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Finishing with linear  
Hamiltonian systems 
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Linear equations of motion 

We finished the accelerator Hamiltonian expansion by concluding that the first not-
trivial term in the accelerator Hamiltonian expansion is a quadratic term of canonical 
momenta and coordinates. This Hamiltonian can be written in the matrix form (letting n 
be a dimension of the Hamiltonian system with n canonical pairs{qi, Pi}) 

� 

H = 1
2

hij (s)xi
i=1

2n

∑
i=1

2n

∑ x j ≡
1
2
XT ⋅H(s) ⋅ X ;""""" " " (163)"

� 

XT = q1 P1 ..... .... qn Pn[ ] = x1 x2 ..... .... x2n−1 x2n[ ]," "
with"the"self1evident"feature"that"a"symmetric"matrix"can"be"chosen""

� 

HT =H" " " " " ""(164)"
(to"be"exact,"a"quadratic"form"with"any"asymmetric"matrix"has"zero"value)."The"
equations"of"motion"are"just"a"set"of"2n"linear"ordinary"differential"equations"with"s$
dependent"coefficients:"

� 

dX
ds

=D(s) ⋅ X; D = S ⋅H(s) .    (165) 
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One important feature of this system is that  

� 

Trace[D] = 0,     (166) 

(the trivial proof is based on 

� 

Trace[AB] = Trace[BA]; Trace[AT ]=Trace[A]  and

� 

SH( )T = − HS( ) ). i.e., the Wronskian determinant of the system 
(http://en.wikipedia.org/wiki/Wronskian ) is equal to one.  The famous Liouville theorem 

comes from well-known operator formula 

� 

ddet[W(s)]
ds

= Trace[D]; we do not need it here 

because we will have an easier method of proof. You also have it as a homework 
problem. 

The solution of any system of first-order linear differential equations can be expressed 
through its 2n initial conditions Xo at azimuth so  

� 

X(so) = Xo ,     (167) 

through the transport matrix M(so/s) : 

� 

X(s) =M so s( ) ⋅ Xo .     (168) 
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Mathematically, it is nothing else but 

� 

M(s) = lim
N→∞

I+D(sk )( )Δs
k=1

N

∏ ; Δs = (s− so) /N; sk = so + k ⋅ Δs.!

There are two simple proofs of this theorem. The first is an elegant one: Let us consider 
the matrix differential equation 

� 

′ M ≡ dM
ds

= D(s) ⋅M;      (169) 

with a unit matrix as its initial condition at azimuth so  

� 

M so( ) = I.    (170) 

Such solution exists and then we readily see that 

� 

X(s) =M s( ) ⋅ Xo .     (169-1) 

satisfies eq.(165): 

� 

dX
ds

=
dM s( )
ds

⋅ Xo =D(s) ⋅M s( ) ⋅ Xo ≡D(s) ⋅ X #.     
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A more traditional approach to the same solution is to use the facts that a) there exists a 

solution of equation (165) with arbitrary initial conditions  (less-trivial statement); and, b) 
any linear combination of the solutions also is a solution of eq. (165) (very trivial one). 
Considering a set of solutions of eq.(165) Mk(s), k=1,…2n, with initial conditions at 
azimuth so ,then 

� 

M1(so) =

1
0
...
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;M2(so) =

0
1
...
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;..........M2n (so) =

0
0
...
0
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;, 

� 

dMk (s)
ds

=D(s) ⋅ Mk (s); (171) 

and their linear combination 

� 

X(s) = xko
k=1

2n

∑ ⋅ Mk (s) ,     (172) 

which satisfies the initial condition (167) 

� 

X(so) = xko
k=1

2n

∑ ⋅ Mk (so) =

x1,0
x2,0
...

x2n−1,0
x2n,0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

= Xo
.    (173) 

Now, we recognize that our solution (172) is nothing other than the transport matrix eq. 
(169-1) with matrix M(s) being a simple combination of 2n columns Mk(s): 

