Slice Emittance Measurement

KS 01/8/2022

Beam Parameters

Horizontal

$$\sqrt{\sigma'_x} = \frac{x'_{rms}}{m_{12}} \quad v = \frac{m_{11}}{m_{21}}$$
$$\sigma'_x = \frac{a_x v^2 + b_x v + c_x}{m_{21}}$$

Vertical & Horizontal

Machine Parameters are related

In the search of vertical focusing

Pick a Q3 then scan Q4 for minimum y . Next, change Q3 and scan Q4 for minimum y again.

But why
$$Y_{*1} = Y_{*2} = \cdots$$
? No! They Don't for [Drift][t-Quad] system
 $y_* = \frac{\varepsilon}{\beta^2} s^2$

Define vertical beam focal point
$$y = y_*$$
, when :

$$\frac{\partial y(Q_3, Q_4)}{\partial Q_3}\Big|_{Q_4 = const.} = 0 \quad or \quad \frac{\partial y(Q_3, Q_4)}{\partial Q_4}\Big|_{Q_3 = const.} = 0$$
So y_* is also a function of (Q_3, Q_4)

$$\implies \quad \frac{\partial y}{\partial Q_3}\Big|_{Q_4 = const.} = 0$$

$$\frac{\partial y}{\partial \xi}\frac{\partial \xi}{\partial Q_3}\Big|_{Q_4 = const.} = 0$$

$$\frac{\partial y}{\partial \xi}\frac{\partial \xi}{\partial Q_3} = 0 \quad \therefore \frac{\partial y}{\partial \xi}\Big|_{Q_4 = const.} = 0$$

$$\therefore \frac{\partial y_0(\xi)}{\partial \xi} = 0 \quad \Rightarrow \quad \frac{\partial y}{\partial \xi}\Big|_{Q_4 = const.} = 0$$

$$\therefore \frac{\partial y_0(\xi)}{\partial \xi} = 0 \quad \Rightarrow \quad \frac{\partial y}{\partial \xi}\Big|_{Q_4 = const.} = 0$$

$$x \in \xi_* \quad y = y_* \text{ Independent of } Q_4$$
At $\xi_* \text{ contour } \quad y_{rms}(Q_3, Q_4) \text{ in focus } \text{BUT } y_{rms} = y_0(\xi_*, L(Q_4) \text{ is constant focus (not a minimum)}$

- focuses beam vertically with Q3 Q4
- Test 3 points σ'_x along the ξ contour
- Set Q3 Q4 according to the changes of v that requires
- Change Q1 Q2 to re-focuses beam vertically

dv

• Essentially, we shifted ξ contour to where contains the minimum σ'_x

$$\frac{\langle x^2 \rangle}{m_{12}^2} = \sigma_h = \varepsilon \beta \cdot \Delta \nu^2 + \frac{\varepsilon}{\beta}$$

$$ertically \qquad 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.6$$

Beam Slicing

Digital Grid

Mesh in a fixed YAG location

Constant Charge

Mesh in a fixed portion of beam charge

Beam enlargement

Beam drfit

beam charge in each slices are equal \implies slice widths are different \implies resolution

New Constant Charge Method

Bin the reference current by the width of multipoles of y_{0rms}

Using this reference slice charge profile to slice up other beams

Also, we set a threshold charge for the edge slice to Increase slice accuracy

10% threshold

 $\delta y_{
m slice}$ RMS slice center drift on YAG during scan $W_{
m slice}$ is the slice width

- In these data, we already try our best to put every beam on the YAG center.
- Therefore, Digital Grid slicing is highly affected by resolution. And should not be used.

Pervious Constant Charge Method

New

Constant Charge Method

Pervious

Constant Charge Method

New Constant Charge Method

Pervious Constant Charge Method

New Constant Charge Method

