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Plan to teach you about:

The fundamental physics and 1n depth exploration of advanced
methods of modern particle accelerators

Theoretical concept related to the above

Principle of least actions, relativistic mechanics and E&D, 4D notations
N-dimensional phase space, Canonical transformations, simplecticity and invariants of motion
Relativistic beams, Reference orbit and Accelerator Hamiltonian

Parameterization of linear motion in accelerators, Transport matrices, matrix functions, Sylvester's formula,
stability of the motion

Invariants of motion, Canonical transforms to the action and phase variables, emittance of the beam,
perturbation methods. Poincare diagrams

Standard problems in accelerators: closed orbit, excitation of oscillations, radiation damping and quantum
excitation, natural emittance

Non-linear effects, Lie algebras and symplectic maps

Vlasov and Fokker-Plank equations, collective instabilities & Landau Damping
Free electron lasers, cooling techniques

Spin motion in accelerators

Types and Components of Accelerators
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Learning goals

Have full understanding of transverse and longitudinal particles dynamics in

accelerators
Being capable of solving problems arising in modern accelerator theory
Understand modern methods in accelerator physics

Being capable to fully understand modern accelerator literature

We can not teach you every trick in the books available in accelerator physics
but we plan to provide you with very solid foundation: so you can explore any

topic in modern accelerator physics with full confidence
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Materials

* Lecture notes presented at class should be used as the main text — it
will be available at CASE website:

http://case.physics.stonybrook.edu/index.php/PHY 564 fall 2017

* Presently there is no textbook, which covers the material of this
course.

* Additional material can be found in notes summarizing USPAS
lectures: http://www0.bnl.gov/isd/documents/74289.pdf

Additional reading:

* H. Wiedemann, "Particle Accelerator Physics" Springer, 2007
* S.Y. Lee, "Accelerator Physics”, World Scientific, 2011

* L.D. Landau, Classical theory of fields
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Course**

Linear algebra, relativistic mechanics and E&M.

—  This will be a brief but complete rehash of relativistic mechanics, E&M and linear algebra material required for this course.

— Itis a very brief and intense introduction/refresher of these topics. There will be home works during this introduction, but students
would require to do a lot of reading at home — it is critical for understanding of the remainder of the material.

Hamiltonian formalism, N-dimensional phase space, Canonical transformations,
Simplecticity, Invariants

—  Canonical transformations and related to it simplecticity of the phase space are important part of beam dynamics in accelerators.
We will consider connections between them as well as derive all Poincare invariants (including Liouville theorem). We will use a
case of a coupled N-dimensional linear oscillator system for transforming to the action and phase variables. We finish with
adiabatic invariants.

Relativistic beams, Reference orbit and Accelerator Hamiltonian

—  We will use least action principle to derive the most general form of accelerator Hamiltonian using curvilinear coordinate system
related to the beam trajectory (orbit).

Linear beam dynamics

—  This part of the course will be dedicated to detailed description of linear dynamics of particles in accelerators. You will learn about
particles motion in oscillator potential with time-dependent rigidity. You will learn how to calculate matrices of arbitrary element
in accelerators. We will use eigen vectors and eigen number to parameterize the particles motion and describe its stability in
circular accelerators. Here you find a number of analogies with planetary motion, including oscillation of Earth’s moon. You will
learn some “standards” of the accelerator physics — betatron tunes and beta-function and their importance in circular accelerators.

Longitudinal beam dynamics

—  Here you will learn about one important approximation widely used in accelerator physics — “slow” longitudinal oscillations,
which are have a lot of similarity with pendulum motion. If you were ever wondering why Saturn rings do not collapse into one
large ball of rock under gravitational attraction — this where you will learn of the effect so-called negative mass in longitudinal
motion of particles when attraction of the particles cause their separation.

**% We will use least action principle as foundation for all topics we cover in this course.
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Course cont..

Invariants of motion, Canonical transforms to the action and phase variables, emittance of
the beam, perturbation methods, perturbative non-linear effects

In this part of the course we will remove “regular and boring” oscillatory part of the particle’s motion and focus on
how to include weak linear and nonlinear perturbations to the particles motion. We will solve a number of standard
accelerator problems: perturbed orbit, effects of focusing errors, “weak effects” such as synchrotron radiation, resonant
Hamiltonian, etc. We will re-introduce Poincare diagrams for illustration of the resonances. You will learn how non-
linear resonances may affect stability of the particles and about their location on the tune diagram. You will learn about
chromatic (energy dependent) effects, use of non-linear elements to compensate them, and about problems created by
introducing them.

Non-linear effects, Lie algebras and symplectic maps

This part of the course will open you the door into a complex nonlinear beam dynamics. We will introduce you to non-
perturbative nonlinear dynamics and fascinating world of non-linear maps, Lie algebras and Lie operators. These are
the main tools in the modern non-linear beam dynamics. You will learn about dynamic aperture of accelerators as well
as how our modern tools are similar to those used in celestial mechanics.

Viasov and Fokker-Plank equations

This part of the course is dedicated to the developing of tools necessary for studies of collective effects in accelerators.
We will introduce distribution function of the particles and its evolution equations: one following conservation of
Poincare invariants and the other including stochastic processes.

Radiation effects

You will learn how to use the tools we had developed in previous lectures (both the perturbation methods and Fokker-
Plank equation) to evaluate effect of synchrotron radiation on the particle’s motion in accelerator. You will see how the
effect of radiation damping and quantum excitation lead to formation of equilibrium Gaussian distribution of the
particles
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Course cont..

Collective phenomena, Free electron lasers, cooling techniques

— Intense beam of charged particles excite E&M fields when propagate through accelerator structures. These fields, in
return, act on the particles and can cause variety of instabilities. Some of these instabilities — such as a free-electron
lasers (FEL) — can be very useful as powerful coherent X-rays sources. Others (and they are majority) do impose limits
on the beam intensities or limit available range of the beam parameters. You will learn techniques involved in studies
of collective effects and will use them for some of instabilities, including FEL. The second part of the collective effect
will focus on how we can cool beams, which do not have natural cooling mechanism

Spin dynamics
— Many particles used in accelerators have spin. Beams of such particles with preferred orientation of their spins called
polarized. Large number of high energy physics experiments using colliders strongly benefit from colliding polarized
beams. You will learn the main aspects of the spin dynamics in the accelerators and about various ways to keep beam
polarized. One more “tunes” to worry about - spin tune .

Plasma accelerators
—  We will try to fit into the course a brief introduction into a fascinating world of plasma wake-field accelerators, which
are definitely are accelerators of 21% century.
Accelerator applications

—  We will finish the course with a discussion of accelerator applications, among which are accelerators for nuclear and
particle physics, X-ray light sources, accelerators for medical uses, etc. You will also learn about future accelerators at
the energy and intensity frontiers as well as about new methods of particle acceleration.
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Grading

Home works : 40% of the grade
Presentation of a research topic: 40% of the grade
Class Participation : 20% of the grade

There will be a substantial number of problems. Most of them are aiming for better
understanding of material covered during classes.

Presentation on a Research Project: This presentation will be in place of the final
exam. You will pick an accelerator project of your interest from a list provided by the
instructors. We allow presentations on papers directly related to your research if they are
linked to accelerator physics, but you will have to get it approved by the instructors. The
presentations will be in a PowerPoint or equivalent a form. We will grade your
presentations on: adequate understanding (good physics), adequate preparation (clear
way of presentation, Visual Aids - pictures and figures), adequate references (where you
find materials). The research project should be fun and we encourage you to choose an
original topic and an original way of presentation. Nevertheless, any topic prepared and
presented properly will have high grade.
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The Rules or “feed your pets with healthy food”

Home works will be distributed in class and also will be posed that CASE website together with the rest of
course materials http://case.physics.stonybrook.edu/index.php/PHY 564 fall 2017

You may collaborate with your classmates on the homework's if you are contributing to the solution. You
must personally write up the solution of all problems. It would be appropriate and honorable to
acknowledge your collaborators by mentioning their names. These acknowledgments will not affect your
grades.

We will greatly appreciate your homeworks being readable. Few explanatory words between equations will
save us a lot of time while checking and grading your home-works. Nevertheless, your writing style will not
affect your grades.

Do not forget that simply copying somebody's solutions does not help you and in a long run we will identify
it. If we find two or more identical homeworks, they all will get reduced grades. You may ask more
advanced students, other faculty, friends, etc. for help or clues, as long as you personally contribute to the
solution.

You may (and are encouraged to) use the library and all available resources to help solve the problems. Use
of Mathematica, other software tools and spreadsheets are encouraged. Cite your source, if you found the
solution somewhere.

We will give you one week (except holiday breaks, when it can be a bit longer) to return your home works.
You should return homework before the deadline. Homework returned after the deadline could be accepted
with reduced grading - 15% per day. Otherwise, it will be unfair for your classmates who are doing their job
on time. Therefore, you should be on time to keep your grade high. Exceptions are exceptions and do not
count on them (if your dog eats your homework on a regular basis - feed it with something healthy, eating
homework is bad /y r your pet and for you grade).

Solutions of each home work problems will be posted at the CASE webstite

http://case.physics.stonybrook.edu/index.php/PHY 564 fall 2017 after all HWs are returned. We will
grade your HWSs and return them typically during next class.

We will have a dedicated office hours each Monday (except holydays) from 2 pm till 4 pm in office D102
(Physics) to discuss HW solutions as well as to address any questions you have regarding your HWs.
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Picture worth 1,000 words ....

