WEAK FOCUSING SYNCHROTRON

A BRIEF INTRODUCTION

- ORIGINS, PRINCIPLE
- PAST WF-SYNCHROTRONS
- WF SYNCHROTRON TODAY

Circular accelerator landscape, when longitudinal phase-stability was invented

Cyclotron

PSI, 590 MeV, not far from the ~1 GeV limit of this beam guiding technology.

However: high power!

Constant magnetic field Gap RF voltage, constant frequency

Betatron

Largest, late 1940s: 300 MeV (first one, and Kerst, in foreground)

Pulsed magnetic field Non-resonant (induction) acceleration

Synchro-cyclotron

CERN's 600 MeV, close to ~1 GeV limit of this cyclotron-type guiding technology.

Closed 1990

Constant magnetic field Gap RF voltage, modulated frequency

None of these technologies has disappeared: cyclotrons, betatrons, synchrocyclotrons, are still fabricated, but that's not for high energy applications.

Genesis

- Cyclotrons and betatrons appeared limited in energy by size of dipole magnet.
- At highest B, increase E meant increase Bx2nR in proportion, whereas unfortunately magnet volume goes like R³.

Largest cyclotron was already equivalent volume of metal of a battleship...

Doubling the energy meant a battleship fleet...[1]

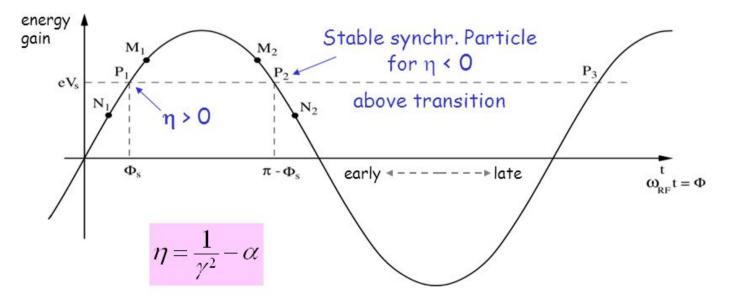
• An idea which was in the air, instead: a thin ring of magnets based on a fixed-radius orbit as in the betatron

and pulse B to follow E increase → acceleration is cycled

If a separate oscillating voltage gap is arranged at some location(s) in the ring (at the manner of the cyclotron volatge gap), it avoids the central yoke of the betatron.

• The energy gain per turn can be moderate, unlike cyclotron which needs high V to avoid isochronism, and as in the betatron.

```
It just means hundreds of thousands of turns... not a problem! \sim 1 \text{GeV} / 10 \text{kV} \sim 10^5 \text{ turns} \rightarrow 10^5 \text{ C} / \text{ c} \sim 3 \times 10^6 / 3 \times 10^8 \sim \text{tens of ms}
```


- Focusing inherits directly from proven betatron or cyclotron technique, 0<n=-R/BdB/dR<1 in all bendig magnets, "weak focusing" in nowaday's jargon
- Oliphant, Memo to UK DAE, 1943: "Particles should be constrained to move in a circle of constant radius thus enabling the use of an annular ring of magnetic field ... which would be varied in such a way that the radius of curvature remains constant as the particles gain energy through successive accelerations by an alternating electric field applied between coaxial hollow electrodes."

1994-Veksler; 1945-McMillan: discovery of the phase stability. That makes it possible!

Phase Stability in a Synchrotron

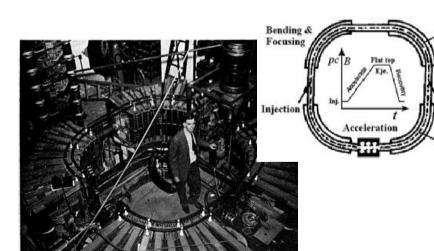
From the definition of η it is clear that an increase in momentum gives

- below transition (η > 0) a higher revolution frequency (increase in velocity dominates) while
- above transition ($\eta < 0$) a lower revolution frequency ($v \approx c$ and longer path) where the momentum compaction (generally > 0) dominates.

