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Matrices and matrix functions. As a practical matter, when somebody wants to build an
accelerator, she or he should use some approximations. One of VERY popular design

approximation is called “an element (usually a magnet)” with nearly constant parameters.
Then our Hamiltonian is s-independent on at part of the trajectory.

H=H,(s); Hi(s)zconst;{si <s<si+l}; @=SH-M; D =SH
ds (187)
M(so,s)=HMl.; Mi(si,s)=exp(SHi(s—si))
i=1
e.g. we just need to learn how to calculate exp(SHi(s—si)). Finally, she or he than

should try to build such elements. They never ideal but can be relatively close to the ideal
boxes...

Typical elements of accelerators are dipoles and quadrupoles (or their combination),
sextupoles and octupoles (they a nonlinear), solenoids, wigglers.... Let’s start from a
linearized Hamiltonian (143) magnetic DC elements — this is typical accelerator beam-
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If momentum p, is constant, we can use (134) and rewrite Hamiltonian of the linearized
motion as

2 2 2 2 2 2 2
= +f—+n-xy+g=—+L(xm,—ym, )+ == +g.XTT, (188-n)
n 2 f2 xy g2 ( 3 y 1) 2 pz ga 0
with
F
fef NGO (189-n)
p() p() p()
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Focusing/defocusing in transverse direction can come from
(a) a dipole field B or in other words, form the curvature of trajectory. Note that it is

always focusing.

JB, 0B, . . —
= —= . Note that quadrupole is focusing in one direction

dx dy
and defocusing in the other.

(c) from solenoidal field, B,. Note that it is always focusing.
The other terms, are responsible for coupling
(a) the transverse motion (x & y): solenoidal field, B, and torsionkx as well as SQ-

(b) from quadrupole field

quadrupole 9B, :
dx

(b) or transverse and longitudinal motion: g xd - it is responsible of dependence of the

time of flight on transverse coordinate.
2 2 2

Finally, there is 2. "¢
2p, P,

particle energy. It 1s frequently neglected at very high energies when

term which is corresponds to the velocity dependence on the

m’c® | p> =y~ <<< 1. But it should be kept for many accelerators, including RHIC.

We should not forget one of the most common element in any accelerator lattice — an
empty space, call drift.

In standard accelerator physics book you will find solution (matrices) for various
clements of the lattice: drift, bending magnet (with or with field gradient), quadrupole.
Then, piecewise, you can see introduction of solenoids, SQ-quadrupoles.... Instead of
solving dozen of second, fourth and sixth order differential equations... we will use
matrix function approach to find all solutions at once.
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Calculating matrices. Next, we focus on the question of how matrices are calculated. W
already discussed general idea than they can be integrates piece-wise wherein th
coefficients in the Hamiltonian expansion do not change significantly. In practice
accelerators are build from elements, which, to a certain extent, offers such conditions.

Since method of calculating 6x6 or 4x4 (or even some 2x2) matrices is very similar to
that for 2nx2n, where n is arbitrary integer. Hence, initially we will explore a general
way of calculating matrices, and then consider few examples. When the matrices D are
piece-wise constant and the D from different elements do not commute, we can write

5)= I1 M(s,.,[s,): M(s,.,|s)= l_lexp[Di (s—s.,)] (193)
i elements
The definition of the matrix exponent is very simple
oo k o
exp[A] =1+ Zi—', exp[D- s] =I+Z
k=1 : k=1

According to the general theorem of Hamilton-Kelly, the matrix is a root of its
characteristic equation:

M(so

(194)

Ds*
k!

d(A)=det[D-AIl; d(A4,)=0 (195)
dD)=0 (196)
1.e., a root of a polynomial of order < 2n. There is a theorem in theory of polynomials

(rather easy to prove) that any polynomial p;(x) of power n can be expressed via any
polynomial p,(x) of power m<n as

Pi(x) = pa(x)- d(x)+r(x)
where 1(x) 1s a polynomial of power less than m. Accordingly, series (194) can be always
truncated to

