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• Final conductivity of the surfaces
– Approximation of the boundary conditions
– Surface impedance, losses in the surface

• Main RF cavity characteristics
– Accelerating voltage, peak electric and magnetic field

– Q factor: internal, external, total 
– Geometrical factor, G
– Shunt impedance Rsh, Rsh/Q
– Coupling coefficient, ONE MORE β! 

Realistic RF cavity (linac)
Figures of merit

This part is usually related to more “engineering” factors measured in 
ohms, watts, etc.… – hence, for a change, we are using SI system…

Again, the main idea of this course: you are learning accelerator lingo
and basis behind it



Maxwell Equations in vacuum
• Plane waves and oscillating fields
• This is the simplest way of getting into the waveguides and cavities

• By simple manipulation they reduced to plane waves

• With most interesting for us oscillating solutions

• So called transverse electromagnetic waves
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The key for oscillating EM waves in vacuum
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Simple things to remember
• Superposition principle: if pairs (      ) and (      )  are solutions of 

Maxwell equations, their linear combination (                      ) is also a 
solution of Maxwell equations  

• Plane transverse electro-magnetic (TEM) wave have an oscillation 
frequency ω and direction of propagation

• The electric and magnetic fields are perpendicular to each other and to 
direction of propagation

• Each component of the field oscillates as a sine-wave
• Components of the field and their phases determine wave’s 

polarization 
• Any plane wave can be presented as superposition of two waves with 

linear polarization
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Linearly polarized 
and circularly polarized plane TEM waves

Linear Circular
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Water waves

Sting vibrations

a=Nλ/2

Acoustic resonators
Standing waves



Building a match-box cavity
• Since we are constructing it for accelerating we will need to 

use an TM mode which has non-zero electric field along z-
axis

• Expression is a bit cumbersome, but still a simple 
combination of plane waves 
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• Solution is straight forward and in addition to the solution for boundary 
conditions give use the resonant frequency of the TMMNK mode
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• Since we are interested in the fastest way of acceleration, K=0 gives us the best case scenario –
constant amplitude of the accelerating field

• It also turns transverse components of the electric field into zero! since 
• Let also select a=b and M=N=1

kz = 0

d
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Pillbox Cavity
• Similarly to a previous exercise, we need to pick TM 

mode to have non-zero Ez component
• We also select TEM01 waveguide mode and kz=0
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Arbitrary Shape Cavity
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• Each closed cavity has countable, but infinite number of modes 
• Each mode has its own resonant frequency – the EM field having 

this structure oscillates with this frequency – it can not oscillate at 
any other frequency 

• The energy is bouncing back and forth between the electric and 
magnetic fields

• It possible to show that average energy stored in magnetic and 
electric fields are equal

• Each mode has full analogy with a resonant LC circuit or a mechanical 
oscillator: energy stored in electric field can be compared to potential 
energy, and energy stored in magnetic filed – to kinetic energy

SI



EM Cavity
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• Each mode has full analogy with a resonant LC circuit or a mechanical oscillator: energy 
stored in electric field can be compared to potential energy, and energy stored in magnetic 
filed – to kinetic energy

• Typical energy stored in 5 cell, 700  MHz SRF cavity operating at 20 MV/m is ~ 500 J
• What much more impressive is the intra-cavity power of about 2,000 GW! 
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Single cell SRF Cavity

The cut-off frequency:
It above the fundamental 
frequency, but below that of 
dangerous HOMs   

• Fundamental (eigen) mode is trapped inside the cavity and decays exponentially inside the pipe 
(waveguideιde with ωc >ωο)

• Fundamental power coupler delivers the power from RF transmitter at resonant (eigen) frequency  fo=ωο/2π 
and excites the EM field in the cavity

• HOM couplers are usually used to suppress undesirable fields on the cavity by damping them/ They are 
usually placed where fundamental frequency fields are very low but HOMs are strong. In this case strong 
damping of HOM preserves high Q-factor (to be discussed next) at the fundamental frequency

The shape and the size of the cavity determines
the resonant frequency for the fundamental mode ωο

Modes other than 
fundamental mode
are called high-
order modes -HOMs

Fundamental
Power
coupler 

HOMs
coupler 



Typical field diagrams



RF cavities  come in many shapes, forms 
and sizesWhat these mean?



