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Transverse (Betatron) Motion

Linear betatron motion

Dispersion function of off momentum particle
Simple Lattice design considerations
Nonlinearities



What we learned:

Courant-Snyder Invariant
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Emittance of a beam Centroid
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The rms emittance is invariant in linear transport: = ()
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Normalized emittance g =€y is invariant when beam energy is changed.

Adiabatic damping — beam emittance decreases with increasing beam
momentum, i.e. =g, /By, which applies to beam emittance in linacs.

In storage rings, the beam emittance increases with energy (~y?). The
corresponding normalized emittance is proportional to y3.

The Gaussian distribution function
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Effects of Linear Magnetic field Error
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x"+[K (s)+k(s)]x = %, Y+ [K,(s)—k(s)]y = -

For a localized dipole field error: 6=AB2/Bp
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Things are much more complicated!

An accelerator with
C=360 m 1s made of 18
FODO cells. The betatron
tunes of the synchrotron
are v,=4.8 and v,=4.8
respectively. If all 36
dipoles has a random
error of 0.1% 1n
amplitude, the correction
of closed orbit needs
patience and careful
analysis. But a set of
orbit correctors can be
used to minimize the
closed orbit.




Consider the closed orbit of a distributed dipole field error:
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Dipole field errors can be decomposed into harmonics. The
harmonics nearest to the betatron tunes will produce large closed
orbit distortion. Both the harmonic orbit correction and the x-square
correction methods essentially cancel the error harmonics nearest
to the betatron tunes. For a distributed &-dipole field error, we can
carry out statistical analysis to the random error and obtain
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The sensitivity factor of an accelerator is defined as
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Effect of dipole field error on orbit length

The path length of the reference orbit in the Frenet-Serret
coordinate system is

=f\/(1+x/,0)2+x'2+y'2a’swCO +f%ds+~-

C, is the orbit length of the unperturbed orbit, and higher order
terms associated with betatron motion are neglected. Since a
dipole field error gives rise to a closed-orbit distortion, the
circumference of the closed orbit may be changed as well. We
consider the closed-orbit change due to a single dipole kick at s = s,
with kick angle 6,, the change in circumference as

AC=C-C, = efG 55 4 _ p(s )
D(s,) = fG (5:%0) g VP am f“/” ) s, 1, (s) -1 (s,) D
2sinzv,
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Applications of dipole field error:

closed orbit bump: JB(s)B(s)

G(s,s,) =
X, (s)=G(s,s,)0 (5:50) 2sin v

Ko = 3 S B costv= Iy () -5 )

S0 n'::. -

cos[zv— |y (s)-w(s,)|]

where 0i = (ABs)./Bp and (ABs), are the
kick-angle and the integrated dipole field wf
strength of the i-th kicker. The conditions mf
that the closed orbit is zero outside these ;
four dipoles are X_,(s,) = 0, X'_.(s,4) = 0.
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Kicker Strength

Electrostatic kicker: :: i ! -
0, = E-L , where 0

¢+ Bp % <l [Er—
Bpo =0.2[Tm] at 60 MeV 101 e
L =length of the kicker di 'D D
¢ =speed of light s oo
E = gap electric field o2 4 s 8 w1 a1

For one turn injection and extraction, the integrated field strength
is 0.60 MV at 25 MeV electron beam energy. Choosing a length of
L=0.5 m, the applied voltage on two plate is 60 kV.



Injection and extraction kicker

Ax., (s) = WB.(s)B.(5) sin(Ay, () b,

0, =[B,ds/Bp is the kicker strength (angle), B, is the kicker dipole field, B,(s,) is
the betatron amplitude function evaluated at the kicker location, B,(s) is the
amplitude function at location s, and Ag,(s) is the phase advance from s, of the
kicker to location s. The quantity in curly brackets is called the kicker lever arm.

A schematic drawing of the central
orbit x_,, bumped orbit x,, and kicked
orbit x, in a Lambertson septum
magnet. The blocks marked with X are zero field regiom
conductor-coils, The ellipses marked C O / :
beam ellipses with closed orbits x, x,,
and x,. The arrows indicated a possible
magnetic field direction for directing

LIl

the kicked beams downward or
upward in the extraction channel.



The coherent betatron motion of the beam in the presence of an rf dipoleat v, = v
(modulo 1) with 1nitial conditiony =y’ =0 1s
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The lower curve shows the measured
vertical betatron oscillations at one
BPM in the IUCF Cooler resulting
from an rf dipole kicker at the betatron
frequency. The rf dipole was turned on
for 512 revolutions, and the beam was
imparted by a one-turn kicker after
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‘Q <1
2.54cm

The beam profile measured from an ionization profile monitor (IPM) at the
AGS during the adiabatic turn-on/off of an rf dipole. The beam profile
appeared to be much larger during the time that the rf dipole was on because
the profile was an integration of many coherent synchrotron oscillations. After
the rf dipole was adiabatically turned off, the beam profile restored back to its
original shape (Graph courtesy of M. Bai at BNL).



Off-momentum closed orbit and dispersion function

We have discussed the closed orbit for a reference particle
with momentum p,, including dipole field errors and
guadrupole misalignment. By using closed-orbit correctors,
we can achieve an optimized closed orbit that essentially
passes through the center of all accelerator components. This
closed orbit is called the “golden orbit,” and a particle with
momentum p, is called a synchronous particle. However, a
beam is made of particles with momenta distributed around a
synchronous momentum p,. What happens to particles with
momenta different from p,? Here we study the effect of off-
momentum on the closed orbit. For a particle with
momentum p, the momentum deviation is Ap=p-p, and the
fractional momentum deviation is 6=Ap/p,, which is typically
small of the order of 107 to 1073. Since & is small, we can
study the motion of off-momentum particles perturbatively.
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The bending angle resulting from a dipole field is different for particles with different
momenta. i.e. nonzero 6. The resulting betatron equation of motion is inhomogeneous.
The solution of an in-homogeneous linear equation of motion is a linear superposition of
the particular solution and the solution of the homogeneous equation, i.e.

x=Xﬁ+D5 x'=x}J,+D'5
x;; +Kx(s)x/3 =0, K (s)= iz - K(s)
0
D" +K (s)D = 1
0

The solution of the homogeneous equation is the betatron oscillation we have discussed
earlier. The solution of the inhomogeneous equation is called the dispersion function, or
the off-momentum closed orbit.



X=Xz+X,=x5+DO
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For quadrupoles: 1

cosK / LsinvK( 0
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For combined function magnets:
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Example: FODO cell
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Using the Courant-Snyder parameterization for the transfer matrix, we obtain
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The dispersion is proportional to the cell length L times the bending angle 6, and
inversely proportional to the square of the phase advance.
The dispersion at other locations can be obtained by using the 3x3 transfer matrix

M(s,,S,)



The AGS (33 GeV proton synchrotron built in 1960) is made of 60
(5x12) FODO cells. The CPS (28 GeV) is made of 50 FODO cells.

The betatron amplitude functions for one
superperiod of the AGS lattice, made of 20
combined-function magnets. The upper
plot shows B, (solid) and B, (dashed). The
middle plot shows the dispersion function
D,. The lower plot shows schematically the
placement of combined-function magnets.
The superperiod can be approximated by
five FODO cells. The phase advance of each
FODO cell is about 52.8°.
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What is the effect of bending radius on dispersion function?
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