loss), for the damping times

and equilibrium emittances, in the hypothesis of an isomagnetic lattice. Their scaling with γ is

given in the 2nd row

E-loss εl,eq σl τl εx,eq 1 τx εy,eq τy

Scaling : γ4 γ3/2 1/γ1/2 1/γ3 γ2 1/γ3 1/γ3

Cγ
E4
s
ρ

αEs

Ωs

Cqγ
2

Jl ρ
αc
Ωs

σ ∆E
E

TrevEs

UsJl

Cqγ
2

Jxρ
H TrevEs

UsJx
≪εx

TrevEs

UsJy

[1] H = 1
Ldip

∫
dip

ds
βx

[
D2

x + (αxDx + βxD
′
x )2

]
, integral over the dipoles.

Common expressions for the calculation of the energy loss and equilibrium quan-6304

tities, in the hypothesis of an isomagnetic lattice, are recalled in Tab. 9.1.6305

Vertical emittance results from coupling, always present in a ring, due for instance6306

to a loss of median plane symmetry, or to fringe fields, or excited on purpose to control6307

the vertical emittance as in light sources. Given the coupling factor κ - normally6308

< 0.1, the vertical and horizontal emittances satisfy6309

ǫy = κǫx, ǫx + ǫy = ǫ0 (9.48)

where ǫ0 is the equilibrium horizontal emittance in the absence of coupling (Tab. 9.1).6310

The basic considerations above hold for a defect-free planar ring. Things can be6311

(as usual) more complicated, for instance in the presence of vertical dispersion.6312
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Field scaling6313

Particle stiffness decrease upon SR loss causes these to experience increased field6314

strength (1/ρ in dipoles, G/Bρ in quadrupoles, etc.). In the case of beam lines (which6315

may include high energy ERLs [11]), this effect may be taken care of by scaling the6316

magnetic fields to the theoretical average energy loss (Eq. 5.12), namely6317

∆Escaling =

∑

bends

2

3
r0ecγ3B∆θ (9.49)

In a storage ring the energy lost by SR is restored by the RF system, bends and lenses6318

are operated at constant field. In pulsed regime such as in a booster injector, bends6319

and lenses are operated at constant strength during acceleration.6320

9.2.6 Visible Synchrotron Radiation. Interference6321

Visible SR was first observed at the GEC 70 MeV. For this reason it has been6322

introduced in the Weak Focusing Synchrotron chapter, Sect. 8.2.3. The SR spectrum6323

at that energy peaks - has its critical frequency - in the visible region. The matter6324

is developed further in the present chapter, in regard with the use of visible SR for6325

beam diagnostics in electron and high energy proton rings [31, 33].6326

An example of the use of visible SR from a proton beam is found at the CERN SPS,6327

where edge radiation was used at 270 GeV for beam imaging [34]. At that energy6328

in the SPS, the critical frequency (the peak brightness) is in the infrared region.6329

Undulator radiation, more intense, was used down to 200 GeV [35], in the p − p6330

collider era (1980s). Another example is the LHC synchrotron light profile monitor,6331

a major beam monitoring tool at injection energy, 450 GeV [36][37, Appendix C].6332

An example of the use of visible SR from a high energy electron beam is found6333

at the former LEP, where it was produced in a dedicated 4-dipole miniwiggler. The6334

critical frequency in a high energy electron ring is way above the visible range.6335

In such case, visible SR can be dealt with in terms of low-frequency SR [38], a6336

method which can be extended to the analytical treatment of SR interference [37].6337

The underlying theoretical material is recalled here. It is resorted to in the exercises,6338

to cross check Poynting computation from raytracing (using Eq. 8.36).6339

Low frequency SR6340

A typical electric field impulse from a LEP miniwiggler dipole, and the resulting6341

spectral brightness, as observed in the laboratory, are displayed in Fig. 9.18. The6342

LEP 4-dipole miniwiggler was subject to visible light interference from 4 coherent6343

sources, the effect is illustrated in Fig. 9.19.6344
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Fig. 9.18 Left: typical shape of the Eσ (τ) and Eπ (t) electric impulse components of the Poynting

vector, emitted by a 2.5 GeV electron on a ρ = 53.6 m circular trajectory in a l = 20 cm-long

dipole, as observed in the laboratory. Eσ, π (τ) are obtained from the stepwise integration of electron

motion through the magnet, which provides the ingredients to compute Eq. 8.36, accounting for the

retarded time t = τ − r(t)/c (Eq. 8.37). Right: the spectral brightness of the σ component of the

radiation allows comfortable beam diagnostics conditions in the visible range (ω ∼ 0.5 eV)