� 

M(s) = M1(s),M2(s),...,M2n (s)[ ]. 
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Eq. (171) then makes it equivalent to eqs. (169) and (170). Finally, we use notion 

� 

M so s( )  
to clearly demonstrate that 

� 

M so( ) = I at azimuth so 

In differential calculus, the solution is defined as 

� 

M so s( ) = exp D(s)ds
so

s

∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= lim
N→∞

I+D(sk )( )Δs
k=1

N

∏ ;

Δs = (s− so) /N; sk ∈ {so + (k −1) ⋅ Δs,so + k ⋅ Δs}

  (174) 

The fact that the transport matrix for a linear Hamiltonian system has unit determinant 
(i.e., the absence of dissipation!) 

� 

detM = exp Trace(D(s))ds
so

s

∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=1.   (175) 

is#the#first#indicator#of#the#advantages#that#follow.##
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Let us consider the invariants of motion characteristic of linear Hamiltonian systems, i.e., 
invariants of the symplectic phase space. Starting from the bilinear form of two 
independent solutions of eq. (165), X1(s) and X2(s), (it is obvious that XTSX=0) we show 
that  

� 

X2
T (s) ⋅S ⋅ X1(s) = X2

T (so) ⋅S ⋅ X1(so) = inv .   (176) 

The proof is straightforward  

� 

d
ds

X2
T ⋅S ⋅ X1( ) = X2

T ′ ⋅S ⋅ X1 + X2
T ⋅S ⋅ X1′ = X2

T ⋅ (SD)T S+ SSD( ) ⋅ X1′ ≡ 0 . 

Proving that transport matrices for Hamiltonian system are symplectic is very similar: 

� 

MT ⋅S ⋅M = S.     (177) 

Beginning from the simple fact that the unit matrix is symplectic: 

� 

IT ⋅S ⋅ I = S, i.e. 

� 

M so so( ) 
is symplectic, and following with the proof that 

� 

MT so s( ) ⋅S ⋅M so s( ) =MT so so( ) ⋅S ⋅M so so( ) = S : 

� 

d
ds

MT ⋅S ⋅M( ) = MT′ ⋅S ⋅M + MT ⋅S ⋅ ′ M = MT ⋅ (SD)T S + SSD( ) ⋅M ≡ 0 # 
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Group G is defined as a set of elements, with a definition of a product of any two elements of the group; 
P = A • B ∈G ; A, B∈G . The product must satisfy the associative law : A • (B •C) = (A • B)• C; there 
is an unit element in the group 

� 

I ∈ G;I • A = A • I = A :∀A ∈ G;  and inverse elements: 

� 

∀A ∈ G;∃B(called A−1)∈ G : A−1A = AA−1 = I. 

Symplectic square matrices of dimensions 2n x 2n, which include unit matrix I, create a 
symplectic group, where the product of symplectic matrices also is a symplectic matrix.. 
The symplectic condition (177) is very powerful and should not be underappreciated. 
Before going further, we should ask ourselves several questions:  How can the inverse 
matrix of M be found? Are there invariants of motion to hold-on to? Can something 
specific be said about a real accelerator wherein there are small but all-important 
perturbations beyond the linear equation of motions? 

As you probably surmised, the Hamiltonian method yield  many answers, and is why it 
is so vital to research.  

We can count them: The general transport matrix M (solution of 

� 

′ M = D(s) ⋅M with 
arbitrary D) has (2n)2 independent elements. Because the symplectic condition 

� 

MT ⋅S ⋅M −S = 0 represents an asymmetric matrix with n-diagonal elements equivalently 
being zeros, and the conditions above and below the diagonal are  identical – then only 
the n(2n-1) condition remains and only the n(2n+1) elements are independent. For n=1 
(1D) there is only one condition, for n=2 there are 6 conditions, and n=3 (3D) there are 
15 conditions. Are these facts of any use in furthering this exploration? 