Acceleration inside RF cavity
• Let’s consider a pillbox cavity terminated by a vacuum pipe for particles to pass
• Let’s also consider a charge particle passing on the axis of the cavity the cavity 

with constant velocity
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• Specific form of Eo(z) depends on the cavity 
design
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Acceleration inside RF cavity (cont..)
• Now let’s consider a pillbox cavity where Ez field is constant and extends from –
d/2 to +d/2. Field decays very fact in the pipe
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• Thus, the accelerating voltage differs from the ideal 
Eod by the transit time factor

• Thus making cavity longer than the distance particle passed during ½ 
of the RF period makes no sense (Xt=π/2)
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Any cavity, any mode
Approximation – constant velocity

• A charged particle with a constant velocity in any RF system is described 
as 
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What are β=x cavities 
• For heavy particles like protons, it takes a lot of RF cavities to accelerate to velocity 

comparable to speed of the light
• Hence, there are so called low-β cavities designed for slow particles
• You will see in literature β=0.1, β=0.5… cavities – it means that they are designed. For 

particle traveling nearly speed of light cavities called β=1. 
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Multi-cell cavities
§ We learned so far that single cell RF cavity has limited accelerating voltage

§ To gain more energy we can either use more individual cells or use multi-cell cavities
§ The first path, while feasible, is expensive (each cavity would need individual transmitter, 

waveguide, controls, etc.) and less effective – the average accelerating gradient (energy gain per 
meter of real estate) would be low

§ Thus, where the acceleration gradient is important, the accelerator community uses multi-cell 
cavities   

Max VRF( ) = EoλRF
π

9-cell Tesla design

7-cell

5-cell
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Why multi-cell cavities?



Two couple oscillators:
0-mode and π-mode 



Multicell cavities
§ Several cells can be connected together to form a multi-cell cavity
§ Coupling of TM010 modes of the individual cells via the iris causes them to split
§ 0-mode does not give any advantages – all cavities have the same direction of the field…
§ π-mode is of special interest for us: 

§ electric field has opposite directions on neighboring cells
§ particle passes through accelerating voltage in a cell in half of RF period
§ when particle crosses to the next cell – it sees again accelerating voltage

23

Multi-cell cavities (cont.)

✓



Multicell cavities
§ Even though calculating coupling between the cavities is straight forwards, in practice is done using 

EM cavity codes

§ For us is important to know that larger iris provides for stronger coupling and better uniformity of 
the field

§ But increasing the iris reduces the electric field on axis (shunt impedance) and reduces accelerating 
gradient of such accelerator  - hence, there is a compromise  
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Multi-cell cavities - coupling

where N is the number of cells, 
n = 1 … N is the mode number.

d 2x1

dt2 +ωo
2x1 = −kx2

......
d 2xn
dt2 +ωo

2xn = kxn−1 − kxn+1

.....
d 2xN
dt2 +ωo

2xN = +kxN−1



Multicell cavities

§ Cavity consisting of n-cell is similar to N-coupled linear oscillators or resonant contours

§ They all have nearly identical frequencies, but coupling splits then in n modes

§ The width of the pass-band (frequencies of various coupled modes) is determined by the strength of 
the cell-to-cell coupling k and the frequency of the n-th mode can be calculated from the dispersion 
formula

where N is the number of cells, 
n = 1 … N is the mode number.
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Multi-cell cavities (cont.)