Fig. 9.19 An interferencial spectrum, case of LEP 4-dipole miniwiggler [39]. By contrast with the

single dipole case (Fig. 9.18), the spectral brightness of theσ component cancels in the low energy

end of the spectrum

A doublet of LEP miniwiggler dipoles, in both cases of same sign and opposite6345

sign dipoles, is the object of numerical simulations in exercise 9.6. It is on the other6346

hand treated theoretically in [37, Sect. 3.1]. The latter provides all necessary material6347

for cross checks of numerical outcomes from the stepwise integration of electron6348

motion,6349

9.2.7 Polarization, Resonances6350

In a weak focusing optics lattice, radial field components experienced by a particle in6351

the course of its vertical betatron motion are small, which results in weak depolarizing6352

resonances (Sect. 8.2.4). By contrast, strong focusing field gradients in the combined6353

function dipoles and/or focusing lenses of strong focusing optics results in strong6354

radial field components and therefore strong depolarizing resonances.6355
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Spin precession and resonant spin motion in the magnetic components of a cyclic6356

accelerator have been introduced in Sects. 3.2.5, 4.2.5. The general conditions for6357

depolarizing resonance to occur have been introduced in Sect. 8.2.4. In a strong6358

focusing synchrotron they essentially result from the radial field components in the6359

focusing magnets and their strength is determined by the lattice optics, as follows.6360

Strength of imperfection resonances6361

Imperfection, or integer, depolarizing resonances are driven by a non-vanishing6362

vertical closed orbit yco(θ) which causes spins to experience periodic radial fields in6363

focusing magnets, dipoles in combined function lattices and quadrupoles in separated6364

function lattices, namely,6365

Bx(θ) = G y(θ) = K(θ) × B0ρ0 × yco(θ) (9.50)

with θ the orbital angle and B0ρ0 the lattice rigidity. Resonance occurs if the spin

undergoes an integer number of precessions over a turn: it then experiences 1-turn-

periodic torques, which cause it to move away from the stable n0 direction as field

perturbations along the closed orbit add up coherently. Thus resonances occur at

integer values

Gγn = n

A Fourier development of these perturbative fields yields the strength of the Gγn
harmonic [40, Sect. 2.3.5.1]

ǫ
imp
n = (1 + Gγ) R

2π

∮
K(θ) yco(θ) e− jGγ(θ − α) e jnθ dθ

In the thin-lens approximation, near the resonance where Gγ−n → 0, this simplifies6366

into a series over the quadrupole fields,6367

ǫ
imp
n =

1 + Gγn

2π

∑

Qpoles

[cos Gγn αi + sin Gγn αi] (KL)i yco(θi) (9.51)

with θi the quadrupole location, (KL)i the integrated strength (slice the dipoles as6368

necessary in an AG lattice for this series to converge) and αi the cumulated orbit6369

deviation.6370

Orbit harmonics near the betatron tune (n = Gγn ≈ νy) excite strong resonances.6371

Imperfection resonance strength is further amplified in P-superperiodic rings, with6372

m-cell superperiods, if the betatron tune νy ≈ integer × m × P [41, Chap.3-I].6373

Strength of intrinsic resonances6374



D
R
A
FT

9.3 Exercises 331

Intrinsic depolarizing resonances are driven by betatron motion, which causes spins6375

to experience strong radial field components in quadrupoles, namely6376

Bx(θ) = G y(θ) = K(θ) × B0ρ0 × yβ(θ) (9.52)

The effect of resonances on spin depends upon betatron amplitude and phase, their

effect on beam polarization depends on beam emittance. Longitudinal fields from

dipole ends are usually weak by comparison and ignored. The location of intrinsic

resonances depends on betatron tune, it is given in an M-periodic structure by

Gγn = nM ± νy

A Fourier development of the perturbative fields yields the two families of

strengths [40, Sect. 2.3.5.2]

ǫ intr
n

±
=

λxρ0

4π

∫ 2π

0

K(θ)
√
βy(θ)