Nontrivial examples of accelerator problems

Interaction with self-generated Disruption of colliding beams Beams in plasma
wakefields
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Non-linear particle’s dynamics
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In an event of us running out of time in class — the home reading is paragraphs
1-7 of Classical theory of fields of L.D. Landau and E.M. Lifshitz
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... but equation worth thousands of pictures

* Few things to remember before diving in real AP
— Mathematics is physicist’s best friend
— Nothing is more natural than relativistic E&M
— We are creatures of 4-D (or even (4+N)D) world

— Nothing saves you more time and paper than good definitions
and notation: tensors, matrices, maps, operators...name it

e There will be home works for refresher classes, but a lot of
home reading — take advantage of this opportunity to build
up the foundation.

e Office hours 1n D102 (unless specified differently) from 2
pm till 4 pm on Mondays
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Hamiltonian formalism

Fundamentals of Hamiltonian Mechanics

http://en.wikipedia.org/wiki/Hamilton principle
1.0. Least-Action Principle and Hamiltonian Mechanics

Let us refresh our knowledge of some aspects of the Least-Action Principle (LAP is humorously

termed the coach potato principle) and Hamiltonian Mechanics. The Principle of Least Action is the
most general formulation of laws governing the motion (evolution) of systems of particles and fields in
physics. In mechanics, it is known as the Hamilton's Principle, and states the following:

1) A mechanical system with n degrees of freedom is fully characterized by a monotonic
generalized coordinate, #, the full set of n coordinates g = {q,.qz,q3...q,,} and their derivatives

4=14,.4,.4;..q, } that are denoted by dots above a letter. We study the dynamics of the system
with respect to z. All the coordinates, ¢ = {q, G5y ..q,,}; G =1{G,,4>.q;.-q, } should be treated
as a functions of 7 that itself should be treated as an independent variable.

2) Each mechanical system can be fully characterized by the Action Integral:

S(A,B)= T L(q.q,t)dt (1)
A
that is taken between two events A and B described by full set of coordinates * (g.t). The
function under integral L(g.q,t) is called the system’s Lagrangian function. Any system is fully
described by its action integral.
* For one particle, the full set of event coordinates is the time and location of the particle. The integral is

taken along a particle’s world line (its unique path through 4-dimentional space-time) and is a
function of both the end points and the intervening trajectory.
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After that, applying Lagrangian mechanics involves just n second -order ordinary differential
equations: g = f(q.q).

We can find these equations, setting variation of 0S,, to zero:

AR I 8 B I S
08y = 5{] L(q,q,t)dt]— j{&q oq + % Sq}dt I{aq Oqdt + % 6dq}

oL . | oL d oL
oL o LTS Q)
[aq&’],fj{aq draq}&”

and taking into account 0g(A) = 6g(B)=0 . Thus, we have integral of the function in the brackets,
multiplied by an arbitrary function 6¢g(7) equals zero.

Therefore, we must conclude that the function in the brackets also equals zero and thus obtain
Lagrange's equations:

L di_, "

og ditdg
Explicitly, this represents a set of n second-order equations

d dL(g.4.t) _ 9L(g.q,1) - 2 'é]_.azL(q,q,r) +q.é’zL(qr,c),r) +82L(q,c?,t) _9L(4.4.1)
dt g, g " 9¢,9q, ' 9q,0q, 94,0t dq,

i=1
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The partial derivative of the Lagrangian over g is called generalized (canonical) momentum:

pi_ r?L(qjq,r) 5 P 8L(q,.q,t) ; "
z aq
- IL(q.q.
and the partial derivative of the Lagrangian over g is called the generalized force: f'= w 1 (4)
q;

dP'
can be rewritten in more familiar form: ? = f Then, by a definition, the energy (Hamiltonian) of the

system is:

=Z_P"q,.-Lzza—,Lq,.—L;L=2P"q,—H. (5)

i=1 1 9, i=1
Even though the Lagrangian approach fully describes a mechanical system it has some significant
limitations. It treats the coordinates and their derivatives differently, and allows only coordinate
transformations ¢’ = ¢’(g.t) . There is more powerful method, the Hamiltonian or Canonical Method.
The Hamiltonian is considered as a function of coordinates and momenta, which are treated equally.
Specifically, pairs of coordinates with their conjugate momenta (4) (q,P;) or (¢’ P, are called canonical
pairs. The Hamiltonian method creates many links between classical and quantum theory wherein it
becomes an operator. Before using the Hamiltonian, let us prove that it is really function of (¢, P.f): ie.,

that the full differential of the Hamiltonian 1s

H JH JH
dH(qg.P —dag. +—— dP' —dt.
\q.Ed)= Z,{a U op ) 5 @)
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Using equation (5) explicitly, we can easily prove it:

" IL JL dL oL .. dL
dH=dZa,‘ —dL= 2{—@, ng—a—dq,—gdq,—gd}

NI A A - L  dL OH . OH OH
dob L g Oh s NS hapt O g, O O g+ 2Pt |+ g,
Z{q, % 5 f} 2{61, s } ;{achﬂr — ]+ =

wherein we substitute d(aL/&;i) = dP'with the expression for generalized momentum. In addition to
this proof, we find some ratios between the Hamiltonian and the Lagrangian:

Mo _al oL _da, _oH
aqi P=const aq' 81

dt  oP"
wherein we should very carefully and explicitly specify what type of partial derivative we use. For
example, the Hamiltonian is function of (g,P.fr): thus, partial derivative on ¢ must be taken with
constant momentum and time. For the Lagrangian, we should keep ¢.f = const to partially differentiate
on g .

i=1 i i

S My T

G=const P q=const q 4= const

The last ratio gives us the first Hamilton's equation, while the second one comes from Lagrange's
equation (5-11):

_dq, JH
4= TPt
dP' _ d dL(g.4.t) _dP' _OL| _ OH , @
7 d’ aq, dt 8q, |q const 8—q, I’=mnsr’

both of which are given in compact form below in (11).
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Now, to state this in a formal way. The Hamiltonian or Canonical Method uses a Hamiltonian
function to describe a mechanical system as a function of coordinates and momenta:

H=H(q,P,t) (8)
Then using eq. (5), we can write the action integral as

9= (): pid: H(q.P,t)Jdt = J(Z P'dg, - H(q.P,t)dt) ; 9)

A\ i=]

The total variation of the integral can be separated into the variation of the end points, and the variation of
the integral argument:

B+ B+0B
6jf(r)dz [ £x+8v)ar —If(x)dt Jf(x + &v)dt + Jf(\ +6x)dt+jf(x+6x)dt Jf(\)dr
A+N A+0A

= f(B)At, — f(A)Ar, + J(f(x + &) — f(x))dt; At. =t(C+0C)—t(C); forC =A,B.

The first term represents the variation caused by a change of integral limits (events), while the
second represents the variation of the integral between the original limits (events). The total variation of
the action integral (9) can separated similarly:

. | OH oH
5S=[§PAqi—HAr] +I §Y Pldg - Z(&q,&l' ~pi 0Pt ||=

A A\ i=| i=l

(10)

.
[ZPAq, HAt} +§:j SP'dg, + P'ddq, — ( 8q.dt + 5Pdr]]

A IlA\

This equation encompasses everything: The expressions for the Hamiltonian and the momenta through
the action and Hamiltonian equations of motion. Now we consider variation in both the coordinates and
momenta that are treated equally: 6g;6P .
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To find the equation of motion we set constant events and 8q(A) = dg(B)= 0; the first term disappears,
and the minimal-action principle gives us

85 = Zj[aHéqd

=1 7

~6P'dg, — P'ddq ]= 0

which, after integration by parts of the last term translates into

—{—EP&]} Zj( 8q.dt +§—H5P dt — 5P"dq,.+d1>"5q,.]:
B oH dP' BH _Agi e o |
z}?[{ 6],- }&]d { dt }&D dt]—o’

where the variation of coordinates and momenta are considered to be independent. Therefore, both
expressions in brackets must be zero at a real trajectory. This gives us the Hamilton's equations of
motion:

dg, _oH dP' _ JH
dt  oP" dt  dg°

i

(11)

It is easy to demonstrate that these equations are exactly equivalent to the Lagrange's equation of motion.

This is not surprising because they are obtained from the same principle of least action and describe the
motion of the same system.
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Conservation laws, invariants

dg, 0H dP' _ JH

dt  JP dt  dq

1

Let us also look at the full derivative of the Hamiltonian:
dH OH <-|JH dP' JH dq, OH oH oH JH JdH oH
— =+ Z ,- + = + 2 — + =
dt ot OP' dt oq, dt ot ‘=\ dq,dq, dq P ot

This equation means that the Hamiltonian is constant if it does not depend explicitly on ¢ It is an
independent derivation of energy conservation for closed system. The conservation of momentum is

apparent from equation (11), viz., if the Hamiltonian does not depend explicitly on the coordinates, then
momentum is constant. All these conservation laws result from the general theorem by Emmy Noether :
Any one-parameter group of dimorphisms operating in a phase space ((q,q,t) for Lagrangian ((q,P,t)

i=1

for Hamiltonian) and preserving the Lagrangian/Hamiltonian function equivalent to existence of the (first
order) integral of motion. (Informally, it can be stated as, for every differentiable symmetry created by

local actions there is a corresponding conserved current).
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Returning to the Eq. (10), we now can consider motion along real trajectories. Here, the variation of the
integral is zero and the connection between the action and the Hamiltonian variables is obtained by
differentiation of the first term:

AS as . AS aS
At A=l at A[II Mr =0 aq, Along real (12)
Trajectrory

Thus, knowing the action integral we can find the Hamiltonian and canonical (generalized) momenta
from solving (12) without using the Lagrangian. All conservation laws emerge naturally from (10): if
nothing depends on t, then H is conserved (i.e., the energy). If nothing depends on position, then the
momenta are conserved: P (A) = P'(B). Finally, we write the Hamiltonian equations for one particle

using the Cartesian frame:

S= _[ (f’dF—H(F,f’,r)dr) (13)
I JaS - oS
H .~Psr o — P:-—..s
(F.Fu1) ot ar
G _on_ dP__oH  dH _oH
dt  oP’ dt  oF dt o
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Canonical transtormations

Hamiltonian method gives us very important tool — the general change of variables: {P,.q,} — {f’,c"],}

called Canonical transformations. From the least-action principle, two systems are equivalent if they
differ by a full differential: (we assume the summation on repeating indices i1=1,2,3,
ab, = Za b.: a°b, = Za”ba and the use of co- and contra-variant vector components for the non-unity

o
o

metrics tensor)
8| P,dg, - Hdt =0 <& | P,dg,— Hdt =0 — Pdq, — Hdt = Pdg, — Hdt +dF (14)
where F is the so-called generating function of the transformation. Rewriting (14), reveals that
F=F(‘1,~,‘~];J)5
~ JF JdF JdF
dF = Pdq, — qu,+(H' H)dt; P.= —sP=——:;H"=H+ . (15)
aqi ac[! at

In fact, generating functions on any combination of old coordinates or old momenta with new coordinates
of new momenta are possible, totaling 4= 2 x 2 combinations:
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Canonical transtormations

F(g.q.t) = dF = Pdq. — Pdg, + (H' — H)dt; P,.:&—F; ~,:_8I~F_ H’:H+8—F.
aq, 9, ot
®(q,P,t)=F +§P, = d®=Pdg,+§dP +(H -H)dt, P,-=@ g, =@- H’=H+@;
g, oP ot
Q(P,g.t)=F—Pq, = dQ=—q,dP — Pdg +(H' -H)dt;, q. = @ f’f:—ﬁ; H'=H T
JP, aq, ot
A(P,P,H)y=®—Pg, = dA=§dP —qdP +(H —H)dt, q, = g—A z],:g—p’\; H =H %A

PHY 564 Lectures 1-2 22



The most trivial canonical transformation is g, = P; ﬁ, =—q. with trivial generation function of

- . .~ OF
Fg.@9)=q4;, P,=-—=4; F=——-=—-4; H'=H
dq g,
Hence, this 1s direct proof that in the Hamiltonian method the coordinates and momenta are treated
equally, and that the meaning of canonical pair (and its connection to Poisson brackets) has fundamental
nature.