2n-1
exp[D] =1+ D¢, D", (197)
k=1
with the remaining daunting task of finding coefficients c;!
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There are two ways of doing this; one 1s a general, and the other is case specific, but an
easy one. Starting from a specific case when the matrix D is nilpotent (m<2n+1), 1.e.,

D" =0.
In this case, D"/ =0 the truncation is trivial:
m—1 Dk
exp[D] =1+ Z’F (198)

We lucky to have such a beautiful case in hand — a drift, where all fields are zero and
K=0 and k=0:

D 0 O 2.2
5 2 2 2 2 2 1 O 1 m-c
pol v T .mcz . D=0 D, 0 ;D:|: }Dzz 0 PR (199)
2 ) 0 0 0
¢ 0 0 D, 0 0

where it is easy to check: D*=0. Hence, the 6x6 matrix of drift with length 1 will be

M 0 0
o k 1k ! 1 l 1 l 2
Md,,,ﬁ:exp[l)-Z]:HZDl =1+D-I={ 0 M, 0 ;M,:[ }MT{ /(/3070)}(200
| = 0 0 M 0 1 0 I
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The general evaluation of the matrix exponent in (193) 1s straightforward using the eigen
values of the D-matrix:

det[D— A I] =det[SH-A-I] =0 (201)
When the eigen values are all different (2n numerically different eigen wvalues,
A=A =i=j,no degeneration, i.e., D can be diagonalized),

A0 0
0 0

D=UAU"; A= A X : (202)
0 0 0 A,

\

we can use  Sylvester’s formula that is correct for any analytical f(D),
http://en.wikipedia.org/wiki/Sylvester’s formula for evaluating (193):

2n ‘ D _ A I
exp[Ds]= Y e[| . /{ (203)
j

k=1 j#k Tk
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Let’s prove this very useful formula. First, let consider a polynomial function

N
=Y axt (204)
k=0
and apply it to (202)
N N il
=Y a,D" =Y q,(UAU") U{ZakAk}U‘ =U-f,(A)-U”
k=0 k=0 k=0
. 0 0 ] (205)
fN (A)E 0 fN A")
| 0 0 |

e.g. function of diagonalizable matrix is a similarity transformation of the diagonal matrix
with function of it eigen values. Goin to infinite series, we get

exp(D) = UZ a,(A) U™ =Uexp(A)U™
~ k!
. 0 0 (206)
exp(A)=]| 0 &+ 0
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Now we start using our refresher on linear algebra. Each eigen value of diagonalizable
matrix corresponds to an eigen vector

DY, =1Y,. (207)
(existence comes from statement that (D—/ll.l )Y,. =0 has non-trivial solution if

det(D—/liI ):O ). The set of eigen vectors 1s a full set of vectors, e.g. any arbitrary
vector can be expanded as

x=Yay,. (208)

This eigen vectors are columns of the matrix used for similarity transform to its diagonal
form:

Uu=|r.1,,...1,,] (209)
which is trivial to prove using (208( and (209) and comparing it with (202)
DU=UA; - D=UAU"

210
UA=[AY,A.Y,...A,.Y,, ] -
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Now, let’s build a unit projection operator on Y, :

i#k

[t 1s easy to show that
PY =Y; PY,

i#k

=0;
First, each of the elements of the product (211) is unit on Y,
— A1 A, —A
Y, =
A — A, A —A
while there 1s a zero-operator for all other eigen vectors:

ALy _dhy
A=A A -4

l 1

——Y, =Li#k
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Now we write

and

and finally

e.g.

equivalent to

PU=[..0Y,0..]

#(D)=U-£(A)-U"

2n 2n

U-F(A)= AR -00,0.]= 3 7(2) B0

=U-f(A)-U"

2n

f(D)=U-f(A)-U" ———z::f(),k)-Pk-U-U"‘ =if(lk)-Pk

2n D—).«I

f[D]=2f(/1k)H )’k_/{.

k=1 j#k

2n D_)‘I

fosl=2 ()15 —

k=1 j#k

we got famous Sylvester formula.
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We will use most of the time f:exp and Sylvester formula in form of (203). Naturally,

(219) 1s comprised of power of matrix D up to 2n-1 — perfectly with agreement that D 1s
a root its characteristic equation (196).