εy

π
e
± j

(∫ s(θ)
0

ds
βy

− νyθ
)

e− jGγ(θ − α(θ)) e jnθdθ

In the thin-lens approximation, near the resonance where Gγ ± νy − n → 0, this6377

simplifies into a series over the quadrupole fields,6378

{
Re(ǫ intr

n
±) +

j Im(ǫ intr
n

±)

}
=

1 + Gγn

4π

∑

Qpoles

{
cos(Gγnαi ± ϕi) +
j sin(Gγnαi ± ϕi)

}
(KL)i

√
βy,i

εy

π
(9.53)

Spin diffusion6379

Spin diffusion stems from the stochastic emission of photons in magnetic fields6380

(Sect. 5.2.3.1). A change δ in the energy offset∆E of a particle, due to the emission of6381

a photon, causes a change ∂n/∂δ of the local spin precession direction. In dispersive6382

sections it also causes a change in the horizontal invariant, ∂ǫx/∂δ, and in vertical6383

invariant as well, ∂ǫy/∂δ in the presence of vertical dispersion, which in turn result6384

in perturbations ∂n/∂ǫx,y .6385

As far as numerical integration is concerned, spin diffusion is a sub-product of the6386

stepwise integration of Thomas-BMT equation (Sect. 3.2.5), and of the simulation of6387

stochastic emission of photons (Sect. 5.2.3.1). It is at work in Cornell RCS simulation,6388

exercise 9.4.6389

9.3 Exercises6390

In complement to the present exercises, a tutorial on depolarizing resonances in6391

a strong focusing synchrotron can be found in [40, Chap. 14]. Proton, helion and6392

electron beams are considered, using the lattice of the AGS Booster at BNL. The6393



D
R
A
FT

332 9 Strong Focusing Synchrotron

simulations explore methods for preservation of polarization, including tune-jump6394

quadrupoles, a solenoid, Siberian snakes, spin rotators in the case of electrons,6395

including synchrotron radiation and effects on polarization life time.6396

Note: input data files for these simulations are available in zgoubi sourceforge6397

repository at6398

https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/book/zgoubiMaterial/synchrotron_strongFocusing/6399

9.1 Construct SATURNE 2 Synchrotron6400

Solution: page 3406401

Over the years 1978-1997 the 3 GeV synchrotron SATURNE 2 at Saclay (Figs. 9.3, 9.20)6402

delivered polarized proton beams, and polarized deuteron and 6Li beams up to6403

1.1 GeV/nucleon, for intermediate energy nuclear physics research, including meson6404

production [45, 42, 43]. The separated function synchrotron was designed ab initio6405

for the acceleration of polarized ion beams [44], and the first strong focusing syn-6406

chrotron to do so - ZGS, first to accelerate polarized beams, protons and deuterons,6407

was a weak focusing synchrotron (Chap. 8).6408

SATURNE 2 is a FODO lattice with missing dipole. Its parameters are given in6409

Tab. 9.2.6410

SPES IV

Fig. 9.20 SATURNE 2 synchrotron and its experimental areas, including mass spectrometers

SPES I to SPES IV, a typical nuclear physics accelerator facility. The polarized ion sources Dioné

and Hypérion are at the top left, followed by a 20 MeV linac. In the early 1980s a synchrotron

booster, MIMAS, was added for higher polarized ion performance

(a) Simulate the main dipole using BEND. Dipole fringe fields matter in this

small ring, take them into account assuming λ = 8 cm extent and the following Enge

coefficient values (Eq. 14.11, Sect. 14.3.3):
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Table 9.2 Parameters of SATURNE 2 separated function FODO lattice. ρ0 is the radius of the

reference orbit in the main dipole

Orbit length, C m 105.5556

Average radius, R = C/2π m 16.8

Straight sections, length:

- short m 0.716256

- long m 3.92148

Dipole:

- bend angle, α deg 22.5

- magnetic radius, ρ0 m 6.3381

- wedge angle, ε deg 2.45

Quadrupole:

- gradient range T/m 0.5 - 10.56

- magnetic length F/D m 0.46723 / 0.486273

Wave numbers, typical, νx ; νy 3.64; 3.60

Chromaticities, ξx ; ξy negative, a few units

Momentum compaction α 0.015

Injection energy (proton) MeV 20

Top energy GeV 3
ÛB T/s 4.2

Synchronous energy gain keV/turn 1.160

RF harmonic 2

C0 = 0.2401, C1 = 1.8639, C2 = −0.5572, C3 = 0.3904, C4 = C5 = 0

Produce the transport matrix of the dipole, check against theory. Compare with6411

the matrix of the hard edge model.6412

Produce a graph of the field across the dipole, in the median plane and at 5 cm ver-6413

tical distance. OPTIONS[CONSTY=ON] can be used to force a particle to constant6414

