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Matrices and matrix functions. As a practical matter, when somebody wants to build an 
accelerator, she or he should use some approximations. One of VERY popular design 
approximation is called “an element (usually a magnet)” with nearly constant parameters. 
Then our Hamiltonian is s-independent on at part of the trajectory.   

 
H = Hi (s); Hi (s) = const; si < s < si+1{ }; dM

ds
= SH ⋅M; D = SH

M so, s( ) = Mi
i=1
∏ ; Mi si , s( ) = exp SHi s − si( )( )

   (187) 

e.g. we just need to learn how to calculate exp SHi s − si( )( ) . Finally, she or he than 
should try to build such elements. They never ideal but can be relatively close to the ideal 
boxes…  

 
Typical elements of accelerators are dipoles and quadrupoles (or their combination), 
sextupoles and octupoles (they a nonlinear), solenoids, wigglers…. Let’s start from a 
linearized Hamiltonian (143) magnetic DC elements – this is typical accelerator beam-
line.  

!
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The general evaluation of the matrix exponent in (193) is straightforward using the eigen 
values of the D-matrix: 

� 

det D − λ⋅ I[ ] = det SH − λ⋅ I[ ] = 0    (201) 
When the eigen values are all different (2n numerically different eigen values, 

� 

λi = λi ⇒ i = j , no degeneration, i.e., D can be diagonalized),  
 

D = UΛU−1; Λ =

λ1 0 0
0 λ2 0

... 0
0 0 0 λ2n

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

;     (202) 

we  can use  Sylvester’s formula that is correct for any analytical f(D), 
http://en.wikipedia.org/wiki/Sylvester’s_formula for evaluating (193): 

� 

exp Ds[ ] = eλk s
D− λ jI
λk − λ jj≠k

∏
k=1

2n

∑     (203) 
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Now, let’s build a unit projection operator on Yk : 

Pk =
M − λi I
λk − λii≠k

∏     (211) 

It is easy to show that  
PkYk = Yk; PkYi≠k = 0;     (212) 

First, each of the elements of the product (211) is unit on Yk  

M − λi I
λk − λi

⋅Yk =
λk − λi
λk − λi

Yk = Yk;i ≠ k    (213) 

while there is a zero-operator for all other eigen vectors: 
M − λi I
λk − λi

⋅Yi =
λi − λi
λk − λi

⋅Yi = 0    (214) 
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Furthermore, in most general case when matrix D cannot be diagonalized (i.e. there is 
degeneracy, some of eigen values have multiplicity, and D can be only reduced to a 
Jordan form) we can still write a specific from (generalization of Sylvester’s formula): 

� 

exp Ds[ ] = eλk s D− λiI
λk − λi

D− λkI
λi − λk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
j

j= 0

nk −1

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

ni
sp

p!
D− λkI( )p

p= 0

nk −1

∑
i≠k
∏

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

k=1

m

∑  (226) 

where nk < 2n is so called height of the eigen value λk. Details of the definitions and as 
well the proof of Sevester’s formulae are given in Appendix E.  
It is also shown there that nk can be replaced in (226) by any number nn > nk – it will add 
only term, which are zeros, but can make (226) look more uniform. One of the logical 
choices will be nn =max{nk}. The other natural choice will be nn =2n+1–m, especially if 
computer does it for you. Eq. (226) is a bit uglier than (202), but still can be used with 
some elegance. 
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From (E23) we get a shifting operator for eigen value λk :  

M−λkI[ ] ⋅Ykk,q = 0;   M−λkI[ ] ⋅Ykn, j =Ykn, j−1;  1< j ≤ q

U0
n k = Yk

n,1...Yk
n,l...Yk

n,q⎡⎣ ⎤⎦;

M−λkI[ ] ⋅U0
n k =U1

n k = 0,Yk
n,1...Yk

n,l...Yk
n,q−1⎡⎣ ⎤⎦

......

M−λkI[ ] j ⋅U0
n k =Uj

n k = 0..0
j zeros
! ,Yk

n,1...Yk
n,l...Yk

n,q− j
⎡

⎣
⎢

⎤

⎦
⎥

.....

M−λkI[ ]q ⋅U0
n k = 0

  (E27) 

 

Uf G( ) =
f (i) λk( )
i!

M−λkI[ ]i
i=1

nk−1

∑
k=1

m

∑ 0
λ1

! 0
λ2

! ... 0
λk−1
! Uk 1 ... Uk n

n−th
! Uk pk

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

λk

! "##### $#####

...0... 0
λm
!

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

      (E28) 

i.e. we collected all eigen vectors belonging to the eigen value . Now we need a non-
distorting projection operator on the sub-space of .  

� 

λk

� 

λk
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What we learned today? 
•  Linear ordinarary equations with constant coefificents (D-matrix) 

have a natural solution as exp(D.s) 
•  We can use functions of matricies and built entire method have 

analytical expression of matrix function as soon as we know eigen 
values of matrix D 

•  Matrix function have a very simple and elegant form – callse 
Sylveter formula- when eigen values are unique (e.g. in non-
degenrating case) and D can be diagonalized 

•  But even in a most general case, we can write analytical expression 
for matrix function 

•  In linear Hamiltonian case, eigne values split in pair of (λ,-λ) and the 
expression can be even further simplified 

•  The remaining task for linear matrices if accelerators is to find 
analytical expression for eigen values – the job for next class  

28 
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Proof of eq. (E-21): 
 

G0 =

1 0 0 0
0 1 0 0
0 0 ... 0
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

;  G1 =

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

G2 =

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

λ 2 λ 1... 0
0 λ 2 λ... 1
0 0 ... λ
0 0 0 λ 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 



PHY 564 Fall 2017 Lecture 6 31 


