

PROCEEDINGS OF THE 2nd THERMAL AND FLUID ENGINEERING SUMMER CONFERENCE, TFEC2017 4th INTERNATIONAL WORKSHOP ON HEAT TRANSFER, IWHT2017 April 2-5, 2017, Las Vegas, NV, USA

HEAT TRANSFER ANALYSIS IN A HIGHER ORDER MODE WAVEGUIDE FOR THE ELECTRON – ION COLLIDER AT BNL

D. RAVIKUMAR^{1,2}, Y. THAN¹, W. XU¹, J.P. LONGTIN²

¹COLLIDER – ACCELERATOR DEPT. BROOKHAVEN NATIONAL LAB ²DEPT. OF MECHANICAL ENGG. STONY BROOK UNIVERSITY

1

THE RELATIVISTIC HEAVY ION COLLIDER (RHIC)

UPGRADING TO AN ELECTRON-ION COLLIDER (EIC)

- Add *linear accelerator* (LINAC) to RHIC for electrons
- Heavy ions collide with electrons

UPGRADING TO AN EIC

- LINAC: superconducting RF cavities for acceleration (Nb)
 - Operating temp: 2.1 K; Cooled by superfluid He.
 - RF volume High vacuum (10⁻¹⁰ mbar)
- Fundamental mode is at 650 MHz
- Charged-particle beams interact with EM field in cavity; generate higher-order modes (HOM) that impedes beam
- Waveguide channels HOM energy from 2 K

- 1.2 mm stainless steel wall w/ 20 μm Cu coating (minimizing RF heating)
- Goal: minimize cryogenic load and provide adequate cooling.
- Multiphysics problem
 - Thermal conduction and radiation
 - RF heating from fundamental mode field

MODELLING

- Model the boundary value problem:
 - Cu coated SS end at 300 K, Nb at 2 K
 - Heat sinks used to intercept most heat; number (2 or 3), location and temperature TBD
 - RF heating calculated from

$$P = \frac{1}{2} \int H^2 R_s \, ds$$

- Thermal radiation is modelled using ANSYS
- Assumptions
 - Operating temperatures of thermal intercepts are ~3 to 5 K higher than the temperature of returning Helium.

6

tony Brook University

ANLAYTICAL CALCULATIONS - I

- Static load (no RF):
 - Dictated by thermal conductivity and temperature gradient
 - Non-linear: changes in thermal conductivity cannot be ignored: k = k(T),
 - Static heat flow, Q, computed analytically:

$$\dot{Q} = \frac{A_{cond}}{dx} \int_{2}^{300} k(T) \, dT$$

$$\dot{Q}_{Cu} + \dot{Q}_{SS} \cong 12.7W$$

- Temperature distribution obtained from equation.
- Starting point for temperature and location of heat intercepts

ANALYTICAL CALCULATIONS (2-HEAT-SINK CASE)

- Heat sink temperature vs. heat load
 - Second heat sink temperature fixed at 6.5 K (providing gradient to He return pipes)
 Q_{to 2} K

ANLAYTICAL CALCULATIONS (3-HEAT-SINK CASE)

- Controlling heat removed at different temperatures facilitates better cryogenic system design
- Parametric study performed documenting effect of varying thicknesses of Stainless steel and Cu

NUMERICAL ANALYSIS – STATIC LOAD ONLY

• Temperature and heat flux were solved using ANSYS with respective boundary conditions.