Y and Z.6415

Simulate the F and D quadrupoles, using respectively QUADRUPOLE and MUL-6416

TIPOL. Compare matrices with theory.6417

Construct the cell. Produce machine parameters (tunes, chromaticities), check6418

against data, Tab. 9.2.6419

Construct the 4-cell ring. Produce a graph of the optical functions. Produce the6420

beam matrix.6421

(b) Accelerate a bunch comprised of a few tens of particles with Gaussian density6422

distributions (it can be defined using MCOBJET), from injection to top energy,6423

50 MeV to 3 GeV. Use harmonic 3 RF frequency, take a (unrealistic, for a reduced6424

number of turns) peak RF voltage V̂ = 1 MV, and synchronous phase φs = 30 deg.6425

Produce a graph of Y, Z and dp/p versus turn. Check the transverse damping6426

against theory.6427

(c) Determine the momentum acceptance of the ring at 50 MeV, with V̂ = 10 kV6428

peak voltage, in the following four cases: stationary bucket (synchronous phase6429

φs = 0) and accelerated buckets with φs = 15, 30, and 60 deg.6430

Reproduce the longitudinal phase space graphs displayed in Fig. 9.16.6431

9.2 Non-Linear Motion in SATURNE 26432
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Solution: page 3486433

(a) Simulate horizontal particle motion near a third integer resonance. Provide a6434

graph of the transverse phase space.6435

(b) Simulate horizontal particle motion near a quarter integer resonance. Provide6436

a graph of the transverse phase space.6437

9.3 SVD Orbit Correction6438

Solution: page 3516439

Using SATURNE 2 ring, inject dipole defects and use SVDOC to find the cor-6440

rected orbit.6441

It can be done in the following way:6442

- place a horizontal pickup (HPU), a dipole defect (HDEF, using a thin-lens6443

MULTIPOL, length e.g. 1e-3 cm) and a dipole corrector (HKIC, using a thin-lens6444

MULTIPOL) in the middle of the QF quadrupole of the FODO cells,6445

- in a similar manner, place a VPU, a VDEF and a VKIC just upstream of the6446

FODO cell QD,6447

- excite V and H closed orbits by injecting random defects in HKIC and VKIC,6448

using ERRORS.6449

Use SVDOC to find the orbit correction.6450

Provide a graph of the orbit at the PUs, before and after correction.6451

In the previous setting, there is 24 defects (12 H and 12 V) and 24 correctors (126452

H and 12 V). Repeat for 24 defects and only 12 correctors per plane.6453

9.4 Cornell Electron RCS. Radiative Energy Loss6454

Solution: page 3536455

Note: details regarding these simulations and their solutions can be found in the6456

Tech. Note EIC/57;BNL-114452-2017-IR [46].6457

The goal in this exercise is to simulate Cornell RCS lattice and accelerate beam,6458

first without synchrotron radiation, then taking it into account. In a fourth step6459

electron spin is added and polarization transmission through the acceleration cycle6460

assessed.6461

(a) Details of the RCS geometry and lattice can be found in Ref. [14], however a6462

simplified 6-superperiodic version of the ring is considered here, with six identical6463

long straights and six identical arcs. The RCS parameters are given in Tab. 9.3. The6464

input data files are given in6465

- Tabs. 9.4 and 9.5: definition of the focusing and defocusing bends, and of the6466

focusing and defocusing doublets;6467

- Tab. 9.6: definition of a FODO cell;6468

- Tab. 9.7: definition of a supercell;6469

- Tab. 9.8: definition of the 6-supercell ring.6470

Produce the optical parameters of the ring. A TWISS command can be used for6471

that. Produce graphs of the closed orbit and optical functions around the ring.6472

(b) Raytrace a few tens of particles over 2300 turns around the ring, from 320 MeV6473

to 8 GeV about, ignoring radiative energy loss. Assume normalized emittances εx =6474