The most non-trivial finding from the Hamiltonian method is that the motion of a system, i.e., the
evolution of coordinates and momenta also entails a Canonical transformation:

q.(t+1)=q,(q,(1),P(1).1); P(t+ T) = P.(q,(1),P(1).1);

with generation function being the action integral along a real trajectory (12):

S(t+7)-S(t)= | (Pdq,~ Hdr)- | (Pdg, - Hdr)
A A

dS=P(t+7)dq,— P(t)dq,+(H,  —H, )dt
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Special Relativity — a short detour

1.1 Einstein principle of relativity.

There 1s nothing more un-natural than "non-relativistic" electrodynamics. And there are very few
thing in our world as natural as relativistic electrodynamics. We can consider non-relativistic classical or
quantum mechanics for objects which can rest or move slowly. But how we can describe electromagnetic
wave without using speed of the light? which is the universal, as far as we know, physical constant:

¢ =2.99792458(1.2)-10"° W/ . (1-1)

The *“¢” does not depend on the system of reference . The standard non-relativistic Galileo's relativity
principle claims

1. Free particle propagates with constant velocity (the law of inertia) v = conts ;
2. Time does not depend on the choice of inertial frame moving with velocity V with
respect to initial frame of reference:
t=tr=r'+Wt (1-2)

and velocity transformation is
V=v+V. (1-3)
Many modern experimental facts disagree with Galileo's principle and confirm that:
The speed of the light does not depend of the reference frame.
Galileo assumed that we are leaving in Euclidean world. What is wrong in Galileo's principle is the

assumption that time and distance between two points in 3-D space are absolute, i.e. independent from the
reference frame.

PHY 564 Lectures 1-2
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In 1905 Einstein modified principle of relativity to satisfy new experimental data. The Einstein principle
of relativity comprises of two postulates:

1. POSTULATE OF RELATIVITY (the same as Galileo):

The laws of nature and results of all experiments are independent of translational motion of the system
(reference frame) as whole. Precisely: there are a triply infinite set of equivalent Euclidean (3D)
reference frames moving with constant velocities in rectilinear paths relative to one other in which all
physical phenomena occur in an identical manner.

2 POSTULATE OF THE CONSTANCY OF THE SPEED OF THE LIGHT (Einstein):

The speed of the light (maximum velocity of propagation of interaction) is independent on the motion of
its source. In other words. there is maximum velocity of propagation of any physical object (a particle, a
wave, etc.), which interact with our world.

Galileo principle and formulae for velocity transformation (1-3) do not satisfy second Einstein
postulate. Therefore, Newton (or classical) mechanics based on the Galileo principles must be modified to
satisfy experimental results. The most of famous experimental result contradicting to Galileo principle
was Michelson-Morley experiment (1887). They tried to measure "ether drift" (the ether is imaginary
substance in which electromagnetic waves are propagating; similar to the air for acoustic waves). They
tried to measure difference between speed of the light in the direction of the Earth rotation and the

opposite direction. According to the Galeleo law (1-3), there must be difference of v _,. The result
showed no difference.
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1.2 Events, 4-vectors, 4D-Intervals.

' Z'
K' K'
“K ‘K
) ; \Y;
X § > X'
y X

v i

Y Y'

Fig. 1. Two Inertial Reference Frames: system K' moves with velocity \7_ with respect to system K. By
choice of coordinate system (rotation in 3D space) we can make V' parallel to the X axis.

Let's introduce an important object in relativistic theory - an EVENT. An event is described by the
location (in 3D coordinate system) where it occurred and by time when it occurred. As far as we know, it

is full description of any event. We do not have any firm prove about the existence of other coordinates,
so far...

Therefore, an event is defined by four coordinates (4-vector) in 4-dimensional time-space:

1 2 3
0 = X, =cC;x =X; X =y; X =2
r);

i 0 1 2 _3
X =% X% L =X b _ _ e
(x" =ix, — Minkowski metric)

(1-4)
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Let's look at two event A and B: A i1s the event when we sent a signal propagating with maximum

possible speed ¢, B 1s the event when signal arrived in different point of space. Both events can be
described in any reference system:

K-system: Event A: the signal was sent from location ¥, =¢ x, + ¢ Yat é\:zA at time 1/,

: 0 —
X:\ == (xA 9",1);

Event B: the signal was observed in location 7, =e x, +e,y, + €.z, attime 7
0 —

e (-139 B)
K’-systcm' Event A: the signal was sent from location 7} =¢e x/ + e Yy, +ez, attime 7,
20 —-/

A _(xA’ ’

Event B: the signal was observed in location 7, =e xj +¢é v, +e.2;, at time 7},
n _( /0 "I .

Signal propagates with the speed of the light in both systems. Therefore:
Cz(t,g_t,q)2 _(?B _;;A)2 = Cz(tg_tA)z —(xg _x,;)z —(}’B _)’A)z _(ZB — ZA)Z = O; (1‘5)
CUp—1) —(F—F) =¢ WG=1) =0 =20~ =¥4) — G- 20" =0. (1-5)
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Interval

The quantity for any arbitrary events A and B, defined as:

SAB = JCZ(tB _IA)?' —(xB— xA ’ —(yB - yA)Z —(ZB —ZA)Z > (1-6)

is of special importance in special relativity. It is called the interval between two events. We have found
that 1f interval is equal zero in one system it is equal to zero in all inertial system of references (eqgs. (1-5)
and (1-5")). Let's look at to events, which are infinitely close to each another: r, =7, +dr;t, =t, +dt;
and interval ds between them:

2

ds>=c’dt” —dx’ —dy’ —dz". (1-7)

If ds”=0, then it is equal zero in any other system ds’”=0. In addition, ds and ds’ are infinitesimals of
2 g pd :
the same order. Therefore, ds”,ds’” must be proportional to each other:

ds’ = ads’’. (1-8)

The coefficient a can not depend on time or position not to violate homogeneity of the space and time.
Similarly, it can not depend on direction of relative velocity not to contradict the isotropy of the space.

Therefore, it can depend only on absolute value of relative velocity of the systems a = a('\_;l)
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Z' K!l

P &

Yl
Y Fig. 2
Three inertial reference systems K.K'K". K' moves with velocity V with respect to K, K" moves with
velocity v’ with respect to K' and with velocity V* with t respect to K. v depends on both values and

direction of V,V".
Using relation (1-8) we have for K-system:

ds’ = a(l\?l)(ls'z; ds’ = a(lV"l)ds"z;
= ([ )as
a(l&"l) = a(|\7|)a(|‘7’l) .

Left side depends on value of V” which dcpends on both values and direction of V V while right side

and for K'-system:

yields the ratio:

depends only on absolute values of V.V’ Therefore, we should conclude that @ does not depend on

velocity at all: @ = const . The above relation reduces to a = a,ie a=| (we drop trivial @ =0). This
great ratio gives us equality of infinitesimal intervals:

ds* = ds’*; (1-9)

and as result invariance of any finite intervals:

B a
8 =J‘ds=‘[ds'=s.,'m. (1-10)
A
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Definitions ct

Absolute| Future

Absolute
Separation

Absolute X
Separation

Abdolute  Past

Fig. 3 World line (A-B) of the system and the light cone.

site . w2 o . ¥ ~ 2
There are three distinctive values of s as: positive, negative and zero. The sign and the value of 5
does not depend on system of reference:

s’ <0, spacelike separation
s as > 0, timelike separation
s” a8 = 0, lightlike separation

Spacelike interval: there is a system K' where two events occur at the same time, but in different points of
2 2 2 — - 2 hd - - 2 4
space S a8 =C (t;—1,) —(Fy—T,) <O =25 ==(r; —7r;) <0;
Timelike interval: there is a system K' where two events occur at the same place, but in different points of
! 2 2 2 = = 2 2 2 2
time a8 =¢ (t;—t,) —(ry—7,) >0, =25 a=c"(1;,—1,) <0;

Lightlike interval: two events can be connected by light signal st =0,

If we put event O in the origin, then 77 =’ will define the light cone. All events inside the light cone
(closer to t axis) can or could be connected with event O in future or in the past. Events outside this cone
are absolutely remote with respect to this event: any exchange of information between these events and
the event O is impossible. Fig. 3 illustrates this puncture for 1D space with light cone equation of
x=%ct.
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E Lorentz transformations.