Multicell cavities (2)

§ Simulated eigen-modes amplitudes and eigen-frequencies in 

a 9-cell TESLA cavity, compared to the measured values

§ A longer cavity with more cells has more modes in the same 

frequency range. The number of cells is typically a result of 

optimization for specific goal.

§ The accelerating mode for super-conducting RF cavities is 

usually the π-mode – e.g. at the highest frequency for 

electrically coupled structures.

§ The same considerations are true for HOMs: each HOMs in 

individual cell would split into N modes

26

Multi-cell cavity modes

π-mode 



• Final conductivity of the surfaces
– Approximation of the boundary conditions
– Surface impedance, losses in the surface

• Main RF cavity characteristics
– Accelerating voltage, peak electric and magnetic field

– Q factor: internal, external, total 
– Geometrical factor, G
– Shunt impedance Rsh, Rsh/Q
– Coupling coefficient, ONE MORE β! 

Realistic RF cavity (linac)
Figures of merit

This part is usually related to more “engineering” factors measured in 
ohms, watts, etc.… – hence, for a change, we are using SI system…

Again, the main idea of this course: you are learning accelerator lingo
and basis behind it



equato
r

iris

Typical SRF Cell fields (simulated using an EM code)

§ Important for the cavity performance are the ratios of the peak surface fields to the 
accelerating field.  Peak surface electric field is responsible for field emission; typically for real 
cavities Epk/Eacc = 2…2.6, as compared to 1.6 for a pillbox cavity.

§ Peak surface magnetic field has fundamental limit (critical field for SRF cavities – will discuss at next 
lecture); surface magnetic field is also responsible for wall current losses; typical values for real 
cavities Hpk/Eacc = 40…50 Oe/MV/m, compare this to 30.5 for the pillbox 

§ In SGS system 1Oe -> 1 Gs; /MV/m is 33.3 Gs, hence ratio Hpk/Eacc is dimensionless and is close to 
unity: 0.92 for a pillbox cavity, 1.2 – 1.5 for elliptical cavities.

§ Tangential magnetic field on the surface induces Ohmic losses and affect Q-factor



• For this course we need to understand 
what happens when an EM wave 
interacts with a conducting surface

• Inside the conduction we need to add 
permittivity and permeability as well its 
conductivity 

• Equations are just a bit more 
complicated that in vacuum

• Practical solution is well know for a 
good conductors when the skin depth is 
much smaller than the RF wavelength

• And the EM field decays very fast inside 
the conductor 
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Note: Inside a good conductor magnetic field is much stronger than eclectic field 

EM wave inside a conducting media

SI



• For an ideal conductor, the condition 
inside the conductor are simple: both 
AC electric and magnetic fields are 
zero 
z > 0;
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Ec = 0;
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Bc = 0;

z = 0;
!
E// = 0;

!
B⊥ = 0

!
Ec = 0;

!
Bc = 0

!
B// = µoK

An ideal conductor compensates 
magnetic field parallel to it surface by a 
surface current and the normal eclectic 
field by a surface charge

Σ K

Boundary condition for an ideal conductor
Ideal conductor :σ →∞
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B⊥ → 0

E=0Et≠0

Impossible

Hn≠0

H=0
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curl of E, j

• Simple facts: 
– At the surface of ideal conductor only transverse component of electric field and longitudinal 

components of the magnetic field are allowed 
– Placing such surface at locations where transverse component of electric field and longitudinal 

components of the magnetic field are zero would not affect such EM field

!
E⊥ = Σ /εo

SI



• For an ideal conductor, the condition inside 
the conductor are simple: both AC electric 
and magnetic fields are zero 

z > 0;
!
Ec = 0;

!
Bc = 0;

z = 0;
!
E// = 0;

!
B⊥ = 0

!
Ec = 0;

!
Bc = 0

B// = µoH//

Σ K

Boundary condition for an ideal conductor
Ideal conductor :σ →∞

!
E// =

2
!
B//

µσδ
∝

1
σ

!
B// → 0

iω
!
B⊥ ≡ (

!
k ×
!
E// )⊥ :

