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Introduction to Free Electron Lasers
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Introduction
Electrons’ trajectory and resonant condition

Analysis of FEL process at small gain regime
(Oscillator)

Analysis of FEL process at high gain regime
(Amplifier)



Introduction |: Basic Setup

Planar undulator

B, (x,y,2)=B, sin(kuz)

for x,y << gap size

Helical undulator
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Bx (x,y,z) = BO COS(kuZ)

B, (x,y,2)=B, sin(kuz)

for x,y << gap size
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Introduction Il: different types of FEL

Mirror Undulator
FEL Qscillatpr %= t [ ] 4] 4] 4]t Radiation _H
(Low gain regime) |T|T|T|T|T|\f|
Electron
Beam

Master Laser Undulator
FEL Amplifier e ALALALALALALL easton
(High gain regime) I I Y ”
Electron
Beam
Undulator
SASE FEL AALALALALA LA, Besiion
(High gain regime) AN ERERERE
Electron
Self-Amplified Spontaneous Emittion (SASE) Beam




Unperturbed Electron motion in helical wiggler
(in the absence of radiation field)

B, (x,y,z) BW[COS(kuZ)?AC—Sin(kuZ)f’]
F(x,y

7)=—eVXB=—evixB=—ev B, [cos(kuz))? + sin(kuz)fc]

(m}/vx) dv, : d (mj/v ) dv
— m’}/ = _eszw sm(kuz) y — m,}/ y ev B COS(k Z)
[ V= \/V2 +12 +1° ~ . Undulator parameter,
1-v7/c S VEV, T Wy also called a,,
dv A - ' eB A
= 3 DS 3 —ik, . K =—"»"w
my 2 iev B, (cos(kuz) zsm(kuz)) =—iev B, e | e
y dv y dz dv o B o o , dv B s | EIectLorlm rotation angle
——=my——=-lev p.e " my — =—ieB e in undulator:
dz dt dt ’ dz :
B ' —n — s - QS — K/)/
V(Z) —ieB, ¢ _y. eB, .. K _, _— .
= Je usl dzl = e "'=—e Assume the initial velocity of the electron
¢ mcy mcyk, Y make the integral constant vanishing.
- cK .
V¢(Z>:_ COS(k Z X SlIl k Z y:l v, = const. J?(Z)=J.\7(tl)dtl+7€(2=0)
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Energy change of electrons due to radiation field

Vv, (z)= % cos(kuz)fc — sin(kuz)ff:l

Consider a circularly polarized electromagnetic wave (plane wave is an assumption for 1D
analysis, which is usually valid for near axis analysis) propogating along z direction

—

E, (z,t):E[cos(kz—a)t)fc+sin(kz—a)t)ﬂ E =0

=E[cos(k(z—ct))fc+sin(k(z—ct))ﬂ W = ke

Energy change of an electron is given by

fi_SZﬁ.‘_}:_e‘_}J‘ ’EJ_
e ! ) Pondermotive phase:
d_Z:—eEHSV—cos(t//)z—eEHS cos(y) y =kz+k(z—ct)

To the leading order, electrons move with constant velocity and hence z=v, (t — tO)



Resonant Radiation Wavelength

de =—eE0, cos{[kw +k—k£jz+w0}
dz v,

We define the resonant radiation wavelength such that

k otk —k—=0=A =1 |—-1 zzlwz
VZ VZ yZ

}/‘251—\/Z2/c2=1—(v§+vi)/cz+vi/c2 :7’_2"‘93:?’_2(1"‘[(2)

<

AW(I+K2) K=eBW),W
FEL resonant frequency: 0~ 2 ~ 27mme
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At resonant frequency, the rotation of the electron and the radiation field is
synchronized in the x-y plane and hence the energy exchange between them is most

efficient.



Helicity of radiation at synchronization

The synchronization requires opposite helicity of radiation with respect to the electrons’

trajectories.
Electrons’ trajectories

electron l
t trajectory |

t, <t <t,<t,

X

Radiation field observed by
electrons

Electrons move slower than radiation
and hence see the radiation wave
slipping ahead. As a result, the
rotation direction of the radiation
field seen by an electron is the same
as its own rotation direction.



Longitudinal equation of motion

In the presence of the radiation field, the longitudinal equation of motion of an

electron read

d€
— =—¢E0,cos(y) w=kz+k(z—ct)
dz
d 0]
—y =k, +k-
iz’ T
1 1
~k, +k— +(8—50)i—
vz(é'O) dé v,
E-E
~k tk—— +“2’( o)
v, 50) y.ce &
[ dp
d_z =eEb, COS(W) Energy deviation:
=94 o
—y=C+——P Detuning parameter:
dz v.c&,

&, 1s the average energy of the beam.
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d€ v, B me’ Eﬂ_z_ mc> dy dy.

