PHY 554
 Fundamentals of Accelerator Physics

Lecture 18: Synchrotron Radiation Sources

November 2, 2016
Vladimir N. Litvinenko
There is a large number of dedicated courses on Synchrotron Radiation Sources and Their Applications. If you are interested in this topic, I would strongly recommend lectures given by Prof. D.T. Attwood at UC Berkeley, https://people.eecs.berkeley.edu/~attwood/srms//

Radiation Spectrum

SR Light Sources

- To generate IR, UV and X-ray radiation
- From dipoles, undulators/wigglers

VERY POPULAR SCIENTIFIC TOOL:
With thousands of users

LIGHT
INTERACTS with the MATTER

List of operational light sources

Name	Country	Website
Center for the Advancement of Natural Discoveries using Light Emission	Armenia	http://www.candle.am/index.html
Australian Synchrotron	Australia	http://www.synchrotron.org.au
Laboratorio Nacional de Luz Sincrotron	Brazil	http://www.Inis.br/
Canadian Light Source	Canada	http://www.lightsource.ca
Beijing Synchrotron Radiation Facility	China	http://bsrf.ihep.cas.cn/
National Synchrotron Radiation Laboratory	China	http://www.nsrl.ustc.edu.cn/
SSRF - Shanghai Synchrotron Radiation Facility	China	http://ssrf.sinap.ac.cn/english/
Institute for Storage Ring Facilitles	Denmark	http://www.isa.au.dk/
European Synchrotron Radiation Facility	France	http://www.esrf.eu
SOLEIL	France	http://www.synchrotron-soleil.fr/
Angstromquelle Karlsruhe - ANKA	Germany	http://anka.kit.edu
BESSY II - Helmholtz-Zentrum Berlin	Germany	http://www.helmholtz-berlin.de/
Dortmund Electron Storage Ring Facility	Germany	http://www.delta.tu-dortmund.de/
ELSA - Electron Stretcher Accelerator	Germany	http://www-elsa.physik.uni-bonn.de/elsa -facility_en.html
Metrology Light Source	Germany	http://www.ptb.de/mis/
PETRA III at DESY	Germany	http://photon-science.desy.de
Centre for Advanced Technology	India	http://www.cat.ernet.in/technology/accel/ indus/index.html
Iranian Light Source Facility	Iran	http://ilsf.ipm.ac.ir/
DAFNE	Italy	http://web.Infn.It/Dafne_Light/
Elettra Synchrotron Light Laboratory	Italy	http://www.elettra.eu
Aichi Synchrotron Radiation Center	Japan	http://www.astf-kha.jp/synchrotron/en/
Hiroshima Synchrotron Radiation Center	Japan	http://www.hsrc.hiroshima-u.ac.jp/index. html
Photon Factory	Japan	http://pfwww.kek.jp/
Ritsumelkan University SR Center	Japan	http://www.ritsumei.ac.jp/acd/re/src/inde x.htm
Saga Light Source	Japan	http://www.saga-ls.jp/7page=206
SPring-8	Japan	http://www.spring8.or.jp/en/
Ultraviolet Synchrotron Orbital Radiation Facility	Japan	http://www.uvsor.ims.ac.jp/defaulte.html

Synchrotron-light for Experimental Science and Applications in the Middle East	Jordan	http://www.sesame.org.jo/sesame/
Pohang Light Source	Korea	http://paleng.postech.ac.kr
Dubna Electron Synchrotron	Russia	http://wwwinfo.jinr.ru/delsy/
Kurchatov Synchrotron Radiation Source	Russia	http://www.nrcki.ru/e/engl.html
Siberian Synchrotron Research Centre	Russia	http://ssrc.inp.nsk.su/
TNK	Russia	http://www.nilifp.ru/page/sinhrotron
Singapore Synchrotron Light Source	Singapore	http://ssls.nus.edu.sg/index.htm\|
ALBA	Spain	http://www.cells.es/
MAX IV Laboratory	Sweden	https://www.maxiv.se
Swiss Light Source	Switzerland	http://www.psi.ch/sis/
National Synchrotron Radiation Research Center	Taiwan	http://www.nsrrc.org.tw/
Synchrotron Light Research Institute	Thailand	http://www.slri.or.th
Diamond Light Source	United Kingdom	http://www.diamond.ac.uk/
Advanced Light Source	USA	https://als.Ibl.gov/
Advanced Photon Source	USA	http://www.aps.anl.gov
Center for Advanced Microstructures and Devices	USA	http://www.camd.lsu.edu/
Cornell High Energy Synchrotron Source	USA	http://www.chess.cornell.edu/
National Synchrotron Light Source II	USA	http://www.bnl.gov/ps/
Stanford Synchrotron Radiation Lightsource	USA	http://www-ssrl.slac.stanford.edu
Synchrotron Ultraviolet Radiation Facility	USA	http://physics.nist.gov/MajResFac/SURF/S URF/index.html

