Homework 13. Due October 26

Problem 1. 3×5 points. Beam envelope in straight section.
For a one-dimensional motion consider beam propagating in a straight section starting as $\boldsymbol{s}_{\boldsymbol{o}}$ and having length L. Let's eigen vector (beam envelope) at $\boldsymbol{s}_{\boldsymbol{o}}$ is given by:

$$
Y\left(\mathrm{~s}_{o}\right)=\left[\begin{array}{c}
\mathrm{w}_{o} \tag{1}\\
\mathrm{w}_{o}^{\prime}+\frac{i}{\mathrm{w}_{o}}
\end{array}\right] ; \beta_{o} \equiv \mathrm{w}_{o}^{2} ; \alpha=-\frac{\beta^{\prime}}{2} \equiv-\mathrm{w}_{o} \mathrm{w}_{o}^{\prime}
$$

(a) Propagate the eigen vector along the straight section. Show that β-function can be expressed as

$$
\beta(\mathrm{s})=\beta^{*}+\frac{\left(s-s^{*}\right)^{2}}{\beta^{*}}
$$

where β^{*}, s^{*} can be found from initial conditions (1). Hint, use derivative of β-function to find $s^{*} . \beta^{*}$ is frequently used in colliders to describe the beam envelope in detectors.
(b) Calculate the (betatron) phase advance acquired in the straight section. Express it using β^{*}, s^{*}. Write expression for $\mathrm{x}(\mathrm{s})$ and $\mathrm{x}^{\prime}(\mathrm{s})$. Show that $\mathrm{x}^{\prime}=$ const.
(c) What is the maximum possible phase advance in a straight section (e.g. when $\mathrm{s}_{\mathrm{o}}, \mathrm{L}$ are unlimited)?

Solution: (a) Propagating the eigen vector through a drift is just multiplying it by the drifts transport matrix:

$$
\begin{align*}
& \tilde{Y}(\mathrm{~s})=\left[\begin{array}{cc}
1 & \Delta \mathrm{~s} \\
0 & 1
\end{array}\right] Y\left(\mathrm{~s}_{o}\right)=\left[\begin{array}{c}
\mathrm{w}_{o}+\Delta \mathrm{s}\left(\mathrm{w}_{o}^{\prime}+\frac{i}{\mathrm{w}_{o}}\right) \\
\mathrm{w}_{o}^{\prime}+\frac{i}{\mathrm{w}_{o}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{w}(\mathrm{~s}) \\
\mathrm{w}^{\prime}(\mathrm{s})+\frac{i}{\mathrm{w}(\mathrm{~s})}
\end{array}\right] e^{i \Delta \psi} ; \Delta \mathrm{s}=\mathrm{s}-\mathrm{s}_{o} ; \tag{2}\\
& \beta(\mathrm{s})=\mathrm{w}^{2}(\mathrm{~s})=\left|\mathrm{w}_{o}+\Delta \mathrm{s}\left(\mathrm{w}_{o}^{\prime}+\frac{i}{\mathrm{w}_{o}}\right)\right|^{2}=\left(\mathrm{w}_{o}+\Delta \mathrm{sw}_{o}^{\prime}\right)^{2}+\frac{\Delta \mathrm{s}^{2}}{\mathrm{w}_{o}^{2}}=\beta_{o}-2 \alpha_{o} \Delta \mathrm{~s}+\frac{\Delta \mathrm{s}^{2}}{\beta_{o}}\left(1+\alpha_{o}^{2}\right)
\end{align*}
$$

It is clearly a positively defined parabola and we just should find where it has a minimum:

$$
\begin{gathered}
\beta^{\prime}\left(\mathrm{s}^{*}\right)=2\left(\mathrm{w}_{o}+\Delta \mathrm{s}^{*} \mathrm{w}_{o}^{\prime}\right) \mathrm{w}_{o}^{\prime}+2 \frac{\Delta \mathrm{~s}^{*}}{\mathrm{w}_{o}^{2}}=0 \rightarrow \Delta \mathrm{~s}^{*}=-\mathrm{w}_{o}^{2} \frac{\mathrm{w}_{o} \mathrm{w}_{o}^{\prime}}{1+\left(\mathrm{w}_{o} \mathrm{w}_{o}^{\prime}\right)^{2}}=\frac{\alpha_{o} \beta_{o}}{1+\alpha_{o}^{2}} \\
\beta^{*}=\beta\left(\mathrm{s}^{*}\right)=\frac{\beta_{o}}{1+\alpha_{o}^{2}} ; \mathrm{w}^{*}=\sqrt{\frac{\beta_{o}}{1+\alpha_{o}^{2}}} ; \mathrm{w}^{\prime *}=0
\end{gathered}
$$