10 As you probably surmised, the Hamiltonian method yield many answers, and is why it 
is so vital to research.  

We can count them: The general transport matrix M (solution of 

� 

′ M = D(s) ⋅M with 
arbitrary D) has (2n)2 independent elements. Because the symplectic condition 

� 

MT ⋅S ⋅M −S = 0 represents an asymmetric matrix with n-diagonal elements equivalently 
being zeros, and the conditions above and below the diagonal are  identical – then only 
the n(2n-1) condition remains and only the n(2n+1) elements are independent. For n=1 
(1D) there is only one condition, for n=2 there are 6 conditions, and n=3 (3D) there are 
15 conditions. Are these facts of any use in furthering this exploration? 

First, symplecticity makes the matrix determinant to be unit: 

� 

det MT (s) ⋅S ⋅M(s)[ ] = detS → detM(s)( )2 = 1→ detM = ±1;   detM(0) = 1→ detM = 1 #  

i.e., it preserves the 2n-D phase space volume occupied by the ensemble of particles 
(system):  

� 

dqi
i=1

n

∏ dPi∫ = inv      (178) 

The other invariants preserved by symplectic transformations are called Poincaré 
invariants and are the sum of projections onto the appropriate over- manifold in two, 
four…. (2n-2) dimensions: 

� 

dqi∫∫ dPi

i=1

n

∑ = inv; dqidP
idq jdP

j∫∫∫∫
i≠ j
∑ = inv......  (179) 
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1 Look at a simple n=1 case with 2x2 matrices to verify  that the symplectic product is reduced to 
determine  

� 

M2x2 =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; S2x2 = σ;⇒MT ⋅σ ⋅M = detM ⋅σ   (Note-4) 

M2x2 =
a b
c d

⎡

⎣
⎢

⎤

⎦
⎥; S2x2 =σ ;⇒MT ⋅σ ⋅M = detM ⋅σ

a b
c d

⎡

⎣
⎢

⎤

⎦
⎥

T
0 1
−1 0

⎡

⎣
⎢

⎤

⎦
⎥

a b
c d

⎡

⎣
⎢

⎤

⎦
⎥ =

a c
b d

⎡

⎣
⎢

⎤

⎦
⎥

c d
−a −b

⎡

⎣
⎢

⎤

⎦
⎥ =

0 ad − bc
−ad + bc 0

⎡

⎣
⎢

⎤

⎦
⎥

a b
c d

⎡

⎣
⎢

⎤

⎦
⎥

−1

= 1
ad − bc

d −b
−c a

⎡

⎣
⎢

⎤

⎦
⎥;

2x2 matrix is easy… 
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For example, matrix M can be represented as n2 combinations of 2x2 matrices Mij: 

� 

M =
M11 ... M1n

... ... ...
Mn1 ... Mnn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
.     (180) 

Using equation (Note-4), we easily demonstrate the requirement for the symplectic 
condition (177) is  that the sum of determinants in  each row of these 2x2 matrices is 
equal to one; the same is true for the columns: 

� 

det Mij[ ]
i=1

n

∑ = det Mij[ ]
j=1

n

∑ =1    (181) 

with a specific prediction for decoupled matrices, which are block diagonal: 

� 

M =
M11 0... 0
0 ... 0
0 0... Mnn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; det Mii[ ] =1.   (182) 
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M11 ... M1n

... Mkk ...
Mn1 ... Mnn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

T

σ 0 0
.... σ ...
0 ... σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

M11 ... M1n

... Mkk ...
Mn1 ... Mnn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

M1i
TσMi1

i=1

n

∑ ... M1i
TσMin

i=1

n

∑

... Mki
TσMi1

i=1

n

∑ ...