Since Dis real matrix, any of its complex eigen values paired with their complex
conjugates:
DY =1Y, < DY =AY, (220)

meanwhile real eigen values not always related. One more important ratio for
accelerators: trace of Dis equal zero, e.g. sum of it eigen values is also equal zere:

Tmce[D] = Trace[UAU_IJ = Trace[U_lUA] = Tmce[A] = i Ay (221)
k=1

It 1s especially useful for n=1 — you will see it in your home work.

Another easy case is when D can be diagonalized, even though the number of different
eigen values 1s m < 2n (there 1s degeneration, 1.e. some eigen values have multiplicity
>1). We can use again simple Sylvester’s formula (202) again, which just has fewer
elements (m instead of 2n):

exp[Ds| = iel” H D-A1 (225)

k=1 A% A = ’11
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Furthermore, in most general case when matrix D cannot be diagonalized (i.e. there 1s
degeneracy, some of eigen values have multiplicity, and D can be only reduced to a
Jordan form) we can still write a specific from (generalization of Sylvester’s formula):

& LI D-ATE(D-AT ) | )
exp[Ds] = D e H< T )Y ﬁ - 2 (D= 2] (226)

k=1 ik i j=0 ] p=0 P

where n, < 2n is so called height of the eigen value A,. Details of the definitions and as
well the proof of Sevester’s formulae are given in Appendix E.

It 1s also shown there that n, can be replaced in (226) by any number nn > n, — it will add
only term, which are zeros, but can make (226) look more uniform. One of the logical
choices will be nn =max{n,}. The other natural choice will be nn =2n+1-m, especially if
computer does it for you. Eq. (226) is a bit uglier than (202), but still can be used with
some elegance.
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Appendix E. We had shown that for if 2nx2n matrix D has 2n unequal eigen values A, # A,

DY, = AY,; det[D-AI]=0 (E1)
it can be brought to the diagonal form of
(4, 0 0 |
y 0 4 O
D=UAU ;A= U=[Y,,..Y,..1,,]
cese ves ees (E2)
0 0 A,

The we proved that a straight-forward Sylveter formula for an arbitrary (to be exact,
analytical) functions:

D-A1

f[Ds]= Zf )1 2 i
Jj#k (E3)

2 D-AI

In practice, there are always cases when eigen values have multiplicity, and denominators
in (E3) turn into zeros, e.g. we have a degeneration of this simple form. Another easy
case 1s when D can be diagonalized, even though the number of different eigen values is
m < 2n (there is degeneration, i.e. some eigen values have multiplicity >1). We can use
again simple Sylvester’s formula (E3) again, which just has fewer elements (m instead of
2n):

D-21
exp[Ds] z“e’ls H ﬁ (E4)
k=1 Aj# My
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But the full consideration requires a bit more work — here we are walking through a
general case. An arbitrary matrix M can be reduced to an unique matrix, which in general
case has a Jordan form: for a matrix with arbitrary height of eigen values the set of eigen
values {4,,...,A,} contains only unique eigen values,ie. 4, #4; V k#j:

sizelM]=M; {A,....A, }; m< M; det[LI-M]=0;
M=UGU"; G= ).G, =G, ®..0G,; ) siz[G =M (E5)
®k=1,m

where @ means direct sum of block-diagonal square matrixes Gy which correspond to the
eigen vector sub-space adjacent to the eigen value A . Size of Gy , which we call /;, is

equal to the multiplicity of the root A, of the characteristic equation
det[AI-M]=[[(2-2,)" .
k=1,m

In general case, Gy is also a block diagonal matrix comprised of orthogonal sub-spaces
belonging to the same eigen value