!
B⊥ → 0

• Good cavities are build using very good conductors (including super-conductors)
• Hence, the electric field component parallel to the surface is very small (nearly zero 

– “not allowed”) while the the magnetic field component parallel to the surface is not 
limited and in fact is given by the mode structure

• This parallel component of the field is compensated by the surface current, which 
naturally causes dissipation in real conductor

!
E⊥ = Σ /εo

B// = µoH// = µoK

SI



Real: the conducting surface
• As input we have 
• Inside the conductor the EM decays with 

typical length called skin depth

• The current density is 

• And Ohmic losses per unit area   

δ =
2

µσω

At 1 GHz
Conductor Skin depth (μm)
Aluminum 2.52
Copper 2.06
Gold 2,50
Silver 2.02
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Question
• You should from E&M expression for Pointing vector 

indicating the flow of EM energy: direction and power density. Depending on you 
memory to remember “left hand” or “right hand” screw rule, you may get the direction 
either right or wrong… I have 50% success. 
Based on the energy conservation law, please find direction of the EM energy flow in 
the case of a simple resistor with a current flowing through it. Is it pointed inside the 
surface of the resistor or outside? Does the result depends on the direction of the 
current?
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Quality factor (SI)
• Let’s consider a stand-alone cavity without any external couplers

• Energy stored in the cavity

• Losses in the walls

• Quality factor (definition)

• It is number of RF oscillation times 2π required for energy inside the cavity to 
reduce e-fold.
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§ The ratio of two integrals determining Q-factor depends only on the cavity geometry: geometry 

defines eigen mode  

The parameter G is the geometry factor (also known as geometry constant)

Obviously 

§ The geometry factor depends only on the cavity shape and electromagnetic mode, but not its 

size: Scaling the cavity size x-fold, increases volume as x3, reduces frequency as 1/x and 

increasing surface as x2. Hence, G does not change.

§ It is very useful for comparing different cavity shapes. TEM010 mode in a pillbox 
cavity had G = 257 Ohm independent the pillbox cavity length (d): 
G TEM010= 257 Ohm for any ratio of the length to the radius.

§ At f=1.5 GHz for a normal conducting copper (σ= 5.8�107 S/m) cavity we get   δ = 1.7 μm, Rs
= 10 mOhm, and Q0 = G/Rs = 25,700.
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Geometry factor
§ For a 1.5 GHz RF cavity 

§ normal conducting copper (σ= 5.8�107 S/m)

§ for superconducting Nb at 1.8 K surface resistance can be as low as few nOhm, but typically is 
~20 nOhm.

§ Six orders of magnitude in heat losses making SRF cavities very attractive. Even with loss in 
cooling efficiency 500 to 1,000-fold, there is still three orders of magnitude in cooling. 

§ Hence, SRF cavity can operate at 30-fold higher accelerating gradient compared with room 
temperature Cu cavity using the same amount of cooling.

σ = 5.8 ⋅107S /m; δ =1.7µm ⇒ Rs =10mΩ

QCu =
G
Rs
= 25,700

Example: a pillbox cavity

Rs = 20nΩ

QSRF =
G
Rs
∝1.2 ⋅1010



Shunt impedance and R/Q: definitions

§ The shunt impedance determines how much acceleration a particle can get for a given power 
dissipation in a cavity

It characterized the cavity losses. 

Often the shunt impedance is defined as in the circuit theory

and, to add to the confusion, a common definition in linacs is

where P’loss is the power dissipation per unit length and the shunt impedance is in Ohms per meter. 
§ A related quantity is the ratio of the shunt impedance to the quality factor, which is independent of 

the surface resistivity and the cavity size:

§ This parameter is frequently used as a figure of merit and useful in determining the level of mode 
excitation by bunches of charged particles passing through the cavity. Sometimes it is called the 
geometric shunt impedance.