Mni
TσMi1

i=1

n

∑ ... Mni
TσMn1

i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Mki
TσMik

i=1

n

∑ = det[Mik
i=1

n

∑ ]σ =σ ⇒ det[Mik
i=1

n

∑ ]= 1

dqi∫∫ dPi

i=1

n

∑ = inv;

Mki
TσMij

i=1

n

∑ = 0;i ≠ j
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x 

det[Mik
i=1

n

∑ ]= 1

det[Mki
i=1

n

∑ ]= 1
dqi∫∫ dPi

i=1

n

∑ = inv;

 

!X =
M11 M12

M 21 M 22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
X; X =

x
px
y
py

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

; !X = X =

!x
!px
!y
!py

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

det[M11]+ det[M 21]= 1

M
px

 !px

 !x

 
!py

 

Area[ !x, !px ]=
"e ⋅
"
A ×
"
B⎡⎣ ⎤⎦ =

det[M11]⋅Area[x, px ]

 !y

 
!
A  
!
B  

!
C

 
!
D

 

Area[ !y, !py ]=
"e ⋅
"
C ×
"
D⎡⎣ ⎤⎦ =

det[M 21]⋅Area[x, px ]

Determinant of a block can can 
be positive and negative 

Since transpose 
matrix is symplectic
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Other trivial and useful features are: for the columns  

M = C1 C2 .... C2n−1   C2n
⎡
⎣

⎤
⎦   ⇒

C2k−1
T SC2k   = −C2k

T SC2k−1 = 1, k = 1,..,n
others are 0

     (183) 

or lines of the symplectic matrix: 

M =

L1

L2

....
L2n−1

L2n

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

   ⇒−L2k SL2k−1
T   = L2k−1SL2k

T = 1, others are 0   (184) 
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We could go further, but we will stop here by showing the most incredible feature of 
symplectic matrices, viz., that it is easy to find their inverse (recall there is no general 
rule for inverting a 2n x 2n matrix!) Thus, multiplying eq. (177) from left by –S we get  

� 

−S ⋅MT ⋅S ⋅M = I  ⇒  M−1 = −S ⋅MT ⋅S.   (185) 

As an easy exercise for 2x2 symplectic (i.e. with unit determinant – see note below) 

matrices, you can show that 

� 

M =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (183) gives 

� 

M =
d −b
−c a
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . It is a much less trivial 

task to invert 6x6 matrix; hence, the power of symplecticity allows us enact many 
theoretical manipulations that otherwise would be impossible. Obviously, and easy to 
prove, transposed symplectic and inverse symplectic matrices also are also symplectic:  

� 

M−1T ⋅S ⋅M−1 = S; M ⋅S ⋅MT = S.   (186) 
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Phase space: 
Maps, diagrams, more. 

x

px E

t 

y

py 

s
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The full set of coordinates and momenta of particle (or a ensemble of particles) {qi,Pi} is 
called phase space. Naturally dimension of the phase space is always even: 2,4,6.., 2n. 
While motion in the coordinate space {qi} can be rather arbitrary, the same motion in the 
phase space satisfies a number of very strong constrains, e.g. there is a number of 
invariants.  

Location or motion of particles in the phase space are called phase-space plots or phase-
space diagrams. Naturally we usually can plot on the paper or show on the screen only 
one coordinate and one momentum – hence, you usually see phase plot for 1D case, or 
for projections of multi-dimensional phases space plot on one plane. 

Adding an additional coordinate, s, allows one to follow the trajectories of the particles in 
the phase space. It is important feature if system’s Hamiltonian depends on independent 
variable (s or t). One of very important featured of the particle’s trajectories in this 
version of the phase space that they cannot cross.  
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The later comes from a simple observation that to particles having the same values of 
coordinates and momenta {qi,Pi} at the same moment of time (s), will follow identical 
trajectories! Note, that this is very general statement – it does not rely on Hamiltonian 
mechanics, but only on the assumption that full set of coordinates and momenta {qi,Pi} 
fully describes the initial conditions for a particle. 

If we take out the independent variable s axis from the set of the axes, than trajectories 
can, in principle, cross if the Hamiltonian is s - dependent. 