Transformation related to thc change of rc,fcrence system must preserve the value of interval
s°as between two arbitrary events: § ‘w=c il ) — (73 —rA) An examp]e of such transformation

is rotation in 3D space which does not change time and preserves (1, — rA) . We should look for some
type of rotation in 4D space which preserves the interval. There are six independent rotation in 4D space:
for example in planes xy, yz, zx, xt,yf,zt. Three of them are 3 independent rotation in 3D space. The rest
are special - they rotate THE TIME. Let's consider xt "rotation", which does not change values of y and
z. To preserve interval we should use hyperbolic functions instead of trigonometric:

x =x"cosh y +ct’sinh y; y=1y"
ct = ct’ coshy +x’sinh y; z=z'; (1-11)

= (ct’ cosh y + x’sinh )’ = (x’cosh y+ct’sinh )’ = y/* =z =
(ct')z(cosh2 w —sinh® ) —x"?( cosh? y —sinh?® y) —y’> — /> ="

Let's relate the angle of "rotation" and the movement of K' origin x” =0 (i.e. its velocity):

: V x
x =ct’sinhy;ct = ct’cosh y; = —=—=tanh y;
c o«

and yields final expression for Lorentz transformation:

% ’ , &
sinhl/lz—/ 1—v—3=[37; coshl//=1/ l-—5 =7
¢ ¢ ¢

with conventional dimensionless parameters 0 < <1; 1 <y < eo:
V= ¥ .
B==iB==; y_/ =1/\1-5 (1-12)
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Therefore, the Lorentz transformation in compact form is:
x =y’ +fet’); a=yct'+px) y=y'z=2"; (1-13)

gives us all necessary relation to proceed further. The inverse Lorentz transformation is following from
(1-13):

xX'=y(x—=Pet); e’ =yl =Px)y =y =z (1-14)

which gives us identity relations if combined with (1-13):
x =y’ + Pet’) =y(y(x - Pet) + By(at — )= Y (A-B*)x=x;
ct = y(ct'+ Bx’) = y(cy(ct — Bx)+ By(x— Bet))= y*(1-B%)ct = ct;

using identity ratio:

(1-15)

[{S]

| -
1-B)=—==1. 1-16
y (1=-B) B (1-16)
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More general approach to the same derivation (we leave aside y and z which do not transform). In matrix
form interval is:

I (1 0]
=X 3K = : 1-17
§ SX: S l_O —l_| ( )
and arbitrary Lorentz transformation in (x,t) is:
a b
X=L+X" L=r _I: (1-18)
le d]
with condition to preserve 4-interval (we chose + ):
LTSL=S =detL==*l; "+" ad—-bc=1; (1-19)
- _ d -b
X’=L1-X;Ll=r ]
- a

Applying standard conditions : coordinates move with £V:
xX'=0; x=pfct; c=Pa; B=V/c, x=0; x'=-Bct’; c=-pd:= a=d,;
we got

a b]
Lzlﬁa aJ'

Constant speed of light gives the symmetry of (x,ct):

[ct’] [et]

x=ct:x' =ct’; \'ct'J - LL(‘IJ; =a+b=a+fa;=b=Pa

Finally, detL=1 resolves the rest of puzzle:

el
L_aLﬂ 1_'.d<:t[,—1=,‘>a—y— 5

(1-20)
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2.1 Proper Time, Proper Length and Proper Volume.

Proper time is defined in moving system K', i.e. in the rest frame of an object. (a clock). Let's
consider a clock located in the origin of K'. Therefore, dr " =0 and we can write proper time for moving
object:

2 b ) - o) 2
ds"=c'dt”—dr" =c°dt’””

! dr’ , 3
dt =adt JI- = =di I -= =t J1- B (2-1)
cdt” &
B B B
- dt
r;—:j\=_[dt‘,l—‘—3-= —_.
A € G

Z' Z!
K' K'
Z
ZK K
\ Vv
X' {579-»@—®— X'
D

Y'

Fig. 4 To find the proper time at origin of K', we compare one clock in K' with set of clocks in K (left): to
find proper time at origin of K', we compare one clock in K with set of clocks in K (right). This process is
asymmetric and a clock compared with a set of clocks always lags behind.
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esting clock

Y

Fig. 5 The only correct way to compare clocks: use two clocks, start them at the same point of space,
leave one at the rest and bring second at the same point to compare elapsed time. The clock at rest will
show more time then moving clock. Why?

It is impossible to return clock using rectilinear motion; i.e. moving clock must be accelerated. Therefore,

the system related to traveling clock is not inertial and is not identical to inertial system where first clock
rests. Thus, a moving clock will show less time elapsed then a resting one. On other hand, we can look for

the motion of K system from point of view of K'. Now we should locate a clock at the origin of K, and
dr =0 . Similar to eq. (2-1) we have:

, dr " , v f v otdr
dt =dt’ 1 - ——5 =dt 1——2;r3—r,‘=jdr' 1—-— =J—. (2-2)
c dt c W " L7

It looks as a contradiction: time in K' system is both faster and slower then in K system. What is
not correct is to compare different clocks in the resting system with fixed one in the moving system. The
solution of “paradox™ is illustrated by Figures 4 and 5.
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"Time paradox" is directly related to the Lorentz contraction. Suppose that there is a rod at rest in K
system measured / = x, —x, where x,,x, are coordinates of two end of the rod. We should determine

length of the same rod in K' system: x, = y(x, + Bct’); x, = y(x}, + PBet’); at the same moment of time

/

) .

UV=x—x,=(x,—x,)/y=1/7y. (2-3)

Therefore, observed from a moving system the resting rod contracts by factor ¥ . The same will be correct
if we look from K system on the rot resting in K' system at the same moment of time 7 using

X =¥ (x,— Pet );xp = y(xg — Pet );

=l'1y. (2-4)

Again, there is no contradiction. We are looking for the length of the rod by observing its ends at
the same moment of time, but in different systems. The source of “asymmetry”™: time and space
coordinates depend of the system of observation.

As we derived, coordinates transverse to the relative velocity of the system do not change
vy’ =y:z' = z. Therefore, the volume of the body will decrease proportionally to the contraction of
coordinate parallel to the relative velocity of the system (x). This volume is called proper volume:

V=V, ly (2-5)
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To finish discussion, let's consider a synchronization procedure of the clocks. The natural way to

set clocks located at different positions x in K system is to send periodical light signal from the origin
and set them at time # = x / ¢ when light reach them. The traveling clock, fixed at origin of K', sees the

distances in K system contracting by factor ¥, and therefore the clock "thinks" that elapse time is
t'=x/%.
What is most important that 4-dimentional volume
dQ = cdtdV = dx’dx'dx*dx’

is invariant of Lorentz transformations (we will discuss it at next lecture). It is direct consequence of the
unit determinant of Lorentz transformation matrix:

dQ =det| L]dQ";

0]
0l Ca
0 cdet[L] =y (1-B)=1

1
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2 2 Transformation of velocities.

Lorentz transformation of coordinates and time give us all necessary information to calculate
velocity of the particles is arbitrary inertial system:

- W a2, G . dx WY
V=—=e,—t e —+e —V =— = —+e——+e,—;
dat Y dr dt dt Cdt dt

Let's rewrite (1-13) in form of differentials:
cdt = y(cdt’ + Bdx’),dx = y(dx’ + PBedt’).dy = dy’;dz = dz’, (2-6)

and divide coordinate differential by time differential:

L
- = dx cy(dx +Pedt’) gy +h VitV
! dt y(cdt’ + Bdx") ]+ﬁ/c-£ l+v_f_V/c2'
dt’
Y N
o cdy’ I A Cz : 2-7)
4 ]_ V_z
_ds edz’ dz' | dt’ 631 e

T d ylcdt +Bdx’)  y(+Blc-ddldl) 1+vVic

The transformation of velocities is more complex then transformation of space-time coordinates. It should

not be of any surprise; e.g. the 3-D velocity is not a 4D object and it combines time and coordinates in
"unnatural way for 4D world".
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Geometry 1n Special relativity

Appendix A: 4-D metric of special relativity

“Tensors are mathematical objects - you'll appreciate their beauty by using them”
4-scalars, 4 vectors, 4- tensors. (closely follows [CTF])

An event is fully described by coordinates in 4D-space (time and 3D-space), i.e., by a 4 vector:

X =(x” ,,x",.\'z,.x“) E(.\'”.F) cx'=en;x'=x;x7 = Vi =z, (A-1)

Consider a non-degenerated transformation in 4D space
X'=X'(X): (A-2)
=2 F w1 =028 (A-3)

and allowing the inverse transformation
X=X(X")

=30, AR e =01,2.3 (A-4)
Jacobian matrices describe the local deformations of the 4D space:
3x’f. 8,\"’. . P
ox'’ ox"’

and are orthogonal to each other
jz"-:c?.\"' ax’ k" odx' o _ 50 (A-6)
“ox’ ox™ o ot ot Y

Here, we start with the convention to "silently” summate the repeated indexes:
=3
a'b,=Y db, . (A-7)
=0

A 4-scalar is defined as any scalar function that preserves its value while undergoing Lorentz
transformation (including rotations in 3D space):

(XY= f(XL VX' = L®X (A-8)
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Contravariant 4-vector A'=(A",A",A>,A") is defined as an object for which the
transformation rule is the same as for the 4D-space vector:

ox”’
dx’' = dx’ A-9
= o (A-9)
1.e.;
oo
A=A (A-10)
or explicitly
. N e R AR s Y s
A= A +—A+_F A+ A’ A-11
ox’ ox' dx” ox’ ( )
Covariant 4-vector A =(A,.A.A,,A) is defined as an object for which the transformation
rule is
ax’
- A, A-12
/4! 8 Vi ( )
1.e., the inverse transformation is used for covariant components.
Contravariant ' and Covariant G, 4-tensors of rank 2 are similarly defined :
N S ax’ ox'
F'™ = FFG, = Gy A-13
3 o« R gl s
Mixed tensors with co- and contra- variant indexes are transformed by mixed rules:
. ox" ox' _ox! 't
F'y= F'i;G* : G, A-14
axj 8’(’L i axn 8.1\31 J ( )
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Tensors of higher rank also are defined in this way. Thus, a tensor of rank n has 4”7 components:

4-scalar - n=0, 40=] component; 4-vector - n=1, 4l=4 components; a tensor of rank 2 - n=2, 42=16
components; and so on. Some components may be dependent ones. For example, symmetric- and

asymmetric-tensors of rank 2 are defined as S*=8". A%=-A"_ A symmetric tensor has 10
independent components: four diagonal terms S", and six S =5""" non-diagonal terms. An

