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We had considered parameterization of stable particles motion in periodic Hamiltonian
system using eigen vectors of round trip matrix. A quick walk through our findings:

2n 2n

ZZhU(s)xx ——XT ‘H(s)- X, H(s+C)=H(s); (1)
=l i=l
T(s)=M(sls + C) )
det[T-A -1 =0 (3)
T-Y,=\-Y; )\k:e""k; k=12...n (4)
2n
X=YaY=U-A U=[Y...Y,], A =[q...a,] (5)
=1
A .. 0
T-U=U-A, A=|.. .. .. (0)
0 .. A,
U' T-U=A,or T=U-A-U" (7)
Y, -SY.,=0 Y -S-Y =0 . (8)
Y,"-S Y, =2i, 9)
U'-s U=0" .S U=-2is, U“:%S-UT-S. (10)
l
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~

~ ~ d ~
Yk(sl):M(s’Sl)Yk(s) & EY;(:D(S)-Y (11)

k

Y,(5)=Y ()" Y (s+O)=Y,(s); w,(s+C)=y,(s)+u, (12)
U(s) =M(s]s,)U(s) & difj =D(s)- U (13)
\)
e“/’n(S) 0 0
-y, ()
U5 =Us)- W), $o)=| 0 ¢ 8 (14)
0 0 0 “)

2n n n . _ _
X, =) ay, =>X(s):lz(akyk+a;1;*)zReZak;;ew “lga=tvw.a=tu.105
= 243 pa 2 2 2
a =1Y*Tsx-a =ae""’-=lY*TSX-
i 2l i > Y i 2l i 9 (16)

A=20" X=—¥"'S U™ S X;: A=WA=-i-S-U""-S - X.
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1D .

A
W 1 -~ .
Y = W =—Y=Ye"
|\W,+l/WJ l// W2 avw'’ +1/w
The parameterization of the linear 1D motion is 7 1 -
| >
X . w . ( /aw X
{ 1: Re[ae””[ , . }””];
X w+i/w

x=a-w(s)-cos(y(s)+ o)
x'=a- (W'(s) - cos(Y(s) + @) —sin(y(s) + @) /W(s))

=a-+/B(s)-cos(y(s)+9)

V= () oy 01+ ) +sinly0) )

T =UAU" =Icos ut+ Jsin u; Jz{ o P };Jzz—l
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2D

Conditions: there are

X
P, . _
X = y =ReaY +Rea,Y, =ReaY +Reay,
P, (23)
kaei‘//k\'
~ (up +iv,, )e"
Y, =R +iQ; Y, = w. Ve ; l//kx(S+C)=ka(s)+Uk;Wk)-(s+C)=l//ky(s)+lllk;
ky
(u ot ivk),)ei"'k"
WiV TWV, =15 (24)
sl . T T
Y, SY,=2i; ¥, §Y,=0;, Y, SY,=0; 6, =y, -y,
1- 1-
a) Wlxle = W2yv2y zl—q = vl,\‘ = —q’ va = —q
1x WZ)'
b) WiV, =W Vo, =4 =V, = i; Wy, = =
W2x Wl)'
¢) c=w,w, sinb, =-w, w, sinb,
d) d= wlx(ul_y sinf, —v,, cos 91) = —WZX(uzy sin6, —v, cos 62)
e) e=w, (u,sinG +v, cosb)=-w, (u, sinb,+v, cosb,) (25)
Wlxei(pl.\' sze i(pl.\'
. 1—a ).
[ulx + ii}’(l’u (uZY + l q}"l’zl
Wlx . w2x
Yl = leei(pl_v 3 Yz = Wzyef‘/’z_\-
l—q | . i
[uly + iq} Oy [MZV + zq} 2
A Wiy i L Way _ (26)




3D

=1 A, =" u, =270,; k=1,2,3 (27)
X
E,
y - - N
X = p =ReaY +Rea,Y, + Rea,Y,=ReaY +Rea,Y, +Rea,Y,
T (23)
P
wkxeixk,\‘
(ka +l.z]—kx]€m
kx
kaeim
e [V +iqk’) iy Y (s+C) =Y, (s):T(5)Y,(s) =Y, (s):k=12,3 (25)
o i A
Wy,
wkreilkr
(Vkr +i&je’7‘“
Wk‘r
Y,SY,=0; Y 'SY, =2id,; (26)

15 relations on the component of the eigen vectors, with the simples being:

Qe T 9yt Ge =1 k=1,2,3 (27)

6



Parameterization using real (non-complex) parameters. Since for a stable system
eigen vectors are uni-modular complex numbers, eigen vectors are also complex and

satisfy purely imaginary symplectic orthogonally conditions (9). Naturally matrix T can
not be diagonalized using real matrices, but it can be brought to a block-diagonal form

comprising simple 2x2 rotation matrices using following considerations:

V= R +iQ;Y, = R~ 0T Y, = " Y T-¥ =e ",

(28)
T-R =R, -cosp, —Q, -sinp;T-Q =0, -cosp, +R -sinp,;
which 1s equivalent to
Q:(RI,QI,...Rn,Qn>—>T.Q:Q.O—>T:Q.O,Q1;
O, .. 0 . (29)
COS sin
o=| : .. : ;0= 'uk H 0" =0"
) —sinj,  COS i,

where by construction matrix Q is real. We can use a symbolic form of expressing block
diagonal shape of O by writing

O=| : " 1 |=>.0; (29)




It 1s also symplectic, which is result of simple observation that follows from symplectic

orthogonally of R _,Q pairs:

Y;c*TSY:nz = 0 - RkTSRm - O;RTSanzk = O’QkTSQm = O’

k k

Y'SY, =(R,—iQ,) S(R, +iQ,)=(~iQ,)iR'SQ, —iQISR, =2iR'SQ, = 2i;
R'SO, =—0/SR, =1;
Q'SQ=(..R.0,..) S(-.R.0,..)(.RO,..) (.SR,.SQ,..) =
R'SR R'SO
O/SR, 0,80,

RIZ" SR” RIZ-’ S Q n
QIZ‘SRVI Q}Z‘SQI‘I

O T 0
10
0 0 1
1 0
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There is one to one connection between real matrix Q and complex matrix U

1 1 0 I —i 0
i —i) ol L1 a1
U=Q 5 5 :
0 ) [ 11 ] 0 1
i —i 1
which means that putting matrix Q in motion is
Q(Sl) = M(s‘sJQ(s) = Q(Sl)-f)(s‘sl);
3 cos( s)) s1n( (s)) (32)
O<S|S1) =
® —s1n( ( ) (s)) cos<¢k( ) (s))
Again, it gives us connection between transport matrices and parametrization:
M(S’Sl) = Q(Sl)-é(S’SI)Q<S>_I = —Q(Sl) °(~)(S’S1>SQT (S)S (33)
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Probably the most interesting is application of this expression for full period matrix
(either from eq. (33) or eq. (29)):

. 0 .
T:Q.O.Qﬂ:ZQ,[OIJ,QH; [Ok}: e 0 o 0
ké 0 (34)

O cosp,  sinp,
—sinpu, cosp,

—cosuk1k+sinukak;a—[ _01 (1) ]

where [, ,0, are block diagonal 2x2 matrices with non-zero block in k-position on the

diagonal. Now we will extract constants and expand one-turn transport matrix though
eigen matrices:

T= Z(Ekcosuk +J, sinuk) ;
k®

E =Q|,]Q"J, =Q[0] Q" Q'=-5Qs.

(35)

This matrices have very nice features of n mutually orthogonal pair of / and i:
L] =[n]-E=e ] e el e =e 1] ~E;
o] =-{1]-vi=e o] @ @ n] @ =, (36)
AR RAREEE
L1 =1 =lolons | =0~EE,  =EJ, _ =3I =0

k™ m=k k— m=k —

which result in trivial adding phase advance in equation (35):

T" :Z<Ekcosn,uk+Jk sinnuk). (37)

k®



This expression is especially beautiful for 1D case when because matrix is just a 2x2
block itself:

7|=Lo,]=Si o]
T =1cosp—+ Jsiny;
E=Q-1-Q'=LJ=-Q-S-SQ'S=Q-Q"-S

where we can use specific expression for Q

w 0 w 0 wwW w’ ww’
Q=[ReY,ImY|=| | 1 [QQ'=| , | | |= /

W — W — 0 — wwW — 4w

W W W W

w? ww' 0 1 —ww’ w’

J — . r . S — —
Q-Q ww’ L—FW'Z -1 0 - L—FW/Z ww'
WZ WZ
and you can directly show that J° = —I . Using traditional definitions of a.f,y functions

introduced by Courant and Snider we can rewrite (38) in form you would find in standard
accelerator books:

: v 0
T=Icospu+Jsinu;J = “

-y —« (3 8)

2
B=w? a=—-ww=03"/2;y=w"+w’= I+a :



Now we are ready to make use of our parameterization:

X, = ReZakYk (s)e¥) =
k=l (39)

S (R.(s)eos(vi(5)+0,)+0, (s)eos(w, (5)+0, ) @ =JaJe”

with 2n constants of motion coming in pairs of amplitude and phased of ociallator
{a, ,0,},k=1,...,n. Starting from this point we will use real amplitudes a, %|ak| and

separate phase explicitly: a, — a, e .