 
 

  x

px E

t

y

py
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Example of {x,Px} phase-space diagram showing trace of the particles motion in 
accelerators: a set of particles with initial coordinate were seeded n the plot and then 
traced for a large number of turns. Stable motion results in periodic and semi-periodic 
results in “orbits – semi-closed trajectories ” in the phase space. 
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A simple example will be a  

H =

p2

2
, s < 0

p2

2
+ x

2

2
, s < 0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

    (x) 

One can easily see that for s < 0, the solution is 

p = po;x = xo + pos     (xx) 

and for s > 0:  

p = a ⋅cos s +ϕ( );x = a ⋅sin s +ϕ( );

a = xo
2 + po

2 ; tanϕ = xo
po

   (xxx) 

 Clearly this two trajectories cross. 

 

x

p!

s<0 

s>0 

xo,po o!
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When Hamiltonian does not depend on s, situation is simpler and trajectories do not cross 
in the phase space. The argument is the same – trajectory is determined by the initial 
conditions and, in this case, simply shifted in s, but not in the phase space. 
It not true for motion in coordinate space – particle’s trajectory can cross since at the 
same point they may have different momenta. The same is true for projection of phase 
diagram for 2D or 3D motion on any subset of coordinate and momenta {x,Px,y,Py}-
>{x,y} or {x,Px} or {y,Px}…  

   (a)      (b) 

    
(a) Phase plot of decoupled motion with constant Hamiltonian – no crossing. A special 
unstable point at zero correspond to a stopping point – e.g. two trajectories approach each 
other but never cross!;  (b) Projection of 4D phase-space trajectories on (q1,q2) 
coordinates – naturally they can cross. 
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Let’s explore this case a notch further. For an oscillator Hamiltonian 

H = p2

2
+ x

2

2
     (iv) 

(use H = p2

2m
+ k x

2

2  
if you need more constants) – it just a set of boring concentric 

circles. 

 

x

p!

o!
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Maps- following trajectories. 
Maps. Let’s follow particle’ trajectory originated at an arbitrary point in the phase-space
X1  at s1  and finishing at X2  at s2 . Solution X2  is unique and depends (in general case) 
on X1 , s1  and s2 . 

X2 s2( ) = F X1, s1, s2( )  

When X1  runs through the entire phase space R2n , than the above equation is nothing 
that a function defined at the entire phase space. It is frequently called map, e.g. a 
transformation of the phase in the interval s1 to s2: 

 
X s2( ) = M s1 s2( ) X s1( )( ) ≡ M:X s1( )    (155) 

which can be locally linearized in proximity of any trajectory Xo s( ) : 

 

δ X(s2 ) = MXo
(s1 s2 ) ⋅δ X(s1)+O δ 2( )

MXo
(s1 s2 ) =

∂M s1 s2( ) X( )
∂X

X=Xo

    (156)
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As we discussed above, this matrix is symplectic. We will call map (155) symplectic if it 
is locally symplectic, e.g.  

MT
Xo
(s1 s2 ) ⋅S ⋅MXo

(s1 s2 ) = S ∀Xo, s1, s2    (157)

 
Just to reinforce – any map generated by Hamiltonian motion, is symplectic.  
Now, instead of talking about particle motion, we can consider transformation of various 
volumes in the phase space or transformation of functions, such as particle’s density. 
First, let’s consider a space phase volume (dimension 2n) occupied by particles having an 
arbitrary hyper-surface Ω. Then the hyper-surface can undergo and transformation, but 

it’s the value of the volume inside dqi
i=1

n

∏ dPi

Ω
∫ = inv      (158) 

would not change – this is know as Liouville theorem. The prove is easy 

V s( ) = dqi
i=1

n

∏ dPi

Ω
∫ ≡ dX(s)

Ω
∫ ≡ dV (s)

Ω
∫

V s2( ) = dX(s2 )
Ω
∫ ≡ detM (s1 s2 ) ⋅dX(s1)

Ω
∫ = dX(s1)

Ω
∫ =V s1( )

  (159) 

where use the fact that transformation is symplectic.  
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 M  

x!

px!

x

px!