§ Pillbox cavity has R/Q = 196 Ohm. 
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§ The power loss in the cavity walls is

§ To minimize the losses one needs to maximize the denominator. 
§ The material-independent denominator is G*R/Q
§ This parameter should be used during cavity shape optimization.

Consider now frequency dependence.
§ For normal conductors Rs ~ ω1/2:

§ For superconductors Rs ~ ω2

§ NC cavities favor high frequencies, SC cavities favor low frequencies.
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270 Ω
88 Ω /cell

2.5
52 Oe/(MV/m)

Cornell SC 500 MHz

§ In a high-current storage rings, it is necessary to damp Higher-Order Modes (HOMs) to avoid 
beam instabilities.

§ The beam pipes are made large to allow HOMs propagation toward microwave absorbers

§ This enhances Hpk and Epk and reduces R/Q.

Pillbox vs. �real life� cavityPillbox vs. “real life” cavity



Parameters of the 5-cell BNL3 cavity
Parameter 704 MHz BNL3 cavity 
Vacc [MV] 20

No. of cells 5

Geometry Factor 283

R/Q [Ohm] 506.3

Epk/Eacc 2.46

Bpk/Eacc [mT/MV/m] 4.26

Q0 > 2�1010

Length [cm] 158

Beam pipe radius [mm] 110
Operating temperature [K] 1.9

§ It was designed for high current Energy Recovery Linacs. It is necessary to damp dipole 
Higher-Order Modes (HOMs) to avoid beam instabilities.

§ The beam pipes are made large to allow HOMs propagation toward HOM couplers to damp the 
modes 

§ This enhances Bpk and Epk and reduces R/Q.



A resonant cavity can be modeled as a series of parallel RLC circuits representing the cavity eigen modes. 
For each mode:

dissipated power

shunt impedance Rsh = 2R

quality factor

impedance

Parallel circuit model
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Connecting to a power source
§ Consider a cavity connected to an RF power source

§ The input coupler can be modeled as an ideal transformer:

or

RF power source

waveguide

RF
 lo

ad

circulator waveguide
input coupler

superconducting cavity

L R C

Vc

1:n

Ig Z0

L R C

Vc
Ig/n Z0×n2



External & loaded Q factors

§ If RF is turned off, stored energy will be dissipated now not only in R, but also in 
Z0/n2, thus

§ This is definitions of an external quality factor associated with a coupler.

§ Such Q factors can be identified with any external ports on the cavity: input 
coupler, RF probe, HOM couplers, beam pipes, etc.

§ Then the total power loss can be associated with the loaded Q factor of 

Ptot = Po +Pext

Po = Ploss =
Vc

2

2Rsh
=

Vc
2

Rsh Q ⋅Q0

Pext =
Vc

2
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1
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=
1
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+
1
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+
1

Qext2

+…



Coupling parameter β

§ Coupling parameter is defined as

e.g.

§ β defines how strongly the couplers interact with the cavity

§ Large β implies that the power taken out of the coupler is large compared to the 
power dissipated in the cavity walls:

§ The total power needed from an RF power source is expressed as

β ≡
Q0

Qext

Pforward = β +1( )P0

Pext =
Vc
2

R Q ⋅Qext
=

Vc
2

R Q ⋅Q0
⋅β = βP0

0

11
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§ Several figures of merits are used to characterize accelerating cavities: 

Vrf , Epeak , Hpeak, Rs, Q0, Qext, R/Q, G, Rsh…
§ Superconducting RF cavities can have quality factor a million times higher 

than that of best Cu cavities.
§ In a multi-cell cavity every eigen mode splits into a pass-band. The number of 

modes in each pass-band is equal to the number of cavity cells.
§ Coaxial lines and rectangular waveguides are commonly used in RF systems 

for power delivery to cavities.

What we learned about 
RF accelerators ?