\9)
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Symplectic transformation is a Canonical transformation. Let us now, again,

demonstrate that symplectic transformation X(s) = X(s)

X(s)=V(s)X, V'(s)=SH(s)V(s) <> V'SV =S§;.

(40)

1s Canonical. Beginning from a Hamiltonian composed of two parts, a linear part and an

arbitrary one
H = %XTH(S)X +H (X,s).

The equation of motion

dX . oH oH

2 =8 T =SH(s) X +S- &

as =S gx TSHs) X875
becomes with substitution (40)

(VX) =SHV- X+ VX'=SH(s)- VX +§- —*= VX'=S§. :
oX oX

equivalent to the equations of motion with the new Hamiltonian: H (VX,s)

2ryig OH, 9 _yr 9 I, o,
oX "X oX

oX
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(41)

(42)
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Action-angle variables. A very important transformation (not-only!) in accelerator
2

L : : : a :

physics 1s the transformation to the action-angle variables {(pk,lk =§} Usually this

requires two steps: The first is to Canonically transfer to Canonical conjugate oscillators
(you may remember them from quantum mechanics?):

_ae” ae ™
{Qk f/z Dy =1 k\/z } (45)

a,e? a,e "
)'é , = A =t — p =it=1;
{ G >Py - } {qk \/5 P \/E } (46)
1 _—
=VA,; V= ﬁ[yl,zy | VISV =S #

The second step is very simple since it 1s well known from classical theory of harmonic
oscillators. A generation function transformation making this Canonical transformation
happening 1s very simple to construct:

4G =0p =1 SCA R q @ p L/
k k> k k 2 k \/5 Ik \/5

Zz 09 0 g=n (47)

_OF _JF __, _m_i_ i oF ;
a% a(Pk



Similarly, we can make transformation for pairs of real oscillator components:

{ék =a,CosQ,,p, =—a, Sin(Pk} : (48)

with obvious symplectic transformation

ATOSC = {...qk,pk...} = {...ak cosy, ,—a, singok...} (49)
X — Q. AOSC - AOSC — Q_IX; Q_ITSQ_I - S

Again, the generation function transformation making this Canonical transformation
happening 1s very simple to construct:

C = a,’ ~ ~ -
Qk:(pk’pk=lk:7 C}{Qk:akcosq)k’Pk:_aksm(Pk}
- 3F i
zq—tanq)k, =0->H=H (50)
k S
OF _ OF _ h _a > aF .
I, = =" Dy =——=—q,tang, =—q;sing,.
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This result (even though expected) has long-lasting consequences — the trivial (linear)
part in the Hamiltonian can be removed from equations of motion, so allowing one to use
this in perturbation theory or at least to focus only on non-trivial part of the motion.

Finally, we know that for any canonical transformation:

But by design for a linear Hamiltonian system,

2n 2n

Hs%ZZh,-,-(s)x,.x,.%XT-H@-X (51)
=1 =l
A" = consts. It means that
JoF(q.q,s
(gsq ), (52)

It means that equation of motion for a linear s-dependent Hamiltonian system are reduced
to a set of constant: amplitudes and phases of oscillations:

2
0, :const;lk :%zconst; k=12...,n (53)

What it important to note that /, i1s an adiabatic mvariant of an oscillator, e.g. 1s the

phase space area of the covered by oscillator divided by . We can call it emittance of the
k-th mode.
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Thus, if we are applying transformation of the action-angle Canonical variables of an
arbitrary (in general case, nonlinear) Hamiltonian system

H(X,s)=H,(X,s)+H,(X,s) (53)
we will come to the reduced equations of motion with the Hamiltonian:

ﬁ:H+aa—f:H—HL=H1(X,s);

H(A,s)=H,(X(A,s),s).

(54)

where we eliminated “boring” oscillating part of the motion.

Since next step of transformation to the action-angle variables (41) does not change the
Hamiltonian, we finally get:

H(p,,1,,5)= H,(X(@,,1,,5),s);

dp, OH dl,  0H (35)
ds 09I, ds 00,

These “reduced” equations of motion can be very useful when H, can be treated as
perturbation or in studies of a non-linear map. We will return to them again and again
through the course.
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What we learned today

We expanded parameterization of linear motion from complex
notation real number notation — naturally the resulting motion is the
same

We proved that symplectic transformation is equivalent to a
Canonical transformation

If transformation matrix 1s a solution of linear Hamiltonian system
XTHX/2, than this Canonical transform removes the X THX/2 from
the Hamiltonian

We defined two sets of oscillator coordinates and momenta and
showed that this transformation 1s Canonical

Than we made transformation to action-angle variables, which

comprise Canonical pairs {qk =i =], :%}

Using variables will allow us to study a number of phenomena
using perturbation methods — next class will be devoted to this
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