G,= 2Gi=G®..0G"; > sizelGi]=1, (E6)
@ j=1,p;

where we assume that we sorted the matrixes by increasing size: size[G]™']> size[G]],
1.€. the

n, =size[G 1<, (E7)
is the maximum size of the Jordan matrix belonging to the eigen value A . General form
of the Jordan matrix is:

1
0
G| H (E8)




This 1s obviously includes non-degenerate case when matrix M has M independent eigen
values and all is just perfectly simple: matrix is reducible to a diagonal one

sizelM]= M; {A,.....,A4, }; det[LI-M]=0;
A 0O
M=UGU"; G=|0 .. U=[Y,Y,,..Y, | M Y, =1Y,; k=1..M (E9)
Ay

An arbitrary analytical matrix function of M can be expended into Taylor series and
reduced to the function of its Jordan matrix G :

f(M>=if,M" =if,.(UGU‘1)" E[ifo(G)iU‘lJ= Zf (G)"]U‘l ~UF(G)U (E10)

Before embracing complicated things, let’s again look at the trivial case, when Jordan
matrix 1s diagonal:

a1 |Zra o Gy o
f(G):Zf,G":Zf,.o = 0 . =l 0 ..
i i P DA Fhl g1y
F(4) 0
fmy=y o .. -1
i f(Ay)




The last expression can be rewritten as a sum of a product of matrix U containing only
specific eigen vector (other columns are zero!) with matrix U

f) 0 ;
FM)=[Y,.Y,.Y,]| 0o .. U =) F(A)[0..Y,..0]U" (E12)

! f ().

Still both eigen vector and U in is very complicated (and generally unknown) functions
of M.... Hmmmmm! We only need to find a matrix operator, which makes projection

onto individual eigen vector. Because all eigen values are different, we have a very clever
and simple way of designing projection operators. Operator
. M-A41
P = k

A=A,
has two important properties: it 1s unit operator for Y; , it 1s zero operator for Yy and
multiply the rest of them by a constant:

MY, -ALY A-A

(E13)

PY = = Y, =0;
FRETTO T A2,

| M- Y.-A1'Y A-A4
PIY. — i k P "7 k Y EY, E14
k i A,I.—A,k A,l.—lk [ i ( )
py MY ALY, A=l

) PR,



I.e. it project U into a subspace orthogonal to Y. We should note the most important
quality of this operator: it comprises of known matrixes: M and unit one. Also, zero

operators for two eigen vectors commute with each other — being combination of M and I
makes 1t obvious. Constructing unit projection operator Y; which 1s also zero for

remaining eigen vectors is straight forward from here: it 1s a product of all M-1 projection
operators

, M-I
Lll’lIf HP H[ l _Z‘ )

k#i k#i

(E15)
Y, j=i
PLil’lI[Y] 61 { . . }
O, j#i
Observation that
Plfth met [Y1 LY, LY, ] = [0....Yk O] (E16)

allows us to rewrite eq. (E12) in the form which is easy to use:

Zf(/l 0...Y,..0]U" = me FUUT = me k. (E17)

which with (E15) give final form of Sylvester formula (for non-degenerated matrixes):

EhﬂUfﬂM Aq (E18)

i#k




One can see that this 1s a polynomial of power M-1 of matrix M, as we expected from the
theorem of Jordan and Kelly that matrix 1s a root of its characteristic equation:

g(A) =det[M - AL}, g(M)=0; (E19)

which is polynomial of power M. It means that any polynomial of higher order of matrix

M can reduced to M-1 order. Equation (E18) gives specific answer how it can be done
for the arbitrary series.

If matrix M 1is reducible to diagonal form, where some eigen values have
multiplicity, we need to sum only by independent eigen values:

Ef(ik)HiM “) (E18-red)

A # A

and it has maximum power of M of m-1. Prove it trivial using the above.
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Let’s return to most general case of Jordan blocks, i.e. a degenerated case when eigen
values have non-unit multiplicity. For a general form of the Jordan matrix we can only
say that 1t 1s direct sum of the function of the Jordan blocks:

G;
- = e
f(G):ZfiGl:Zfi 0
0
(Gl 0
0
f(Gym)]

i

2(G) o

2 f(G)=£(G))®...® £(GL);

0O 0 0
0 0
0 0
0 0 G|
®@k=1m, j=1,p,

(E20)

Function of a Jordan block of size n contains not only the function of corresponding

eigen value A, but also its derivatives to (n-l)th order:

P PN PR P (=1
FU 2 (n=2)!