: A ik=i k#i0 . :
asymmetric tensor has six independent components: A"~ =—A""" | while all diagonal terms are zero
A" =—A" =0. Any tensor of second rank can be expanded in symmetric- and asymmetric-parts:
A P T .
F*= 2(F" +FY)+ 5 (F“-F"). (A-15)
The scalar product of two vectors is defined as the product of the co- and contra-variant vectors:
A-B= AB'; (A-16)
It is the invariant of transformations:
vyurii._ 0% %" ¢ ok’ k ' k k
ArB = ax/i &xk AIB = ?A}B = 6‘1AIB = AI‘B ) (A-17)
where
5/ {l;j B k} 18
= A-
o0y 2k asld)

is the unit tensor. Note that the trace of any tensor is a trivial 4-scalar .
Trace(F)=F'i= Fo+ Fi + F2+ F5 = F"i; (A-19)
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Metrics

The metrics (or norm that must be a 4-scalar) defines the geometry of the 4-space. The traditional
(geometric) way is to define it as ds” = dx'dx; . The 4-scalar is defining interval between events, details

on which can be found in any text on relativity (see additional material to the course or in you favorite
book, for example, L.D. Landau, E.M. Lifshitz, "The Classical Theory of Fields")

An infinitesimal interval defines the norm of our "flat" space-time in special relativity:
2 2 2 92 2
ds’=dx” —dx'" —dx> —adx*" =dx,’ - dx]2 - dx22 - dx32 : (A-20)

and the diagonal metric tensor gik :
ds® = g, dx'dx" = g"dx.dx,;

[

g =8 ;& =Lg =—1g" =-L;g" =—1; (A-21)
in which all non-diagonal term are zero ;giik = 0. The metric (A-21) is a consequence of the Euclidean
space- frame. In general, it suffices that g" must be symmetric g” = g" . Note that the contraction of the
metric tensor yield the unit tensor g,:,gjk - 5,-k . Comparing (A-21) and (A-20) we conclude that

x' = gikxk VX = g,.kxk ; (A-22)
1.e., the metric tensor gik raises indexes and g, lowers them, transforming the co- and contra-variant
components

Fo =g F; = g"guF . "setc. 23
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For 4-vectors, the lowering or rising indexes change the sign of spatial components. There is no

distinction between co- and contra- variants; they can be switched without any consequences. Convention
defines them as follows :

Ai =(A0,/‘_i) =(AO,AI’A2,A3)
14,' =(A()’-A) =(A()’-A’_.A3 '—Al')
A-B=A-B=A"B"-A-B

(A-24)

The g“,g,-,.g,.‘ 55,.* tensors are special as they are identical in all inertial frames (coordinate
systems). This is apparent for 5,‘ :

2 axt ™ e ot o gx! :
07 = §'=—"———=—""—=§, _
J axll axl ! (9.1’” axk aY” b (A 25)

while gik invariance is obvious from the invariance of the interval (A-20). Hence, it is better to say that

the preservation of g determines an allowable group of transformations in the 4D-space - the Lorentz
iklm

group (see Appendix B). There is one more special tensor: the totally asymmetric 4-tensor of rank 4: e

. Its components change sign when any if indexes are interchanged:
eildm = kilm ilkm ikm!

— =—e . (A-26)

meaning that the components with repeated indexes are zero: ¢ """ =0; i = k; and only non-zero
components are permutations of {0.1,2.3} .

By convention
0123

=1; (A-27)
So that €'"** = —1. The tensor """ also is invariant of Lorentz transformation that is directly related to
ox’'
the determinant of the Jacobian matrix of Lorentz transformations J = det x
iklm ax’i ax,k ax” ax,m g ax, inpg of ok "m iklm
grhtin X O OX 087 o _ il OX Lrewgishst gm _ hin, (A-28)
ox’ ox" dx" ox ox ‘
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For Lorentz transformations J = 1. In the best courses on linear algebra, the above equation is used as the
definition of the matrix determinant. For details, see Section 3.4 (pp. 132-134) and section 4.1 in G.
Arfken’s  “Mathematical Methods for Physicists” (where Eq. 4.2 1s equivalent to

a;a,fall,a('l" "4 = det[a Je”™ 5: S 5][,5"') As mentioned in Landau CSF (footnote in §6), the invariance of

a totally asymmetric tensor of rank equal to the dimension of the space with respect to rotations is the
general rule. This is very easy to prove for 2D space. The 2D totally asymmetric tensor of rank 2 is

1k O 1
g = 1 0 has transformations of

(Ix x|
x ox" o™ . o ox™t , ox" ot o, o ot o oax'* l
C’,k = j n eJ — | 3 €|~+ 5 | ("-] = | 2 2 = dets 3).(’/\ al’ﬂ >;
ox’ ox ox dx” ox~ ox ox oJdx~  ox” ox oX ox
Cox! ox?
(A-29)
Therefore:
rax/i axri ) i ax/l axll : '8x12 ax/Z y
7 ax' o’ i 12 ox’ ox* 2. 42 ox'  oIx? 21
— 9 , =0 = . — 9 s T = 1= = 9 r=—] = 3
¢ det " gt O=e ;e det I Ix” l=e¢";e det A g l=e";
L' o Loy ok Liget 9t o
(A-30)

/

ax

5 ikim
n! - a number of permutations. In particular, ¢ ¢, =4!=24.

for rotations when det{ } = 1. Finally, convolution of absolutely asymmetric tensor of rank n is equal
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Tensors of any rank can be real tensors or pseudo-tensors, i.e., scalars and pseudo-scalars, vectors
and pseudo-vectors, and so forth. They follow the same rules for rotations, but have different properties
with respect to the sign inversions of coordinates: special transformations that cannot be reduced to
rotations. An example of these transformations is the inversion of 3D coordinates signs.

The totally asymmetric tensor e’ s pseudo-tensor - it does not change sign when the space or time
0123 . C
coordinates are inverted: e =1, (it is the same as for 3D wversion of it

P C=AxB= C" =" APB" ¢ =1:). Recall that the vector product in 3D space is a pseudo-
vector. Under reflection A = —A; B— —B; C =C!
We can represent six components of an asymmetric tensor by two 3D-vectors;
0 p. p, P

—— 0 —a, a, | L
(A" =(p.a)= A (4,) =(=p.a). (A-31)

-p. —a, a, 0

e ~ g ’ -

The time-space components of this tensor change sign under the reflection of coordinates, while purely
spatial components do not. Hence, p is a real (polar) 3 -D vector , and ¢ is 3D pseudo-vector (axial)

vector.
#ik

A == eiklmA (A-32)

Im

is called the dual tcnsor to asymmetrlc tensor A", and vice versa. The convolution of dual tensors is
pseudo-scalar ps = A" A . Similarly, e "A,,, s a tensor of rank 3 dual to 4 vector A",
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Differential operators
Next consider differential operators
Jd o' d
ox" ox" ok’
that follow the transformation rule for covariant vectors. Therefore, the differentiation with respect to a

contravariant component is a covariant vector operator and vice versa! Accordingly, we can now express
standard differential operators:

(A-32)

.0 Jd = d d &
-gradient: g=—=|——Y¥Y|d=—7=|=-"V [;
4-gradient o ( I, ) RalEw ( Y ]
(A-33)
0 L
4-divergence dA=0A = % +VA;
X
(A-34)
P

4-Laplacian (De-Lambert-dian): A =0'd, = —~V2e, (A-35)

2

ox

Using differential operators allows us to construct 4-vectors and 4-tensors from 4-scalars. For
example:

x'=d(s). (A-36)
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Other example is the phase of an oscillator: exp[i(ar—l??)]q): wt —ki; @ =kc . The phase 1s 4-

scalar; it does not depend on the system of observation. It is very important, but not an obvious fact!
Imagine a sine wave propagating in space and a detector that registers when the wave intensity is zero.
Zero value of wave amplitude is the event and does not depend on the system of observation. Similarly,
we can detect any chosen phase. Therefore, the phase is 4-scalar and

k'=d'o=(w/ck) (A-37)

is a 4-wave-vector undergoing standard transformation. Thus, we readily assessed the transformation of
frequency and wave-vector from one system to the other, called the Doppler shift:

o=y +c§l€’); IE, = y(l?,’, +Bw’ / c);lzl =k’ (A-38)

then simply applying Lorentz transformations we found as last time:

y By 00 'y Br 0 0

oax" |-By v 0 Ol [By v 0 0
= . = = A-39
o' | o o 1 o0foxy |0 0 1 0 (4-39)

0 0 0 1. 0 0 0 1]
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4-velocity, 4-acceleration

Another way to create new 4-vectors is to differentiate a vector as a function of the scalar function, for
example, the interval. Unsurprisingly, 3D velocity transformation rules do not satisfy simple 4-D vector
transformation rules; to differentiate over time that is not 4-scalar will be meaningless.  4-velocity is
defined as derivative of the coordinate 4-vector x' over the interval s :

y vzl
U =—; (A-40)
ds
| 2
. - |I V- ;
and ,with simple way to connect it to 3D velocity dx" = (c,v)dt:ds = cdt \ 1—— =cdt/y we obtain :
¢
u' =y(1v/c) (A-41)

that follows all rules of transformation. The first interesting result is that 4-velocity is dimension-less and
has unit 4-length:

u'u =1 (A-42)

which is evident by taking into account that ds® = d.X'id,'i = u'u,ds2 . Thus, it follows directly that 4-
velocity and 4-acceleration

,du'
w=—" (A-43)
ds
are orthogonal to each other:
d(u'u,)
e e VI (A-44)
2ds
'What is more amazing is that simply multiplying 4-velocity by the constant mc yields the 4-momentum:
meu' = (ymc,ymv)=(E/ c.,p) (A-45)
For next ClaSS: , furthermore, gives the simple rules to calculate energy and momentum of particles in arbitrary frame
(beware of definition of y here!):
E=y(E"+cBp). p,, = v(p/, +BE" | o);p, = pl. (A-46)
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Integrals and their relations

Transformation rules are needed for elements of hyper-surfaces and for the generalization of
Gauss and Stokes theorems. Those who studied have external differential forms in advances math courses
will find it trivial, but for those who have not they may not be easy to follow. We will use all necessary
relations during the course when we need them. Here is a simple list:

3 The integral along the 4-D trajectory has an element of integration dx’ i.e,. similar to dr for the
3D case.
2 An element of the 2D surface in 4D space is defined by two 4-vectors dx,,dx; and an element of

the surface is the 2-tensor df, =dxdx', —dx,dx',. A dual tensor df " =—e""

df ,,: is normal to the
surface tensor: df . df "=0 . It is similar to 3D case when the surface vector

1 .
df, = = €.pf ops @.B=1,2.3 is perpendicular to the surface.