Now we need just to apply (2) again with $s_{o}=s^{*}$:

$$
\beta(\mathrm{s})=\mathrm{w}^{2}(\mathrm{~s})=\left|\mathrm{w}^{*}+\frac{i\left(\mathrm{~s}-\mathrm{s}^{*}\right)}{\mathrm{w}^{*}}\right|^{2}=\beta^{*}+\frac{\left(\mathrm{s}-\mathrm{s}^{*}\right)^{2}}{\beta^{*}} \#
$$

(b) Using (2) again we have:

$$
\begin{gathered}
\mathrm{w}(\mathrm{~s}) e^{i \psi(s)}=\mathrm{w}_{o}+\left(s-s_{o}\right) \mathrm{s}\left(\mathrm{w}_{o}^{\prime}+\frac{i}{\mathrm{w}_{o}}\right)=\mathrm{w}^{*}+i \frac{s-s^{*}}{\mathrm{w}^{*}}=\mathrm{w}^{*}\left(1+i \frac{s-s^{*}}{\beta^{*}}\right) \\
\psi(s)=\tan ^{-1}\left(\frac{s-s^{*}}{\beta^{*}}\right) \rightarrow \psi\left(s_{2}\right)-\psi\left(s_{1}\right)=\tan ^{-1}\left(\frac{s_{2}-s^{*}}{\beta^{*}}\right)-\tan ^{-1}\left(\frac{s_{1}-s^{*}}{\beta^{*}}\right) .
\end{gathered}
$$

Trajectory:

$$
\begin{aligned}
& x(z)=a \sqrt{\beta(z)} \cos (\psi(z)+\varphi) ; \beta(z)=\beta^{*}+\frac{z^{2}}{\beta^{*}} ; \tan \psi(z)=\frac{z}{\beta^{*}} \\
& x^{\prime}(z)=a\left(\frac{\beta^{\prime}(z)}{2 \sqrt{\beta(z)}} \cos (\psi(z)+\varphi)-\frac{1}{\sqrt{\beta(z)}} \sin (\psi(z)+\varphi)\right)
\end{aligned}
$$

We should note that:

$$
\begin{aligned}
& \frac{\beta(z)}{\beta^{*}}=1+\frac{z^{2}}{\beta^{* 2}}=1+\tan ^{2} \psi=\frac{1}{\cos ^{2} \psi} ; \tan \psi(s)=\frac{z}{\beta^{*}} \\
& x(z)=a \sqrt{\beta(z)}(\cos \psi \cos \varphi-\sin \psi \sin \varphi)=\frac{a \sqrt{\beta^{*}}}{\cos \psi}(\cos \psi \cos \varphi-\sin \psi \sin \varphi) \\
& x(z)=a \sqrt{\beta^{*}}(\cos \varphi-\tan \psi \sin \varphi)=a \sqrt{\beta^{*}}\left(\cos \varphi-\frac{z}{\beta^{*}} \sin \varphi\right)
\end{aligned}
$$

e.g. the trajectory is a straight line with constant

$$
x^{\prime}(z)=-\frac{a}{\sqrt{\beta^{*}}} \sin \varphi
$$

(c) Assuming an very long drift

$$
\begin{gathered}
s_{1} \rightarrow-\infty ; s_{2} \rightarrow+\infty \\
\psi\left(s_{2}\right)-\psi\left(s_{1}\right) \rightarrow \tan ^{-1}\left(\frac{\rightarrow+\infty}{\beta^{*}}\right)-\tan ^{-1}\left(\frac{\rightarrow-\infty}{\beta^{*}}\right)=\pi
\end{gathered}
$$

Naturally, you can get exactly the same result by integrating the phase advance using

$$
\begin{gathered}
\frac{d \psi}{d s}=\frac{1}{\beta(s)} \rightarrow \psi\left(s_{2}\right)-\psi\left(s_{1}\right)=\int_{s_{1}}^{s_{2}} \frac{d s}{\beta^{*}+\frac{\left(\mathrm{s}-\mathrm{s}^{*}\right)^{2}}{\beta^{*}}}= \\
\tan ^{-1}\left(\frac{s_{2}-s^{*}}{\beta^{*}}\right)-\tan ^{-1}\left(\frac{s_{1}-s^{*}}{\beta^{*}}\right)
\end{gathered}
$$

Plot of beta-function and beam envelope in $30-\mathrm{m}$ long straight section with $\beta^{*}=0.7 \mathrm{~m}-$ typical for RHIC interection region.