21
0 A
G=|.. ..
0 0
0 0

0

. 0

1

a

0

0

0

fD

0
0

F)
fA)

The prove of Eq. 21 is your take-home task — use polynomial as a function.

(E21)



We are half-way through. There is sub-space of eigen vectors /)/Z" which corresponds

to the eigen value A, and the block G :

7/[” & [Y2 s Y, = size(G1) (E22)
M Y™ =4 Y™, MY =AY+ Y 1<i<q (E23)

It 1s obvious from equation (E21) that projection operator (E15) will not be zero operator
for 7/[” , and it also will not be unit operator for 7{”’ . Now, let’s look on how we can

project on individual sub-spaces, eigen vectors, including zero-operator for specific sub-
spaces. Just step by step (from eq. (E6) and (E21):

f(M)=Uf(G)U™

0t | (E24)
Uf(G) = G 0 A .0.. 0
‘| v v -k -
k=1 i=1 L. ok SR A
A.=|B" .. B' B;"=[o ..... 0 y Yk”"’"“} (E25)
- a: ~ i collumns
1.e.

m n=l p(i) E26
Uf(G):ZZf s’lk)g 0 0 |u o 0.0 Y yret | 0. g( )
k=1 i=1 L. A A Ay 1 i collumns B Pk A

n—th
L A |

\9)



From (E23) we get:
M-AI]-Y,*=0, [M-AI]- Y=Y 1<k<gq

U =LY LY,
M-21]-U" “=U; “=[0,," .Y Y]

...... (E27)
M-A1)-Ur*=u"* :[(w ,Yl?"...Y,f’l...Y]f"’f}
J zeros
M-AT]"-U'* =0
m 1 (i) _
Uf(G):ZZM[M‘AkI]IQ g . 0 {U“ LUt U m} 0. o|E28)
k=1 i=1 L Aok Ay n—th e
: X |

i.e. we collected all eigen vectors belonging to the eigen value A,. Now we need a
projection non-distorting operator on the sub-space of 4, .

[\®)
\S)
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First, let’s find zero operator for subspace of 4,:

0,=[M-21]" = [M-AI1]"U '=[M-AJ]" [Y,:’l LY ...Y,f"’] =0;

o L B H(M MJ (E29)

i#k A‘ Z’ i#k

Ty is projection operator of sub-space of A, but it is not unit one! To correct that we
need an operator, which we create as follows:

—Al
R= 7 _i{ ; T=M-AL a=o,,=1/(A-1)
k i
RU,=U, +aU, U, =U,
RU,_,=U_ +oU, U, =T""U,
RU,=U, U,=T""U,

Q=oT

_ _ -1
U,=RU,=RT"'U,
U, =R(I+Q)U, =ROT"U
U,,=ROU,_, =ROT"*U

so, we get it:

M-I S M-axY
pi= b | k E30
‘ Ak—x.[+2{ai—kaJ (539)



The final stroke is:

A\ M-Al S(M-A1Y "
P =] I(Pk’) =] I{lk—): I+ '1[ A.—ik j } (E31)
]:

izk i#k

and

- m M—A«II n—1 M-=A1 A n;—1 f(i)(ﬂ‘k) ;

This is most general expression for any matrix function with f(4,)=

Note that we are using s as a variable which generates polynomials:

w5 T S5 | S5 | o

k=1| izk i=1 l.

with eigen values of det(M—AI)=0 to be found.
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Note that we are using s as a variable which generates polynomials:

r-9)=3, H{T__ﬁl[uzw—iilw SRy | @)

k=1| i#k i=1

with eigen values of det(M—2AI)=0 to be found.