3. An element of the 3D surface (hyper-surface or 3D manifold) in 4D space is defined by three 4-
vectors dx,dx; ,dx; and the three tensor element and dual vector of the 3D surface are
dx'  dx" dx”
dS"™ =det| dx* dx" dx"" |=e""dS,;dS' = = e*"ds,, . (A-47)
dx'  dx"  dx"” ®
Its time component is equal to the elementary 3D-volume dS* = dxdydz .
4. The easiest case is that of a 4D-space volume created by four 4-vectors: d\( ’s d\m dx;, 3, vdx; )

which is a scalar
dQ = """ dx}dx}dxidx] => dQ = dx,dx,dx,dx; = cdidV ;

5. The rules for generalization of the Gauss and Stokes theorems ( actually one general Stokes
theorem, expressed in differential forms) are similar to those for 3D theorems, but there more of them:
; aA ; A’ " dA*
pa dS,—Jax, Q; fAdy,= J'—df“ ~[atdf, Iax* ds, . (A-48)
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What we rehashed

Least action principle
Lagrangian and Hamiltonian formalisms
Special relativity, Lorentz transformtion

Geometry of 4D space-time, co- and contra- variant vectors and
tensors

Differential operators and integrals in 4D space-time

Interval, 4-coordinate, 4-velocity and 4-acceleration

We do not presume that you can remember everything, but we will
use most of the notions we introduced today

It 1s a lot of material — please look through your favorite book to
remind yourself about this fascinating relativistic world
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1.1 Relativistic Mechanics
From here further: i=0,1,2,3 in Minkowki space with (1,-1,-1,-1) metric.

Let’s use Principle of Least Action for a relativistic particle. To determine the action integral for
a free particle (which does not interact with the rest of the world), we must ensure that the action integral
does not depend on our choice of the inertial system. Otherwise, the laws of the particle motion also will
depend on the choice of the reference system, which contradicts the first principle of relativity. Therefore,
the action must be invariant of Lorentz transformations and rotation in 3D space; i.e., it must depend on a

4D scalar. So far, from Appendix A. we know of one 4D scalar for a free particle: the interval. We can
employ it as trial function for the action integral, and, by comparing the result with classical mechanics
find a constant «a connecting the action with the integral of the interval:

4
ds’ = dx'dx, = ch.xf(l,t,. = (cdr)2 - (df)j

S=—ajrds=—aj (cdi)’ —dF*. (16)

A A
The minus sign before the integral reflects a natural phenomenon: the law of inertia requires a resting free
particle to stay at rest in inertial system. The interval ds = cdr has a maximum possible value (

/ 2 2 : : ;s il e
cdt 2 +\/(cdr)” — dr~ ) and requires for the action to be minimal, that the sign is set to be "-".

The integral (16) is taken along the world line of the particle. The initial point A (event)
determines the particle’s start time and position, while the final point B (event) determines its final time
and position. The action integral (16) can be represented as integral with respect to the time:

B g e [ _ dF
S =—o[V(cdt) —di* =—ac[diN1-7] ¢* = [Ld; L=—oc,l-—; ¥=—;
A A A V' di

where L signifies the Lagrangian function of the mechanical system. It is important to note that while the
action is an invariant of the Lorentz transformation, the Lagrangian is not. It must depend on the reference
system because time depends on it. To find coefficient &, we compare the relativistic form with the
known classical form by expanding L. by v e

; = ‘,' —y -
I "_ ". - ‘y -
l o A Y o —— &
- oc \I ] ('2 oc+ao 2C 2 Ldassival m 2 )

which confirms that @ is positive and ¢ = mc, where m is the mass of the particle.
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Thus, we found the action and the Lagrangian for a relativistic particle:
B

S= —ch-ds : (17)
A
[ =2
L =—-mc’ ll—v—, (18)
V' ¢
The energy and momentum of the particles are defined by the standard relations egs. (4) and (5):
_ JdL_  mv - (19)
\ - c*
E=pv—L=ync’; y=1/N1-v*/c* (20)
with ratio between them of
E* = p*¢ +(mc*). 21)

The energy of the resting particle does not go to zero as in classical mechanics but is equal to the famous
Einstein value, £= mc™; with the standard classical additions at low velocities (v << cip << mc):

- -
V- %

E=me’+m— =
2

2m’
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Four-momentum, conservation laws. The least-action principle gives us the equations of motion and an
expression for the momentum of a system. Let us consider the total variation of an action for a single
particle:

B B B —
08 = —mc5jds = —mc6j Jdxidx, =— mc{J Vdox'dx, +/dx'déx,} =
A A A

B
=— mcj u'dox,;

A

p e dox'dx,

gl i dx'dox,

% 2V"' dx'dx ,. 2\.-"‘d.x"d,\' ;

B .

B [dx'dox,
}—-—mcj ds

A

where u' = dx'/ds is 4-velocity. Integrating by parts,

du'

B
8S = —mcu'Sx, | + mcf ox, —— ds; (22)
A

ds

we obtain the expression that can be used for all purposes. First, using the least-action principle with fixed
A and B 0x;(A)=0x,(B)=0 , to derive the conservation of 4-velocity for a free particle:

du'

i o .
P =0; u =const or the inertia law.
ds

i

du

ds = 0 the action is a function of the limits A and B (see eq. (12):

B
Along a real trajectory mcj&‘,.
. ds

OS,eutiraj = (—EO + ﬁb?’)}ﬁ , 1.e., dS = —Edt + PdF is the full differential of t and 7 with energy

and momentum as the parameters. We note that this form of the action already is a Lorentz invariant:

35S, =(—E8t+ P&r) % = (-P'éx,) %,

real raj

real traj

i.e. classical Hamiltonian mechanics always encompassed a relativistic form and a metric: a scalar
OS is a 4-product of P and Ox, with the metric (1,-1,-1,-1). Probably one of most remarkable

things in physics is that its classic approach detected the metric of 4-D space and time at least a
century before Einstein and Poincaré.
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B .
du'
To get 4-momentum, we consider a real trajectory mCJ. ox, ;. ds =0 and set Ox,(B)= Ox;:
s
A
i BS i i — -
p=—"-= —d'S = mcu' = (yme,ynv)=(E / c,p)
with an obvious scalar product (uiu,- =1, see Appendix A. eq. (A.42))

j 2 2 -2 S 8 2 2
pp,=E ¢ —p =mecuu=mc,
Equivalent forms of presentation are
(mec,mv)

pi =(E/c,p)=my,(c,v)= ——

\,1—-\72/C2

and, Lorentz transformation ( P is a 4-vector, K' moves with V = e V)

—

E=y, (E' +efB,p)ip, = YD+ PE"/ C);pv\.; = p_:,:;),l’ =1/ \z‘fl_ﬁvz By =V/c;

where subscripts are used for ¥, to define the velocity to which they are related. .
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Equation (24) expresses energy, velocity, and the like in terms of momenta and allows us to
calculate all differentials:

(=2 2 2 [= ) dp - cp 2—.‘d—‘ S o
E=c\p* +m’c’;dE=cd\ p’ +m’c = — qp cp’ = = PP -dp; (27)
\/i)‘- +m°c”
= ——P hdi=dv=d——L -
\/f)' +m°c” \/,13' +ime”
(28)

dp-m’c* +| px[dpx p]]

?

c(dp(p® +m*c*) = p(pdp)) _

(\/132 +m’c? )3 (\/1'52+mzc2 )3

.

Coefficients ¥ = E/mc”; B=v/c differ from the above by constants, and satisfy similar relations.

The conservation laws reflect the homogeneity of space and time (see Mechanics): these natural
laws do not change even if the origin of the coordinate system is shifted by Ox . Then,
0x,(A) = Ox,(B) = ox,. We can consider a closed system of particles (without continuous interaction,

i.e., for most of the time they are free). Their action is sum of the individual actions, and

Z oS, = —(z m‘,cu"a)cir,. ‘i = —(Z m‘,cui¢1)5xij§:{2 pla(A)— z pia(B)}5.x,. =0 (29)

Z pla(A) = Z p'a(B) = (z E./ CZﬁ] = const . (30)
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1.2 Particles in the 4-potential of the EM field.

The EM field propagates with the speed of light, i.e., it is a natural product of relativistic 4-D space-time;
hence, the 4-potential is not an odd notion!

In contrast with the natural use of the interval for deriving the motion of the free relativistic particle, there
is no clear guideline on what type of term should be added into action integral to describe a field. It is

possible to consider some type of scalar function J-A(.xfi )ds * to describe electromagnetic fields, but this
would result in wrong equations of motion. Nevertheless, the next guess is to use a product of 4-vectors
A'dx,, and surprisingly it does work, even though we do not know why? Hence, the fact that

electromagnetic fields are fully described by the 4-vector of potential [A' = (A", A)| must be

considered as an experimental fact!

Nevertheless, it looks natural that the interaction of a charge with electromagnetic field is
represented by the scalar product of two 4-vectors with the —e / ¢ coefficient chosen by convention:

B
€ Ai i o A P
&“=——fAd&:A-EuaJﬂE(¢JU (31)
C
A
where the integral is taken along the particle’s world line. A charge ¢ and speed of the light ¢ are moved
outside the integral because they are constant; hence, we use the conservation of the charge ¢ and
constancy of the speed of the light !
It is essential that field is GIVEN, SINCE we are CONSIDERING a particle interacting with a given
field.

LT

*You can check that this function will give the equations of motion (mc — A)
s
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Turning our attention back to the Least-Action Principle and Hamiltonian Mechanics
The standard presentation of 4-potential is

A'=(A" A =(9.A); (32)
where ¢ is called the scalar potential and A is termed the vector potential of electromagnetic field.

Gauge Invariance. As we discussed earlier the action integral is not uniquely defined; we can add to it an
arbitrary function of coordinates and time without changing the motion: §’ =S+ f(x.). This corresponds

to adding the full differential of f in the integral (31)

e . ;
8= j(—mcds ——A'dx, +dxd'f }
% c
This signifies that the 4-potential is defined with sufficient flexibility to allow the addition of any 4-

, e
gradient to it (let us choose f(x;) =—g(x,))
"

. - g
A"=A'-da(x)=A"—==;
g(x,) pog (33)

i

without affecting the motion of the charge, a fact called THE GAUGE INVARIANCE .