SR Light Sources Worldwide

ESRF, 6 GeV

APS, 7 GeV

SPring-8, 8 GeV

SSRF, 3.5 GeV

SR Light Sources Worldwide

MAX IV, 3 GeV , Sweden

Diamond, 3 GeV , England

NSLS II, 3 GeV, BNL, USA

ALBA, 3 GeV , Spain

SR Light Sources Worldwide

SSRF, China, 3.5 GeV

PLS, Korea, 3 GeV

NSRRC, Taiwan, 3GeV

Soleil, France, 2.75 GeV

Australian Synchrotron, 3 GeV

Indus II, India, 2.5GeV

SLS, Switzerland, 2.4 GeV

BESSY II, Germany, 1.7 GeV

SESAME, Jordan......

SR Light Sources ~ 50 facilities worldwide Tens of thousands of scientific and industrial user The filed is still growing!

X-rays have come a long way......

Soft X-ray Microscope XM-1 (BL 6.1.2 @ ALS)

http://www.cxro.lbl.gov/BL612/

What matters

- Rarely there is interest just a radiation power
- Typically people are interested in specific energy of photons (wavelength of radiation)

$$
E_{p h}=\hbar \omega=\hbar c \frac{2 \pi}{\lambda}
$$

$E_{p h}[\mathrm{keV}] \approx \frac{12.4}{\lambda\left[{ }^{\circ}\right]} ; E_{p h}[\mathrm{eV}] \approx \frac{1.24}{\lambda[\mu m]}$

- $1 \AA=10^{-10} \mathrm{~m}(0.1 \mathrm{~nm}$ or 100 pm$), 12.4 \mathrm{keV}$ photons

Figures of merit of light source

- Photon flux or spectral photon flux $\dot{N}_{\omega}=\frac{d^{2} N}{d t(d \omega / \omega)}$
- Brightness of the source $\quad B=\frac{d^{4} N}{d t d \Omega d A(d \omega / \omega)}$

Few formulae

Spectral expansion of radiation field in an observation point \vec{r}
for a point particles moving on a given trajectory:

$$
\vec{r}_{o}=\vec{r}_{o}(t) ; \overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{v}}_{o}(t)=\frac{d \vec{r}_{o}(t)}{d r}
$$

can be easily calculated by applying Fourier transformation to LienardWiechert 4-potential

$$
\vec{A}(\vec{r}, t)=\left.\frac{e \overrightarrow{\mathrm{v}}_{o}}{c\left(R-\frac{\vec{v}_{o}}{c} \cdot \vec{R}\right)}\right|_{,} ; \varphi(\vec{r}, t)=\left.\frac{e}{\left(R-\frac{\vec{v}_{o}^{c}}{c} \cdot \vec{R}\right)}\right|_{r} ; t^{\prime}+\frac{\vec{R}\left(t^{\prime}\right)}{c}=t ; \vec{R}(t)=\vec{r}-\vec{r}_{o}(t) .
$$

with no problem of resolving retarded time problem:

$$
\vec{A}_{\omega}(\vec{r}, t)=\frac{e}{c} \int_{-\infty}^{\infty} e^{i o\left(t+\frac{R(t)}{c}\right)} \frac{\vec{v}_{o}(t)}{R(t)} d t ; \varphi(\vec{r}, t)=\frac{e}{c} \int_{-\infty}^{\infty} e^{i o\left(t+\frac{R(t)}{c}\right)} \frac{d t}{R(t)} \cdot \vec{R}(t)=\vec{r}-\vec{r}_{o}(t) \text {. }
$$

It means that given particle trajectory, you could always calculate 4-potential, at least numerically...

Few formulae

Frequently our instrument is located far from the radiation point and we are interested in radiated field at large distance:

$$
\begin{gathered}
\vec{R}(t)=\vec{r}-\vec{r}_{o}(t) \rightarrow \vec{R}(t)=\vec{R}_{o}+\vec{r}-\vec{r}_{o}(t) ; \\
\vec{R}_{o}=\vec{n}\left|\vec{R}_{o}\right| \equiv \vec{n} R_{o} ; R_{o} \gg\left|\vec{r}_{o}\right| \Rightarrow \vec{R}(t) \cong R_{o}-\vec{n} \vec{r}_{o} ; k=\frac{\omega}{c} ; \vec{k}=\vec{n} k ; \\
\mathbf{A}_{\omega} \cong \frac{e}{c R_{o}} e^{i k R_{o} \int_{-\infty}^{\infty} \overrightarrow{\mathrm{v}}_{o}(t) e^{i\left(\omega t-\vec{r}_{o}\right)} d t \equiv \frac{e}{c R_{o}} e^{i k R_{o}} \int e^{i\left(\omega t-\overrightarrow{r_{r}}\right)} d \vec{r}_{o}} \\
\mathbf{H}=\vec{\nabla} \times \mathbf{A} \rightarrow \mathbf{H}_{\omega}=i\left[\vec{k} \times \mathbf{A}_{\omega}\right] ; \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}=-\vec{\nabla} \times \mathbf{H} \rightarrow \mathbf{E}_{\omega}=\frac{i c}{\omega}\left[\vec{k} \times\left[\vec{k} \times \mathbf{A}_{\omega}\right]\right] ; \\
\left|\mathbf{E}_{\omega}\right|=\left|\mathbf{H}_{\omega}\right| ; \mathbf{E}_{\omega} \cdot \mathbf{H}_{\omega}=0 ; \mathbf{E}_{\omega} \perp \mathbf{H}_{\omega} \perp \vec{n} . \\
\mathbf{S}_{\omega}=c \frac{\left[\mathbf{E}_{\omega} \times \mathbf{H}_{\omega}\right]}{4 \pi}=c \vec{n} \frac{\mathbf{H}_{\omega}^{2}}{4 \pi}=c \vec{n} \frac{\mathrm{E}_{\omega}^{2}}{4 \pi} \\
d E_{\omega}=\frac{c}{2 \pi} \mathrm{H}_{\omega}^{2} R_{o}^{2} d \Omega \frac{d \omega}{2 \pi}
\end{gathered}
$$

It even simpler - it is reduced to integral along the particle trajectory.
Uing these formulae you can calculate anything, but math can be - and frequently is - messy! You got accurate derivation of SR power and spectrum during last class.

Sources of Spontaneous Radiation

Bending Magnet:

$$
\hbar \omega_{c}=\frac{3 e \hbar B \gamma^{2}}{2 m} \quad P=\frac{e^{2} c}{6 \pi \varepsilon_{0}} \frac{\gamma^{4}}{\rho^{2}}
$$

Wiggler:

$$
\begin{gathered}
\hbar \omega_{c}=\frac{3 e \hbar B \gamma^{2}}{2 m} \\
n_{c}=\frac{3 K}{4}\left(1+\frac{K^{2}}{2}\right) \\
P_{T}=\frac{\pi e K^{2} \gamma^{2} I N}{3 \epsilon_{0} \lambda_{u}}
\end{gathered}
$$

Undulator:

$$
\begin{gathered}
\lambda=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right) \\
K=\frac{e B_{0} \lambda_{u}}{2 \pi m c} \\
\theta_{\mathrm{cen}}=\frac{1}{\gamma^{*} \sqrt{N}} \\
\left.\frac{\Delta \lambda}{\lambda}\right|_{\mathrm{cen}}=\frac{1}{N} \\
\bar{P}_{\mathrm{cen}}=\frac{\pi e \gamma^{2} I}{\epsilon_{0} \lambda_{u}} \frac{K^{2}}{\left(1+\frac{K^{2}}{2}\right)^{2}} f(K)
\end{gathered}
$$

Circular orbit

$$
\begin{gathered}
\dot{a}=-\frac{v^{2}}{\rho} \hat{\rho} \Rightarrow \dot{\vec{\beta}}=-\frac{\beta^{2} c}{\rho} \hat{\rho} \\
P\left(t_{r}\right)=\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{3} \frac{e^{2}}{c} \gamma^{6} \dot{\beta}^{2}\left(1-\beta^{2}\right)=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 e^{2} c \beta^{4} \gamma^{4}}{3 \rho^{2}}
\end{gathered}
$$

For a storage ring, the energy loss per turn:

$$
U_{0}=\int_{C} P\left(t_{r}\right) d t=\frac{1}{\beta c} \int_{C} P\left(t_{r}\right) d s=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 e^{2} \beta^{3} \gamma^{4}}{3} \int_{C} \frac{1}{\rho^{2}} d s
$$

If all dipoles in the storage ring has the same bending radius (iso-magnetic case):

$$
U_{0}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 e^{2} \beta^{3} \gamma^{4}}{3} \frac{2 \pi \rho}{\rho^{2}}=\frac{e^{2} \beta^{3} \gamma^{4}}{3 \varepsilon_{0} \rho}
$$

Power radiated by a beam of average current $\mathrm{I}_{\mathrm{b}}: \quad P_{\text {beam }}=U_{0} \frac{I_{b}}{e}=\frac{e \beta^{3} \gamma^{4}}{3 \varepsilon_{0} \rho} I_{b}$