Furthermore, in most general case when matrix D cannot be diagonalized (i.e. there is

degeneracy, some of eigen values have multiplicity, and D can be only reduced to a
Jordan form) we can still write a specific from (generalization of Sylvester’s formula):

m n -1 il" n—l P
exp[ns]:wn{l 5 z[‘;‘_’;‘]} Soooay | 39
i k

k=1 i#k 1 j=0 p=0

where n, < 2n is height of the eigen value A,. It is also shown there that n, can be
replaced in (E34) by any number nn > ny — it will add only term, which are zeros, but can
make (E34) look more uniform. One of the logical choices will be nn =max{n,}. The
other natural choice will be nn =2n+1-m, especially if computer does it for you. Eq.
(E34) 1s a bit uglier than (E3), but still can be used with some elegance.
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Eigen values split into pairs with the opposite sign because it is a Hamiltonian system:
det[SH—A-1]=det[SH—A-1]' =det[-HS—A-1] =
(=1)*" det[HS + A- 1] = det(S™ [HS + A-1]S) = det[SH + A - I]#

First, it makes finding eigen values a easier problem, because characteristic equation 1s
bi-quadratic:

(L3-35)

dettD- A= (% -2)(-2-2)=]](¥-27)=0. (L3-35-1)

For accelerator elements it is of paramount importance, 1D case is reduces to trivial (L3-
37), 2D case 1s reduced to solution of quadratic equation and 3D case (6D phase space)
required to solve cubic equation. For analytical work it gives analytical expressions —
compare it with attempt to write analytical formula for roots of a generic polynomial of
6-order? It simply does not exist! Thus, we have an extra gift for accelerator physics — the
roots can be written and studied! It is also allow us to simplify (202) into

exp[Ds] = 2 W DAAI D= AT DI D - 1_21
p 22% J;k )‘ 2 ), 2 Ak Al;.k A 2 )U

n s —A.s As N D2 A I
exp[Ds]:Z c T 144 "¢ p 7
k=1 2 2)‘% Jj#k )" )'

where index k goes only through n pairs of{A ,—A }. While (L3-36) does not look
simpler, it really makes it easier (4 times less calculations) when we do it by hands... For
example we can look at 1D case. First, we can easily see that

A==A=A X =—det[D] (L3-37)

(L3-36)




Thus, 1t 1s non-degenerated case only when det[D]#0. (202) give us a simple two-piece
expression :

D-A D+l

Ds] =¥ —— L3-38
exp[Ds| =e 7 ¢ o ( )
while (L3-36) bring it home right away:
e/ls + e—ﬁs e/ls‘ . e—/ls
Ds| =1 D ;
exp[Ds] St Y
exp[Ds] =1 cosh|AJs + DS%T’MS; det[D] <0; || =+/—det[D] (L3-39)
Dsin|Als
exp[Ds] =1 cos|Als + 7 . det[D]>0; |A|=+/det[D]

The case det[D]=0 means in this case that D is nilpotent: eqs (195-25) look like follows
detD=0= A =-A,=0; d(A)=det[D-All=(4 -A)(-4,-A) =2 =D*=0 (L3-40)
hence
exp[Ds] =I1+Ds; det[D]=0; (L3-41)

Naturally, (L3-41) 1s result of full-blown degenerated case — eq. (L3-33), but it also can
be obtained as a limit case of (L3-39) when |A| —0.
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What we learned today?

Linear ordinarary equations with constant coefificents (D-matrix)
have a natural solution as exp(D:-s)

We can use functions of matricies and built entire method have

analytical expression of matrix function as soon as we know eigen
values of matrix D

Matrix function have a very simple and elegant form — callse
Sylveter formula- when eigen values are unique (e.g. in non-
degenrating case) and D can be diagonalized

But even in a most general case, we can write analytical expression
for matrix function

In linear Hamiltonian case, eigne values split in pair of (A,-A) and the
expression can be even further simplified

The remaining task for linear matrices if accelerators is to find
analytical expression for eigen values — the job for next class
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