D
R
A
FT

9.3 Exercises 335

Table 9.3 Cornell RCS parameters in the present simplified lattice simulation

Top energy GeV 7

Injection energy MeV 320

Circumference, simplified 6-supercell case m 786.947

Bunch

εx , εy at injection πµm 25

Bunch length mm 6

dE/E at injection 5 10−3

Combined function lattice 48×FFDD

Nb of F and D cell dipoles 192

ρF , ρD m ≈95, 92

Field at 7 GeV T 0.25

Max. βx , βy m 29, 26

νx , νy , natural 9.62, 13.82

ξx , ξy , natural -13, -16

RF, synch. radiation

Repetition rate Hz up to 60

Acceleration rate MV/turn 3

E-loss per turn at 5, 10 GeV MeV 0.6, 9

τx (≈ 2.5
E3 ) at 5, 10 GeV ms 16, 2

εy = 25πµm, Gaussian densities, initial rms δp/p = 5 10−3. Use CAVITE[IOPT=3]6475

for acceleration. Produce a graph of the three phase spaces. produce graphs of6476

transverse and longitudinal excursions versus turn number, check damping again6477

expectations.6478

(c) Re-do (b) with synchrotron radiation energy loss, following SR loss theoret-6479

ical material introduced in the “Betatron” Chap. 5. Use SRLOSS for radiation, and6480

CAVITE[IOPT=11,Facility=CornellSynch,U00 = 9.48145321 × 10−6] for accelera-6481

tion. Check equilibrium emittances.6482

(d) Produce a graph of the average bunch polarization over the acceleration cycle6483

in (c), starting with all spins up at injection energy. Check against the resonance6484

spectrum over aγ : 0.7 → 18.6485
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Table 9.4 Simulation input data files for the focusing (left) and defocusing (right) com-

bined function dipoles. They define the segments, respectively, F_BEND_S:F_BEND_E and

D_BEND_S:D_BEND_E, for use by INCLUDE commands in further input data files. These files

can be run as is: FIT will center the closed orbit across the magnet, accounting for the field scaling

by the ad hoc coefficient under SCALING
RCS focusing combined function dipole

! File: F_BEND.inc

’OBJET’

1. *1e3

5

.001 .001 .001 .001 0. .0001

0. 0. 0. 0. 0. 1.

’SCALING’

1 1

MULTIPOL F_BEND

-1

0.98523998

1

’MARKER’ F_BEND_S

’MULTIPOL’ F_BEND

0 .Dip

320.2700 10. 0.1021746 0.0435214 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

#30|320|30 ! YCE offset found by FIT

3 0.0000000000E+00 0.52818473 -1.6362461735E-02

’MARKER’ F_BEND_E

’FIT’

1

4 65 0 [-4.,4.]

2

3.1 1 2 #End 0. 1. 0

3.1 1 3 #End 0. 1. 0

’END’

RCS defocusing combined function dipole

! File: D_BEND.inc

’OBJET’

1. *1e3

5

.001 .001 .001 .001 0. .0001

0. 0. 0. 0. 0. 1.

’SCALING’

1 1

MULTIPOL D_BEND

-1

1.1078694

1

’MARKER’ D_BEND_S

’MULTIPOL’ D_BEND

0 .Dip

320.0150 10. 0.1022560 -0.0437325 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

#30|320|30 ! YCE offset found by FIT

3 0.0000000000E+00 -1.4110319 -1.6362461735E-02

’MARKER’ D_BEND_E

’FIT’

1

4 65 0 [-2.,2.]

2

3.1 1 2 #End 0. 1. 0

3.1 1 3 #End 0. 1. 0

’END’

Table 9.5 definition of focusing (left) and defocusing

(right) doublets, for use by further INCLUDE commands
! File: BF2.inc

’MARKER’ BF2_S

’DRIFT’

23.999061

’INCLUDE’

1

F_BEND.inc[F_BEND_S:F_BEND_E]

’DRIFT’

23.999061

’DRIFT’

23.999061

’INCLUDE’

1

F_BEND.inc[F_BEND_S:F_BEND_E]

’DRIFT’

23.999061

’MARKER’ BF2_E

’END’

! File: BD2.inc

’MARKER’ BD2_S

’DRIFT’

24.126561

’INCLUDE’

1

D_BEND.inc[D_BEND_S:D_BEND_E]

’DRIFT’

24.126561

’DRIFT’

24.126561

’INCLUDE’

1

D_BEND.inc[D_BEND_S:D_BEND_E]

’DRIFT’

24.126561

’MARKER’ BD2_E

’END’

Table 9.6 Simulation input data file

for a FODO cell

! File: FD.inc

’MARKER’ FD_S

’INCLUDE’

1

BF2.inc[BF2_S:BF2_E]

’INCLUDE’

1

BD2.inc[BD2_S:BD2_E]

’MARKER’ FD_E

’END’
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Table 9.7 Simulation input data file for a supercell
File : superCell.inc

’OBJET’

1. *1e3 ! Rigidity is 1 T m.