1947: First observation of synchrotron light (SR), not fully understood (spectrum etc.) - Julian Schwinger would develop a full theory of SR in a circular accelerator

Vaccum chamber of GE synchrotron [Ref.:Alamy.com

70 MeV synchrtron, GE



michanis

1946, Aug.: First synchrotron, 8 MeV proof-of-principle, operated by Goward in Woolwich, UK

Fig. 4: The world's first synchrotron, installed at Malvern. The extra cooling system and RF feed to the resonator may be clearly seen.

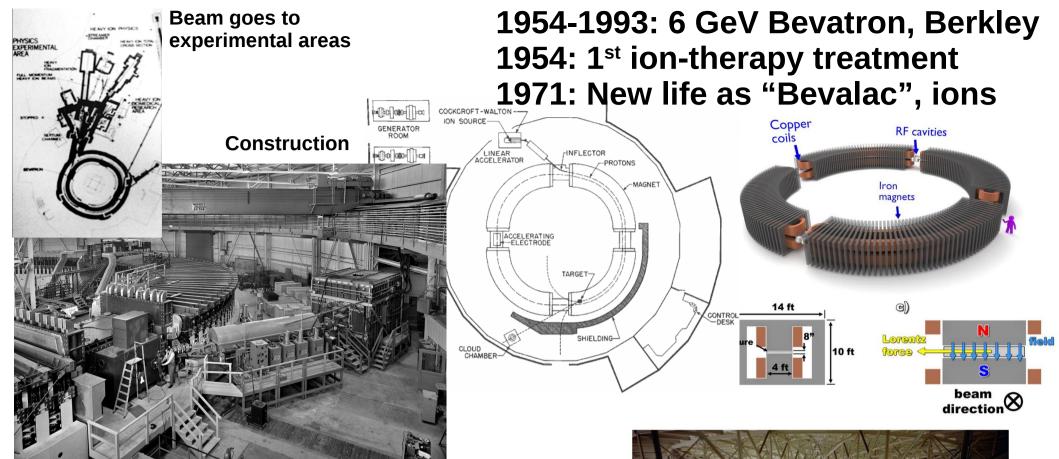
acuum

Ejection

Central

The first "racetrack" sybnchrotron with straight sections, 300 MeV electron, University of Michigan, 1949.

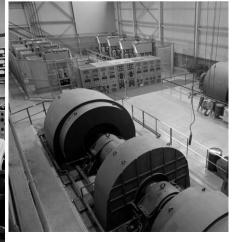
RACE FOR HIGH ENERGIES


Cosmotron (1952-1966) - The first >1 GeV ring, proton

April 1948, the Atomic Energy Commission approves a plan for a proton synchrotron to be built at Brookhaven.

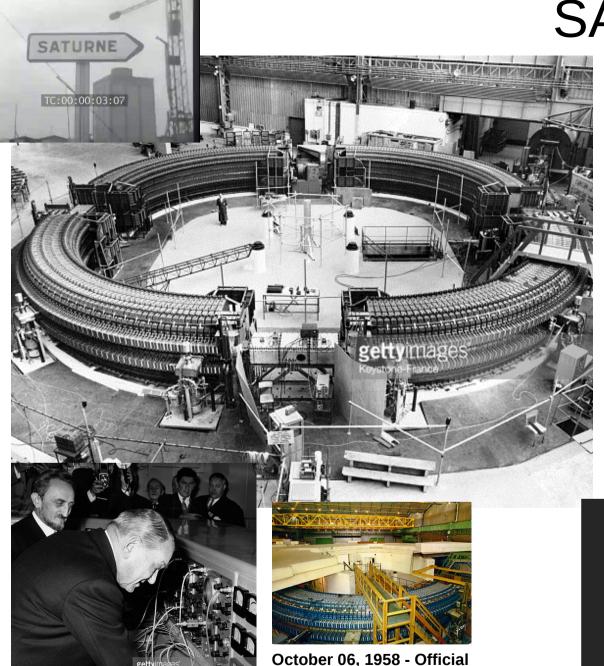
Reached its full design energy of 3.3 GeV in 1953.

The first synchrotron to provide an external beam of particles for experimentation outside the accelerator.



Control room

Power supplies



Overview of the Berkeley Bevatron during its construction in the early 1950s. One can just see the man on the left.