1 d 1 _1dy.d 1
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P=£E-E,

C=k,+k

Vz(go)




Low Gain Regime: Pendulum Equation

dP

— =—eE0, cos(y)

dz |, d’ eE0

d o Fl//+ oy cos(l//)=0
—y=C+——P < V%

dZ ’}/ZCSO

We assume that the change of the amplitude of the radiation field, E, is negligible
and treat it as a constant over the whole interaction.
d2

~2
<

2eEO w
}/12 c&,

A\ D)
[l
|

w+iicos(y)=0 i =

=~

2
Pendulum equation: dAz (w+£)+ﬁsm(y/+£j:0
dz 2 2




Energy deviation

Low Gain Regime: Similarity to Synchrotron Oscillation

FEL I Synchrotron Oscillation
V is the angle between the transverse velocity |
vector and the radiation field vector and hence . 9t pr Ee o LeVer G 1),
d "7 ds C pe

there is no energy kick for y =7 /2 |

Energy deviation

T
2
Pondermotive phase, ¥

dz( +£j+ﬁsin( +£j—0 :
2\ ey )" I

el v =k,z+k(z—ct)
0

Z




Low Gain Regime: Qualitative Observation

Energy deviation
Energy deviation

The average energy of the electrons The average energy of the electrons
is right at resonant energy: is slightly above the resonant energy:
2
NAW(H_K ) :>7_7—\/ZW(I+K2) V=Y Ay
0~ 2 0
2y 24 With positive detuning, there is

net energy loss by electrons.

*Plots are taken from talk slides by Peter Schmuser.




Low Gain Regime: Derivation of FEL Gain

Change in radiation power density (energy gain per seconds per unit area):

ATl =ce,(E. +AE) —ce,E., = 2ceE, AE

Energy deviation at entrance

Average change rate in electrons’ energy per unit beam area: /

Pondermotive phase at entrance

Al = j0<P> *The average, <...>, is over all w Yor /
‘ e electrons in the beam. (PG) = [dP, [dy, /(B y,)P(B,,.2)
—oo 0

Assuming radiation has the same cross section area as the electron beam, we
obtain the change in electric field amplitude:

AT +ATT, = 0= | Ap =5l

ar _ —eE0, cos(y)

CCZ; o = <P> =—cek 0S<j.cos[l//(2)]d2>

—y=C+ P
dz' yicé,




Low Gain Regime: Derivation of FEL Gain

d2
7 w+iucosy =0
Z A
l//(é) = w(0)+ y' (0)2 — ﬁjdéljcos w(éz )a’é2 (1)
0 0

Assuming that all electrons have the same energy and uniformly distributed in the

Pondermotive phase at the entrance of FEL: £, =0 and f(z//o)=§

The zeroth order solution for phase evolution is given by ignoring the effects from
FEL interaction:

ap _ —eE6, cos(y) r W(f): Wot Cz

dz d A .

J — _AWZC:>< CECZW
—wv=C+ @ P dZ ' ~

AR | y(0)=C

Inserting the zeroth order solution back into eq. (1) yields the 15t order solution:

Z)

w(2)=w,+C:+Ap(y,,?) Ap(y,,5)= —ﬁjdéljcos[% +C2, 12,

0



Low Energy Regime: Derivation of FEL Gain

jcos[wo +CzZ, ]a’22

Ay (y,.2)=—0| d,
0 0
= —F{ sin(y, + x, )dx, — C2 Sinl/lo} = & [cos(wo + Cé)— cosy, + Czsin l//o]

0

1

(P)= —eElW9S<f cos :l/fo +C2+ Aw(yfo,é)]d2> <— Average energy loss of electrons

0
1. A I A
- eE9S1W< sinfy, + C2Jsin(A w(wo,é))d2> _ eE9S1W< [ cosly, + CzJeos(a W(l//o,é))d2>
0 0
S U

[ Ay, 2)sinly, + @2]d§> _ eE%f;lz ;[42?1:64% Tzl
0 0

v —

0

~ eEHSZW<

_eEfl
27

" j‘ g {COS(@Q)T Ay (y,,2)siny,dy, + sin(@é)TA w(y,,2)cosy,d Wo}
0 0

0

_ ko, %jdf{éﬁ cos((:”é)zfsin2 v, dy, — sin(éé)zjfcos2 w,d Wo}
2r Cy 0 0

:—eEHSlw%(l—gsiné—cosé]
C 2



Low Energy Regime: Derivation of FEL Gain

Growth in the amplitude of radiation field: . [eE 6w
u=
(P  Pwl’E. 2 SN . y.cymc’
— ]°< > — 790% b ~ l—gsmC—cosC
2ce,E,.e cyy I, C 2 .
I 47e,mc
The gain is defined as the relative growth in radiation power: 4 e
(E_ +AE) —E>  2AE A
8 = : 52 - I3 = T’f(C) As observed earlier, there is no gain if
ext ext the electrons has resonant energy.
Cubic in FEL length |
e 2. 137 o1
T = 277093 w lw
- 2 005
C}/Z 7/ ]A ~ E’
A2 ~n C . N g
f( ): —~|l—-cosC——smnC 005
C 2
—_> 0.1
_ d sin’ (6/2) - | | | | |
dé éz -15 -10 5 0 5 10 15