5

.001 .001 .001 .001 0. .0001

0. 0. 0. 0. 0. 1.

’MARKER’ superCell_S

’INCLUDE’

1

F_BEND.inc[F_BEND_S:F_BEND_E]

’DRIFT’

40.988209

’DRIFT’

40.988209

’INCLUDE’

1

F_BEND.inc[F_BEND_S:F_BEND_E]

’DRIFT’

15.600113

’DRIFT’

15.600113

’INCLUDE’

1

D_BEND.inc[D_BEND_S:D_BEND_E]

’DRIFT’

24.062811

’DRIFT’

24.062811

’INCLUDE’

1

D_BEND.inc[D_BEND_S:D_BEND_E]

’DRIFT’

15.600113

’DRIFT’

15.600113

’INCLUDE’

1

F_BEND.inc[F_BEND_S:F_BEND_E]

’DRIFT’

40.988209

’DRIFT’

40.988209

’INCLUDE’

1

F_BEND.inc[F_BEND_S:F_BEND_E]

’DRIFT’

15.600113

’INCLUDE’

1

D_BEND.inc[D_BEND_S:D_BEND_E]

’DRIFT’

15.600113

’DRIFT’

15.600113

’INCLUDE’

1

D_BEND.inc[D_BEND_S:D_BEND_E]

’DRIFT’

40.988209

’DRIFT’

40.988209

’INCLUDE’

1

F_BEND.inc[F_BEND_S:F_BEND_E]

’DRIFT’

15.600113

’DRIFT’

15.600113

’INCLUDE’

1

F_BEND.inc[F_BEND_S:F_BEND_E]

’DRIFT’

24.062811

’INCLUDE’

1

BD2.inc[BD2_S:BD2_E]

’DRIFT’

24.062811

’MULTIPOL’

0 .Dip

44.6375 10. 0.1022198 -0.0437325 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

#30|45|30 Dip B129VA

3 0.0000000000E+00 1.77777778E-02 -2.2814180400E-03

’MULTIPOL’

0 .Dip

275.505 10. 0.1022165 0.0842350 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

#30|276|30 Dip B129HB

3 0.0000000000E+00 0.65358025 -1.4081043695E-02

’DRIFT’

24.062811

’DRIFT’

60.800000

’DRIFT’

244.000000

’DRIFT’

244.000000

’DRIFT’

60.800000

’DRIFT’

24.062811

’MULTIPOL’

0 .Dip

275.505 10. 0.1022165 -0.0844460 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

#30|276|30 Dip B128VA

3 0.0000000000E+00 0.6397805 -1.4081043695E-02

’MULTIPOL’

0 .Dip

44.6375 10. 0.1022198 0.0435214 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.

4 .1455 2.2670 -.6395 1.1558 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

#30|45|30 Dip B128HB

3 0.0000000000E+00 1.77777778E-02 -2.2814180400E-03

’DRIFT’

24.062811

’INCLUDE’

1

5 * FD.inc[FD_S:FD_E]

’DRIFT’

7.073665 ! -24.126561 + 2*15.600113

’MARKER’ superCell_E

’TWISS’

2 1. 1.

’SYSTEM’

1

gnuplot <./gnuplot_TWISS.gnu

’END’



D
R
A
FT

338 9 Strong Focusing Synchrotron

Table 9.8 Simulation input data file for Cornell

RCS ring

File: ring.INC.dat. Cornell RCS ring

’OBJET’

1. *1e3

5

.001 .001 .001 .001 0. .0001

0. 0. 0. 0. 0. 1.

’OPTIONS’

1 1

WRITE OFF

’SCALING’

1 3

MULTIPOL

-1

1.

1

MULTIPOL F_BEND

-1

0.99292280

1

MULTIPOL D_BEND

-1

1.1294084

1

’INCLUDE’

1

6 * superCell.inc[superCell_S:superCell_E]

’OPTIONS’

1 1

WRITE ON

!’TWISS’ ! Uncomment to get a TWISS and graphs.