ANALYTICAL CALCULATIONS: DYNAMIC LOAD

- No HFSS; have to come up with other ways
- Trial 1: False convection for q (T) using q = h(T) (T_surf T_amb)

y location on the waveguide	Temperature (K)	H actual	Rho (T) Ohm-M	Rho_surface(T) (Ohm)	Q/A (W/m^2)	A = 0.013692, Q =	h'
0	2	100	8E-10	0.001432494	7.162468247	0.124197199	-0.021836793
0.03	4.05	76.931	8E-10	0.001432494	4.239019995	0.073504607	-0.013005123
0.06	4.969	58.86	8E-10	0.001432494	2.481436838	0.043028115	-0.007634462
0.09	6.5015	45.1	8E-10	0.001432494	1.456853204	0.025261835	-0.004503431
0.12	9.425	34.52	8E-10	0.001432494	0.85350149	0.014799716	-0.002662408
0.15	13.571	26.44	8E-10	0.001432494	0.500709246	0.008682298	-0.001582375
0.18	17.541	20.25	8.10164E-10	0.001441565	0.295565842	0.005125112	-0.000945935
0.21	21.333	15.5	8.3333E-10	0.00146203	0.175626328	0.003045361	-0.000568983
0.24	25.005	11.85	8.7009E-10	0.001493928	0.104890585	0.001818803	-0.000343909
0.27	33.484	9.07	1.05755E-09	0.001647019	0.067745922	0.001174714	-0.000228473
0.3	45.758	6.96	1.43032E-09	0.001915421	0.046393037	0.000804455	-0.000163217
0.33	57.8	5.323	1.912E-09	0.002214581	0.03137434	0.000544031	-0.000115262
0.36	69.603	4.9	2.57618E-09	0.002570608	0.030860146	0.000535115	-0.000118512
0.39	81.085	3.1171	3.3651E-09	0.002937966	0.014273096	0.000247495	-5.73412E-05
0.42	97.405	2.3915	4.7405E-09	0.003487063	0.009971731	0.00017291	-4.28716E-05
0.45	132.72	1.83	6.9632E-09	0.00422622	0.007076595	0.000122708	-3.58708E-05
0.48	167.51	1.4	9.11068E-09	0.004834183	0.0047375	8.21482E-05	-2.91556E-05
0.51	201.69	1.071	1.1169E-08	0.005352478	0.003069756	5.32296E-05	-2.39245E-05
0.54	235.2	0.81	1.4216E-08	0.006038602	0.001980963	3.43499E-05	-2.08962E-05
0.57	267.97	0.6291	1.71376E-08	0.00663014	0.001311995	2.275E-05	-2.1151E-05
0.6	300	0.4813	0.0000002	0.007162468	0.000829592	1.43851E-05	-2.76531E-05
						0.303271336	

- Creepy ANSYS results
- Conduction load is now 13.557 KW. Cannot be unless cold end is getting colder. But Convection load is + 0.03 W
- Used ANSYS APDL script instead to specify q (T)

NUMERICAL ANALYSIS - STATIC AND DYNAMIC LOAD

• Dynamic heat loads: RF dissipation included

• Static and Dynamic heat loads are shown below

TABLE I. Static Heat load			TABLE II. Dynamic Heat load		
Boundary condition	Temperature (Kelvin)	Heat flow (Q) (Watts)	Boundary condition	Temperature (Kelvin)	Heat flow (Q) (Watts)
Warm end	300	12.17	Warm end	300	11.20
Intercept	85	-7.55	Intercept	85	-8.29
Intercent	25	-3.15	Intercept	25	-2.79
Intercept	65	0.04	Intercept	6.5	-0.66
Intercept	0.5	-0.94	Cold end	2	-1.20
Cold end	2	-0.53	Dynamic load		1.74

Preliminary results: thermal radiation load

TABLE III. Radiation load						
Surface	Emissivity (ϵ)	Net radiation (Watts)				
SiC	0.9	0.44				
Cu plating	0.05	-0.38				
Nb waveguide	0.9	-0.01				
Cold Nb surface	0.9	-0.00357				

CONCLUSIONS

- A thermal study has been carried out for the RF HOM Waveguide on the RHIC upgrade at BNL
- Multiple heat sink configurations were explored
- Static and dynamic loads are calculated.
 - Dynamic heat flow ~ 10% of static heat flow
- Contribution from radiation is small
 - ~ few mW (negligible)