Normalized detuning 6’



High Gain Regime: 1-D FEL Theory

* Ignoring the space charge effects, the
Hamiltonian for electrons in a FEL can be
written as (see additional material):

H(y,P,z)=CP+—2— P>~ (U(z)e” + U (z)e™*)

2C7ZZE0
U=— eHSE.(Z) E +iE = E(z)exp[i(u(z/c — t)]
21 Slow varying phase
P _ I _ 5 9 Relve]=—Reled B(z)e ]= ~6,|E(z)cos(y + 9(2))
dz oy  Jdy
= <
dy = B_H =C+ © _p




Linearization of Vlasov Equation

af+8H Jf oH Jf _
dz OP dw OJy oP

Vlasov equation:

S P.2)= f,(P)+ i(P.2)e + 1 (P.2)e ™ v =kz+k(z—ct)
af of.
Linearized Vlasov equation: 821 +{C+ C7/Z }fl +iU — P 0=0

d |~ . 0] . . @ of,
8z{fl exp{l(C+ L. P]z}} +texp{z(C+ L. P}z}a}g =0
0

Assuming that there is no initial modulation in the electrons, i.e. 171(0)=

fi(z)=—in, a}; szlU exp[ [C + c;/?)EO Pj(z1 - Z)}a’z1 fo(P)=n,F(P)

Integrate over energy deviation: —ec jfl (P,2)dP=T7(z) Jj.=—j,+jie¥ ++] eV Jy=engc

—00

~ OF, (P @
7(z yojdz1 ZIJ‘ 81‘(3 )exp{ (C+c7/ OPJ(Zl_Z)}dP




Wave Equation

1-D theory and hence d/dx=0 and 9/dy=0

w=kz+k(z—ct)

. 94, 194,
Wave equation for transverse vector potential: 2 R ;Uoh (1)

y4 C

. . e 1 . . _ ik,,z iy —11//
Transverse current perturbation: j, +y, =—\v, +wv )j | = Oe” Jle + +J1 (2)
V

z

We seek the solution for vector potential of the form:

~

Ax,y (Z,t)Z 7 (Z)eiw(z/c—t) n Zx’y*(z)e—iw(z/c—t) (3)

X,y

Inserting eq. (2) and (3) into eq. (1) yields

Z 2 (A k ~
o(zie—r) ) 210 0 4 +8_2 bycc.=-uo CO.S( ) jle’V’+C.C.)
c az Ay 22| A —sm(sz)

y

21_603 A, + i A, _ _,Llo_es e +e 7 iz
c dz| 4, 0z 4, 2 |ie™ —je s | "
’ 1. Ignoring fast oscillating term~¢e™

2. Ignoring second derivative by assuming that the variation of Zx'
is negligible over the optical wave length.

4




Wave Equation

After neglecting the fast oscillation terms, we get the following relation between the
current perturbation and the vector potential of the radiation field:
J 7 = CHyO, ~ i"‘ _ MO, 7
dz 4w ! oz 4= 4o 7'
In order to relate the vector potential to the electric field, we use the Maxwell
equation:

5 OB = 04 . ) e oA
ot ot ot i ot
a—f\/

o Ee' ) = _+iE, = - (. +id, Jorote'e)]

> E=iold, +id,)

Finally, the relation between the radiatio field and the current modulation is obtained:

Dpid 23 4127 |-l 5
dz 0z dz ° 2




Integra-differential Equation

Let’s put together what we achieved so far...

z(z)zyojdle(zl)TaFao—l@eXp{ (C+ }/CZOE P}z1 —z)}a’P

e0 E(z
| U=—-——=

N

4 F(o)=-b 5 ()

After inserting the latter two equations back into the first equation, we arrive at
J‘a’z1 j ( )exp[ (C + Ple ]7’15

where the following normalized variables are used to make the equation more
compact:

1/3
0w
Gain parameter: I'= {7‘%; } Pierce Parameter: p=yTc/®
CyZﬂA
A A ~ E-FE
cC=Cc/T z=zI P= :



Solution for Cold Beam

After integration by parts:

For cold beam:

Taking derivative:

Taking another derivative:

We obtain a third order
homogenous ODE:

N



Solution for Cold Beam

1
—— mode 1
- mode 2 \
. E 5 mode 3 \ |
The general solution of the ODE reads: § ° \1m(4)
3 g |
~~ A .2/ ~ "6 “‘
= Be™ i
3 A 2 A2 . _ I I I ! -t _l; _Iw - ‘7
2/+2ZC2/ _C ﬁ:l ! -4 -2 0 2 2 0 2
Reduced detune

Reduced detune

Applying initial condition to get the coefficients

1

~

E(0) 1 1 1 YB,

EN0)] (=& -4 -4 B
For E(0)=E, and E'(0)=E"(0)=0, the solution can be explicitly written as

) | et R At
V=) =2) o=Vl =4) (= AN Aa )

B, 1 1 1 Y ( E(0)
E'0) |=| i, i4 ik |B |= |B |=|it A il || E)
B) (-4 & &) B