!2 1. 1.

!’SYSTEM’

!1

!gnuplot <./gnuplot_TWISS.gnu

!’END’

’FIT2’ ! Set SCALING coefficients for requested tunes.

2

3 8 0 .2

3 12 0 .2

2

0.1 7 0 #End 0.62 1. 0

0.1 8 0 #End 0.82 1. 0

!’MATRIX’

!1 11

’TWISS’

2 1. 1.

’END’

9.5 Coupling in a Light Source Storage Ring6486

In this exercise, it is proposed to reproduce SR damping simulations, in a case of6487

coupled light source lattice, detailed in JINST article [48]6488

Simulation of radiation damping in rings, using stepwise ray-tracing methods6489

(the original (1990s) ESRF lattice is concerned - today’s ESRF lattice is completely6490

different, minimal emittance, un-isomagnetic).6491

An input data file for the early ESRF lattice can be found at6492

https://sourceforge.net/p/zgoubi/code/HEAD/tree/6493

branches/exemples/SRDamping/ESRFRing/coupled6494

It accounts for κ = 0.58 optical coupling, by a single skew quadrupole placed at the6495

begining of the lattice.6496

Reproduce the numerical results for this coupled case, as detailed in Sect. 5 of6497

that JINST article [48].6498

9.6 SR Electric Impulse and Interference in a Miniwiggler6499

Solution: page 3566500

In this exercise, the electric field component of synchrotron radiation in short6501

dipoles is produced. An interferential spectrum is prodcued from a pair of dipoles.6502

This exercise is based on the LEP miniwigller configuration [37].6503

(a) Produce the input data file for the simulation of an electron trajectory in one of6504

the LEP miniwiggler dipoles schemed in Fig. 9.21. Dipole length is L = 52.602 cm,6505

bend angle 0.8 mrad. Electron energy is E = 45 GeV. Produce the electric field6506

impulse observed at long distance in the direction φ = ψ = 0. Produce its spectrum.6507

Check the various quantities: duration of the electric field impulse, critical fre-6508

quency of the spectrum, etc.6509

(b) Consider the dipole pair of 9.21. Take distance between dipoles d = 23.098.6510

Produce the electric field impulse observed at long distance in the direction φ = ψ =6511

0. Produce its spectrum.6512
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Fig. 9.21 Synchrotron radi-

ation electric field impulse

from a pair of dipoles is ob-

served in the direction (φ, ψ),
with φ the bend plane angle as

shown, and ψ the angle to the

bend plane. This schematic

defines the observation direc-

tion φ = 0

Particle
L

d
φ

 

α/2

observer
Towards

   trajectory

Check the various quantites: duration of the electric field impulse, critical fre-6513

quency of the spectrum.6514

Repeat, in the direction φ = 0, ψ = 0.2 mrad.6515

(c) Repeat (b), for the dipole pair disposed as in Fig. 9.21 [37, Sect. A].6516

(d) Repeat (c) for the configuration of Fig. 9.22, a case of edge radiation interfer-6517

ence [37, Sect. B].

Fig. 9.22 Both dipoles have

same sign. This schematic de-

fines the observation direction

φ = 0

6518

9.7 Depolarizing Resonances in SATURNE 26519

Solution: page 3606520

Unexpectedly as it is not a systematic resonance, Gγ = 7 − νy was found to6521

be harmful to beam polarization. Produce a crossing of that resonance, for a few6522

particles with different momenta, and vertical invariant εZ ≈ 10πµm. Take peak6523

voltage 6 kV and synchronous phase φs = 0.2363176 rad.6524

The input data file given in Tab. 9.14, an outcome of exercise 9.15, can be used6525

as a starting point for this simulation.6526

9.8 Ion and Electron Polarization. Preservation of Polarization6527

More simulations regarding6528

- spin polarized ions and special devices and methods for the preservation of po-6529

larization during acceleration, including tune jump, partial and full Siberian snakes,6530

etc.,6531

- electron spin diffusion in a storage ring and its suppression, spin matching,6532

polarization lifetime, etc.,6533

can be found, with complete solutions, in the USPAS Summer 2021 Spin Class Lec-6534

tures, “Polarized Beam Dynamics and Instrumentation in Particle Accelerators” [47,6535

Chap. 14].6536