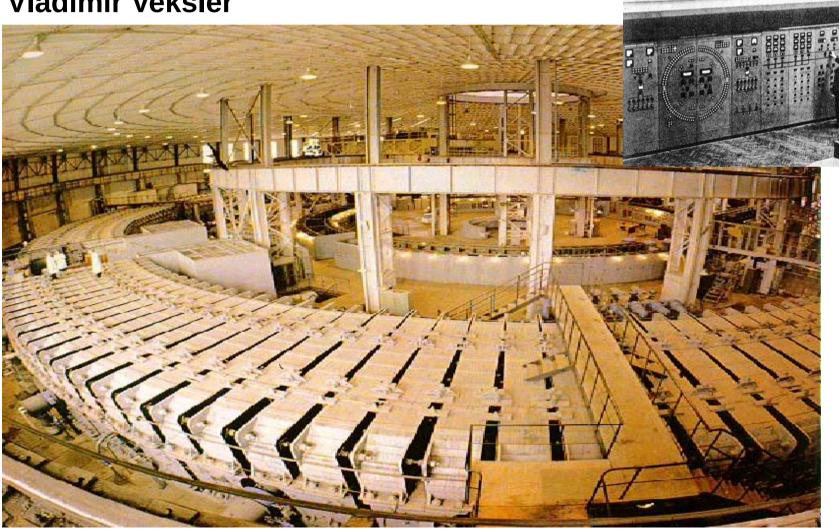
In spite of the discovery of "strong focusing", in 1952

- meaning much smaller magnets,
- weak focusing remained the preferred choice of the cautious,
- and the Cosmotron was followed by:

ZGS at Argonne,
Synchrophasatron in Dubna,
Saturne in France
and Nimrod in the UK.

committee, including French President René Coty and CEA commissioner Francis Perrin, start Saturne 1 at Saclay. SATURNE 1, Saclay (1958-1970) 3 GeV

Plans for polarized proton at SATURNE 1 motivated Froissart-Stora theory on the effect of depolarizing resonances.



The 10 GeV Synchrophasotron (1957-2003)

JINR, Dubna

Accelerated protons and Deutons

Constructed under the supervision of Vladimir Veksler

THE FALL

...was essentially a matter of dipole magnet aperture:

- the Cosmotron aperture was 1.2 by 0.22 m

which had great consequences anyway – as the photos show,

- given $B \times gap = \mu NI$, larger gap means larger NI
- → great I, big coils, big yokes, big vacuum chambers, big pumps...

and – finally! resulted from the application of "strong focusing" discovered in 1952.

WEAK FOCUSING SYNCHROTRONS NOWADAYS

Medical application essentially

A technically cool (dipole is easy, just 1 type of magnet x 4), and cost-friendly,

way to get proton beams in the cancer-therapy range of energy → up to 250MeV for 35 cm Bragg peak penetration in water.

The Proton Treatment Center at Loma Linda University Medical Center.

The first hospital-based proton facility. Construction 1988-1990. 1 of ~40 proton centers worldwide

80 Dose (%) Facility Layout Stationary Beam: The Gantries: Has two branches: Resembling giant ferris wheels can rotate around Eve Tumors

the patient and direct the proton beam to a precise point. Each gantry weights about 90 tons and stands 3 stories tall. It supports the bending and focusing magnets to direct the beam.

Steel-

reinforced

are up to 15

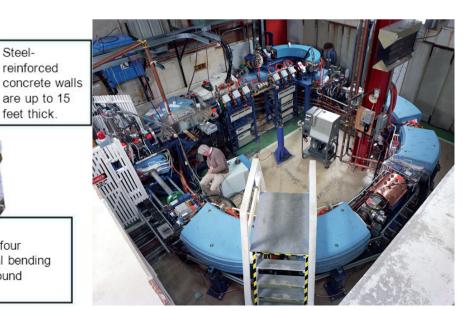
feet thick

SOBP 10 MV photon Pristine peak 150 Depth (mm)

The Injector:

·Head and Neck

Tumors


Protons are stripped out of the nucleus of hydrogen atoms and sent to the accelerator.

Synchrotron: (Accelerator)

A ring of magnets, 20 ft. in diameter. through which protons circulate in a vacuum tube.

Carries the beam from the accelerator to one of four treatment rooms. This system consists of several bending and focusing magnets which guide the beam around corners and focus it to the desired location