We should be aware that the evolution of the system does not change but appearance of the
equation of the motion for the system could change. For example, as follows from (33), the canonical
momenta will change:

P=P-0F.

Nevertheless, only the appearance of the system is altered, not its evolution. Measurable values (such as
fields, mechanical momentum) do not depend upon it. One might consider Gauge invariance as an

inconvenience, but, in practice, it provides a great opportunity to find a gauge in which the problem
becomes more comprehensible and solvable.
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The action is an additive function: therefore, the action of a charge in electromagnetic field is simply the

direct sum of a free particle’s action and action of interaction: (remember

ds = ds’ /ds—a'xdx /a’s—udv )
B
S = _[(—mcds - Aid.r,J = J(—mcu' £ a )dx,.
A C A C
Then the total variation of the action is

oS = 5?(—mcds— —e-Aidx,.): T(—mc dx dox, —EAiddx,. —ESA"dxiJ:

% c " ds c c

B
~|:(mcui+£Ai)6xi] +j[ cdi& ds+Z8cdA' — S 8A dx] 0.
c PR c c

That gives us a 4-momentum

P = —6S (mcui +EA') = (H/C,IB)= Pi + & Ai;
o

X, ¢

with

H = E = c(mcu’ +EA0)= e’ + e =c-\/mzcz+[32 +eq;
C

P=ymv += A= A;=>p=P--A

nlm
nlm
o 1IN
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= = e = . .
The Hamiltonian must be expressed in terms of generalized 3-D momentum, P = p+—A and it is
C

H(?,P,t)=c\/tn2c2+(13—£/”{] +eq; (38)
c
with Hamiltonian equation following from it:
. dr OJH Pc —eA
VvV = = ==
dt  JP . (- e-Y
mc +P—-——A
C
. , (P-SA) WA
dP dp e dA JH _ SR = C. .. s
= L . T = V- ¢ =—eVo-—( V)A;
dr @ ed  F v ° =Y

From this equation we can derive (without any elegance!) the equation for mechanical momentum
p=ynv . We will not do it here, but rather we will use easier way to obtain the 4D equation of motion
via the least-action principle. We fix A and B to get from equation (35)

B i 5 ; )
oS = J.(mcdié'x,.ds+ E5.?(,(1,4" _ E5Akdxk ) — J(""Cdi5x,.a’s e dA' e dA" ]

v ds c c . ds ¢ 9%, ¢ ox;

B i k
j(dp {8/4 IA }uk}ixids=0.
/ dx,
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As usual, the expression inside the round brackets must be set at zero to satisfy (39); 1.e., we have the

equations of charge motion in an electromagnetic field:

du' dp' e _,
mc Ei)z—F%%
ds ds c
wherein we introduce an anti-symmetric electromagnetic field tensor
F¥* = % _ %
ox, o,
Electromagnetic field tensor: The Gauge Invariance can be verified very easily:
. OA™ o0A" . O J’ "
F,IL =% _ :Fl/\ _ g 4 g = FIA;
dx, ox, dxox, oxox,

(40)

(41)

which means that the equation of motion (40) is not affected by the choice of the gauge, and the
electromagnetic field tensor is defined uniquely! Using the Landau convention, we can represent the

asymmetric tensor by two 3-vectors (see Appendix A):
F*=(-E,B);F, = (E,B);
0 =B, —E, -E

Fik E-" 0 _B: B.\‘
"|E. B. 0 -B

y z x

-B. B, 0

< ) X

(42)

E is the so-called vector of the electric field and B is the vector of the magnetic field. Note the

occurrence of the Lorentz group generator (see special material for Lecture 2) in (42).
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The 3D expressions of the field vectors can be obtained readily:

|

dA"  JA“ do 1 0JA” - 10
E*=F*"=—"—"_— —_—— = co=123;E=—_ —grado; 43
dx, dx, dr, ¢ dt coar 8 = )
A K . ) )
B =—le‘mF“ = e“"{ﬁ - (3: ] B=curlA; F* =e¢"™H,,. (44)
K A

A 3D asymmetric tensor ¢** and the curl definition are used to derive last equation and use Greek
symbols for the spatial 3D components. The electric and magnetic fields are also Gauge invariant being

components of Gauge invariant tensor.
We have the first pair of Maxwell's equations without further calculation using the fact that differentiation
is symmetric operator (d'd" = 2“9"):

eund F™ = €,,,0 (@A™ =" A") = 2¢,,,, (09 A" =0; (45)
or explicitly:

akFlm +aIka +akal - 0 (46)
A simple exercise gives the 3D form of the first pair of Maxwell equations. They also can be attained
using (43) and (44) and known 3D equivalencies: div(curlA) =0 :curl(grad) =0 :
E =—gradp- lé’_A, curlE = —curl(gradg) — 1 curl o = —la—B;
c ot | c ot ¢ ot (47)
B = curlA: divB = div(curl;i) =0;
[ note that (47) is the exact 3D equivalent of invariant 4D Maxwell equations (45) that you may wish to

verify yourself. There are 4 equations in (45): i=0,1,2,3. The div is one equation and cur/ gives three
(vector components) equations. Even the 3D form looks very familiar; the beauty and relativistic
invariance of the 4D form makes it easy to remember and to use.
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EM Fields transformation, Invariants of the EM field. The 4-potential was defined as 4-vector and it

transforms as 4-vector. The electric and magnetic fields, as components of the asymmetric tensor, follow
its transformation rules (See Appendix A).

=y +BA)); A, =Y(Al+Be’);
E,=Y(E,+fBB.); E,=y(E.-BB)); (48)
B,=y(B,~ BE!); B.=y(B/+BE)).

and the rest is unchanged. An important repercussion from these transformations is that the separation of

the electromagnetic field in two components is an artificial one. They translate into each other when the

system of observation changes and MUST be measured in the same units (Gaussian). The rationalized
international system of units (SI) system measures them in V/m, Oe, A/m and T. Why not use also a horse

power per square mile an hour, the old British thermal units as well? This makes about the same sense as
using Tesla or A/m.

While the values and directions of 3D field components are frame-dependent, two 4-scalars can be build
from the EM 4-tensor F* =(—E,B)
FikF'ik — inv; ei’\’fvaikFl

which in the 3D-form appear as

m = V] (49)

B>*—E*=inv: (E- B)=inv. (50)
This conveys a good sense what can and cannot be done with the 3D components of electromagnetic
fields. Any reference frame can be chosen and both fields transferred in a minimal number of components

limited by (50). For example; 1) if IE ’ > ‘Bl in one system it is true in all systems and vice versa; and (2)

if fields are perpendicular in one frame, (E . E) =0, this is true in all frames. When (E- B) =0 a frame
can always be found where E or B are equal to zero (locally!).
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Lorentz form of equation of a charged particle’s motion.
The equations of motion (40) can rewritten in the form:

IE l . dx

‘ -c—(p =eF"v, =¢E-V v, =2k = (¢,—V)

dt  dt | dt (51)
r ~ r [ ~ A > ~

Qze(eaFw‘ v—‘Jzﬁ(ea-cFa"—ea- F“"v,\) ¢E+é, eaMB —& = ¢E +— [VXB]

dt c) ¢ c

So, we have expressions for the generalized momentum and energy of the particle in an electromagnetic
field. Generalized momentum is equal to the particle’s mechanical momentum plus the vector potential
scaled by e/c. The total energy of the charged particle is its mechanical energy, ymcz, plus its potential
energy ,eq , in an electromagnetic field. The Standard Lorentz (not Hamiltonian!) equations of motion
for p=7ymv are

@=eE+£[Vxl§]. (52)
dt c
with the force caused by the electromagnetic field (Lorentz force) comprised of two terms: the electric
force, which does not depend on particle’s motion, and, the magnetic force that is proportional to the

vector product of particle velocity and the magnetic field, i.e., it is perpendicular to the velocity.
Accordingly, the magnetic field does not change the particle’s energy. We derived it in Eq. (51):

2 8Y =
22t — B ¥
me g eE- v (53)

Egs. (52) and (53) are generalized equations. Using directly standard Lorentz equations of motion in a 3D
form 1s a poor option. The 4D form is much better (see below) and, from all points of view, the
Hamiltonian method is much more powerful!  For fun, see the last slide of this lecture
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First pair of Maxwell's equations (a little more of juice)

We will derive full set of Maxwell equations using the least action principle. Nevertheless, you
can consider the Maxwell equation as given - in any case they were derived originally from numerous
experimental laws!

First pair of Maxwell's equations is the consequence of definitions of electric and magnetic field
through the 4-potential:

" 1 9A - . 1 JA  10H
E=-— 1 ——— ']Ez_ 'l d —— -1_=___;
e i it is equivalent to cu curl(gradg) c o at c dt  (59)

H = curlA; divH = div(curlA) = 0;

Nevertheless, it is very important to remember that they are actually originated from experiment. First
Maxwell equation is the Faraday law and the second is nothing else that absence of magnetic charge! You
B

should remember all time that inclusion of the term §, = ——_[A'dx ; into action integral is consequence
c
A
of experiment! Thus, the first pair of Maxwell equations governing the electromagnetic fields is:

- 10H
curlE = — T (60)
divH = 0; (61)
with well known integral ratios following it:
Gauss' theorem: ﬁHdEJ = j divHdV = 0; (62)
Stokes' theorem: ﬁédi = qurl Eda = ——i—% J Hda: (63)

where da is vector of the element of the surface and d/ is a vector of a contour length. Integral equations
read: the

1) Flux of the of the magnetic field though the surface covering any volume V is equal zero;

2) The circulation of electric field around the contour (electromotive force) is equal to the derivative
of the magnetic flux though the contour scaled down by "-¢" - the Faraday law.
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7.2 Action of the electromagnetic field.