If particles do not decay or disappear in any other way (scatter on residual gas and fly 
away!), than number of particles inside any hyper-surface transforming according to the 
map (155) is preserved. Remember, that trajectories can not cross in the phase space – it 
also means that  particle can not cross a boundary which moving according to the 
particle’s motion. In accelerator physics it is called water-bag. You can deform it, twist 
and turn, but can not change its volume. The phase-space liquid is in-compressible!
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It means that phase space density of an ensemble of particles is particles is invariant: 

 

f X, s( )def =
dN
dX 2n ⇒ f M:X( ) ≡ f X( )

f M s1 s2( ) X s1( )( ), s2( ) ≡ f X s1( ), s1( )
   (160) 

In other words, the phase space density is preserves along the trajectories. This is 
foundation for one of most used equation in accelerator and plasma physics – Vlasov 
equation: 

df X s( ), s( )
ds

=
∂ f X, s( )

∂s
+
∂ f X, s( )

∂X
dX
ds

= 0

dX
ds

= S ⋅
∂H X, s( )

∂X
∂ f X, s( )

∂s
+
∂ f X, s( )

∂X
⋅S ⋅

∂H X, s( )
∂X

= 0

   (160eq) 

It is also referred to as method of trajectories – now you know what it is about. We will 
return to this equation when we will study collective effects. 

We did this in last class. 
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Since symplecticity of the map and corresponding matrices, there are n*(2n-1) total 
conditions. One of them is detM=1 we already put in use. The rest of the invariants are 
called after French mathematician/physicist Poincaré.  
The other invariants preserved by symplectic transformations were found by Poincaré 
and they are the sum of projections onto an appropriate manifold in two, four…. (2n-2) 
dimensions. In integral form it is  

� 

dqi∫∫ dPi

i=1

n

∑ = inv; dqidP
idq jdP

j∫∫∫∫
i≠ j
∑ = inv......  (161) 

If you count the number of Poincaré invariants (including Liouville!) you should not be 
surprised to find that there is n*(2n-1).  
Why these invariants are important? is a very good question. The main reason is that 
frequently they can be useful to solve problem analytically – the same way as energy 
conservation completely solves problem in 1D potential. The other important reason is 
that they actually restrict what one can do with beams of particles, e.g. does not allows us 
to compress “waterbag”. 
The look of these invariants is deceivingly simple. Let just discuss one of them – sum of 
the projections on 2D surfaces for n=2 case, e.g. a classical accelerator problem with 
couples transverse (x and y) motion: 

dqi∫∫ dPi

i=1

2

∑ = dx∫∫ dPx + dy∫∫ dPy = inv    (162) 

It states that sum of projections of phase space volume onto two one dimensional “phase-
plots” is invariant of motion. But in some cases one of the projection can have negative 
value…. We will discuss this in more details later when discussing linear coupling. 
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x

U 

To finish our first glance onto the phase space and phase space plots, let’s focus on a 
simple case of time independent Hamiltonian for 1D motion 

H = H x, p( )       (y) 

It means that since the energy (Hamiltonian) is preserved, all possible trajectories are 
defined by particle energy level 

H x, p( ) = Ho → p = p x,H0( )    (yy) 
One should note that the above solution may have many branches – e.g. the function  
p = p x,H0( )  is not unique and number of completely separate (not connected) 

trajectories can exist. A simplest example is H = p2

2
+U x( )  with potential in the figure !

While for high energies (blue) trajectory is unique, for lower energies (red) there are two 
distantly separated areas of the motion. 
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Stationary points are playing very important role in phase diagram. They are naturally are 
possible solution of Hamiltonian equations 

 

∂H
∂qi

= 0; ∂H
∂Pi = 0; i = 1,...,n    (yyy) 

In general, they may exist or not. For 1D case above they are solution of a simple 
equation 

p = 0; dU
dx

= 0;  

If stationary point exist, it can be stable or unstable. Expanding Hamiltonian around the 
stationary point allows to define if solutions are stable (oscillatory) or unstable 
(exponentially or linearly growing, etc ) 
Home work gives you a chance to explore phase space for 1D case. 