As we discussed earlier, in the relativistic picture of the world, the field acquires its it’s own
physical reality. Therefore, the action of whole system including a particle and a field must consist of

three parts: the action of free particle, the action of free field and the action their interaction:
§ =8, +5p+5- (64)

We already got first and last term. For a several free particles, the action is the direct sum of individual
actions:

S,= —Z mCJ- ds; (65)
p
and interaction with the field is the sum of their individual interactions:
e i
SM.:—Z;J‘A dx,.. (66)
Iy

The sum of (65) and (66) gives us equation of particle's motion in "external", i.e. pre-defined
electromagnetic fields. Now we want to know how charged particles influence the EM field and how EM
field evolves on its own? We do not know, also, what defines properties of a free field? First pair of

Maxwell equations gives us only two connections: the time derivative of the magnetic field and its
divergence (zero). We still don't know what is time derivative of electric field and what is its divergence?

Please remember that all following discussion must be considered as a logical excise. Final form

of the field action has to have the most important property: it must satisfy the experimental observations!
Where to start to get them?
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One of the most important properties of the field confirmed by experiments is the Principle of
Superposition:
the resulting field produced by various sources is a simple composition (the direct sum) of the fields
produced by individual sources! It means that resulting electric and magnetic fields are vector sum of

individual fields. Thus, we have a clue that we should look for type of equations, which allows
superposition of solutions, 1.e. linear differential tield equations®. In order to generate linear difterential

equations, the action should contain quadratic expression of the field components**, which described by
field 4-tensor F* .

*In field theory the 4-vector of the field A' is coordinate of the field. Therefore, field's 4-tensor is first order
derivative of the coordinates. According to Hamiltonian principle, the action could have under integral only

coordinates and their first derivatives. This requirement excludes derivatives of F* from the action's integral.

** dovector of the field A" is not unigque (Gauge transformation) and trial function comprising 4-vector of the field
will give non-unique equation of the field. The difference with interaction term is that last includes first order of 4-
potential and non-uniqueness does not affect equation of motions. Situation is not the same for quadratic term! A
variation acts in similar manner as a differentiation - “to get linear (2x') we need to differentiate (x°)”.

In addition, the action must be 4-invariant (4-scalar, not pseudo-scalar!), which leaves us with

ik s = | . . . . . . .
F"F; =2(H" - E"). Finally, the field is "an entity leaving" in space and time coordinates. In order to
describe total field we should integrate over all space between two "time" events
2 3 i . X =z ] k {

dQ = dx"dx'dv’dx’ = cdidV which is 4-invariant: dQ =e,, dx dx,dx_dx', where ab,c,d four 4-vectors
defining element of 4-volume. Therefore, a probable form of the action of the EM field 1s:

S, =-a|F*F,dQ. (67)

The choice of the coefficient before integral is equivalent to the choice of the units to measure the field. In
the Gaussian system of units, which we are using, fields are measured in Gs and coefficient is

|
( = =—— 68)
16 ¢ (
The total action is:
e i I ik :
S==) me|lds— ) —|Adx. ———— | F F,dQ. 69
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4-current and equation of continuity. The conservation of the charge should affect our equations. Let's

make a glance on this issue and write a charge conservation law in the form useful for future derivation of
the field equations. It is very useful to describe charges by a distribution function. The charge density p

is defined as the charge contained in unit volume:

de = pdV ; (70)

and microscopic (exact in classical EM) definition of p is sum of Dirac's delta-functions:

p=) ed(F—F); (71)
where index « is index to count particles. 4-vector of current is defined as:

. dx’

J =P I (72)
The fact that j' is a 4-vector comes from equivalence:

_ dxi [bl
dedx' = p—-dtdV = p—-dQ.
P i P dt : (73)

and the fact that charge is 4-scalar or invariant (experimental fact) and d€2 =dVdt is the 4-scalar. Thus:
j'=(pe, jyj=pv. (74)

To be exact, for point charges, the 4--current is:

J=edF -7 )—=. (75)
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It is the microscopic 4-current for ensemble of particles. When it is necessary, it can be averaged over a
"small volume" for macroscopic description. We do not need averaging now and can comfortably use Eq.
(75). Our goal 1s to get the equation of continuity:

. aji ap =
dj =—=(—+divj)=0;
l-] axt (9’ I (76)
which is resulting from charge conservation. It is easy to do for microscopic distribution (75):

d,j' = ze‘l{—‘; (8GF =7, (1)c) +div(S(F =7, (1 ))170))} =Y. e, VO(F —F,): {_ __3’0:;’(’ )4 \7(,} =0;
a C a f
(77)

with @' = (9 / dct,d/ dF):d/ dF(r,(1))=0 and we use derivative of Dirac's delta-function. Now we are

ready for next trick, i.e. to present action of the interaction as integral of 4-current:

e,=[e,8(F—7,)av: % [Y eadx = % (4, e,dxsG-F)av
I dx* a | a I {79
= ZjAk;e(, — 8 =7,)dV di =;_[Ak_jk dtdV =C—,_jAkj" dQ
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Side note: Today we are using the method, which is standard for all modern filed theories: QED, QCD,
SUSY, etc. In self-consistent theories, particles become fields as well. In QED, an electron is not a point
particle but a "wave" described by 4-spinor . We can include this into our action very easy by writing

correct QED current in the interaction term (78)

. —

J=Yry.
In this case, the current is a continuous function of the space and time. It is a better way that having
Dirac's delta-function. The nature of the current, as we would see, does not change equation of the field

motion. It means that Maxwell equations do not change when we introduce quantum description of
charges! In this case, the equation of the charges motion should be also proper, i.e. those derived by

Dirac:
b’ [p,- ——C-J—mJY"w =0

I would not go into details of Dirac's description of electron and his 4x4 y-matrices. If you are interested,
look through one of many QED books. Thus, equivalent form of (7-12) is:

1
16 mc

1 ; i
s==Y me|ds—= [ Ajtda-——[ F*F a0, 79)
>

/
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Second pair of Maxwell's equations: more of the least action...

We already found equation of charges motion in the field. Let's consider all charges following
their equation of motion

& piariiive [ ,z me [ds + [ A, j'd ) =0 (80)

Let's changes move along their real trajectories. Now we will vary only the field to find its equations of
motion:

55 = = | (1678A,j' + cS(F“F,))dQ2 = ;
167[(:- ( lj C ( lk))( 87&:-

where we use

(87r5A,. j'+cF"6F, )a’Q =0 (81)

FX8F, = 6F*F, . (82)

It is important to remember that we can vary both particle's trajectories and field if we wish. It will give
us two terms in the variation of the action: one containing variation of the trajectories

dp, dA' OA
pmt ; ,[( {a_XA - &_X}uk ]5-*‘ ds (83)

i

and the other containing variation of the field. Variations for each particle and the field are independent.
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Therefore, each independent component of action’s variation must be equal zero. (83) will give us again

equation of particle's motion, while field terms (81) will bring us to the field equations. Let's rewrite
second term in (81):

ka =(9iAk —akAi

F*8F, = F*0.6A, — F*9,0A = —F“98A — F*9,06A = -2F"0,8A, . (84)

Now we can integrate by parts:

65 =~ [(4n8Aj ~cF" 9,8A,)dQ =

(85)

=0

suraface of €2

~[(4mj' +ca,F*)8A, dQ-—jF" SA,dS,

4nc’

with second integral obtained by 4D Gauss theorem:
_[ divy A'dQ =§ A'dS;, (86)
where dS; 1s element of hyper-surface surrounding 4-volume Q. It is not so essential, how it looks. One

simple case: we integrate over all space and fixed time interval (7},12). Surface of the W is full 3D space at

moments of z7,z2. The least action method calls for zero variations on the boundaries 84 an — =0

and second integral in (85) disappears leaving us with:

1 ; %
as=—4—m2-j(47q +cd, F*)8AdQ = 0. (87)
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Please notice that we are left only with variations of 4-potential. It is very natural because variations of 4-
potential fully define field's variations. Equation (87) gives us "second pair" of Maxwell equations in 4D

form:

JF" _ 4m
dx" c g

3D form follows directly from (88) and form of the field tensor:
0 =E =E. =E

y z

E. 0 -H H
Flm — / z 3
E. H 0 -H

3
) X

E. -H, H_ 0

and yields:
divE =47p;
curlH = 4—7:] +£(9_E
c c ot
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Integral equations are obvious applications of Stokes and Gauss theorems to Egs (90-91)

$ Eda = 4n [ pav: (92)

§ 2l =L [cang + %f)da. ©3)

Equivalent forms of Maxwell equations:
| 0A

E= —gradp ———; « oAt A
Y e Fl=orom 94)
H = curlA: ’ k
Compact 4-D:
wim OF oF* A
iklm Im ol
e —==0: @ =t 95
o5 ; P - J (95)
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What we rehashed

We continued using the Least Action Principle and obtained all
necessary equations

— For motion of relativistic charged particles in E&M fields
— And their influence on E&M field, e.g. E&M field evolution

We continued path of using Hamiltonian formalism and defined
Canonical momentum of charged particle in E&M field

This ends out refresher classes - now we are ready to take on real
accelerator physics

Again, during this class we covered few months worth of material

You should refresh your memory by flipping through your favorite
E&M and relativistic mechanics books
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Next slide 1s for most curious of you
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It is worth noting that the 4D form of the charge motion (40) and its matrix form is the most compact one,

™ ; mc i =S Fiu; = [x] [7]- [u]: —[u]-
ds ds ¢

and, in many cases, it is very useful. We treat the X, u as a vectors, and [F] as the 4x4 matrix. [I] is just
the unit 4x4 matrix It has interesting formal solution in the matrix form:

——[F)ds
[] —e [u(,] [x]= [wn,,]w“[fdse J[“n] (55)

Its resolution is well defined when applied to the motion of a charged particle in uniform, constant EM
field:

(54)

[u] . e;;i[ﬁ’](.\'—.\'(,) [uo ] [x] = [Xo ] +{ I[F]“ s) :|[u0] (56)

The Lorentz group of theoretical physics (see Appendix B) is fascinating, and the fact that EM field
tensor has the same structure as the generator of Lorentz group is no coincidence — rather, it is indication
that physicists have probably come very close to the roots of nature in this specific direction. This
statement is far from truth for other fundamental forces and interactions.

To conclude this subsection, we will take one step further from (54) and write a totally linear evolution
equation for a combination of 4D vectors

sl

mc (57)

where [A] is an 8x8 degenerated matrix. Similarly to (55) and (56)

X el | X X G T X
[ J: ()JIAII i\ J . [ Jze[‘\](,\ sof [ J f()" [A]=C0nsr;
u ul |Lu ¥, (58)
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