Energy spectrum V

- The total energy spectrum is obtained by integrating over the solid angle:

$$
\begin{aligned}
\frac{d W}{d \omega} & =2 \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d^{2} I(\omega)}{d \omega d \Omega} \cos \theta d \theta=\frac{2 \pi}{\gamma} \int_{-\gamma \frac{\pi}{2}}^{\gamma \frac{\pi}{2}} \frac{d^{2} I(\omega)}{d \omega d \Omega} d(\gamma \theta) \\
& \approx \frac{1}{4 \pi \varepsilon_{0}} \frac{3 e^{2} \gamma}{2 \pi c} \frac{\omega^{2}}{\omega_{c}^{2}} \int_{-\infty}^{\infty}\left(1+y^{2}\right)^{2}\left\{\frac{y^{2}}{\left(1+y^{2}\right)^{2}} K_{\frac{1}{3}}^{2}\left(\frac{\omega}{2 \omega_{c}}\left(1+y^{2}\right)^{\frac{3}{2}}\right)+K_{\frac{2}{3}}^{2}\left(\frac{\omega}{2 \omega_{c}}\left(1+y^{2}\right)^{\frac{3}{2}}\right)\right\} d y
\end{aligned}
$$

Frequency / critical frequency

A more concise and popular expression for the energy spectrum:

$$
\frac{d W}{d \omega}=\frac{1}{4 \pi \varepsilon_{0}} \sqrt{3} \frac{e^{2} \gamma}{c} \frac{\omega}{\omega_{c}} \int_{\omega / \omega_{c}}^{\infty} K_{\frac{5}{3}}(x) d x
$$

Frequency / critical frequency

SR from Bending Magnet simple considerations

Frame moving with electron
Laboratory frame of reference

$$
l_{r a d} \propto \frac{\rho}{\gamma}
$$

Seen by observer $l_{\text {co-moving }}=\frac{l_{\text {rad }}}{\gamma} \propto \frac{\rho}{\gamma^{2}} ; \quad$ Lorenz contraction $l_{\text {lab }}=\frac{l_{\text {co-moving }}}{2 \gamma} \propto \frac{\rho}{\gamma^{3}} \quad$ Doppler boost $\lambda_{c}=\frac{4 \pi}{3} \frac{\rho}{\gamma^{3}} \quad$ Critical wavelength

$$
\epsilon_{c} \equiv \hbar \omega_{c}=\frac{3}{2} \frac{\hbar c \gamma^{3}}{\rho}
$$

SR from bending magnet (dipole magnet)

$$
\begin{equation*}
E_{c}=\hbar \omega_{c}=\frac{3 e \hbar B \gamma^{2}}{2 m} \tag{5.7a}
\end{equation*}
$$

$$
\begin{equation*}
E_{c}(\mathrm{keV})=0.6650 E_{e}^{2}(\mathrm{GeV}) B(\mathrm{~T}) \tag{5.7b}
\end{equation*}
$$

$$
\begin{equation*}
\gamma=\frac{E_{e}}{m c^{2}}=1957 E_{e}(\mathrm{GeV}) \tag{5.5}
\end{equation*}
$$

$$
\begin{gather*}
\left.\frac{d^{3} F_{B}}{d \theta d \psi d \omega / \omega}\right|_{\psi=0}=1.33 \times 10^{13} E_{e}^{2}(\mathrm{GeV}) I(\mathrm{~A}) H_{2}\left(E / E_{c}\right) \frac{\text { photons } / \mathrm{s}}{\mathrm{mrad}^{2} \cdot(0.1 \% \mathrm{BW})} \tag{5.6}\\
\frac{d^{2} F_{B}}{d \theta d \omega / \omega}=2.46 \times 10^{13} E_{e}(\mathrm{GeV}) I(\mathrm{~A}) G_{1}\left(E / E_{c}\right) \frac{\text { photons } / \mathrm{s}}{\mathrm{mrad} \cdot(0.1 \% \mathrm{BW})} \tag{5.8}
\end{gather*}
$$

SR spectrum

$$
\epsilon_{c} \equiv \hbar \omega_{c}=\frac{3}{2} \frac{\hbar c \gamma^{3}}{\rho} \quad P=\frac{e^{2} c}{6 \pi \varepsilon_{0}} \frac{\gamma^{4}}{\rho^{2}}
$$

Bending Magnet Radiation Covers a Broad Region of the Spectrum, Including the Primary Absorption Edges of Most Elements

$$
\begin{array}{ll}
\text { Advantages: } & \text { • covers broad spectral range } \\
& \text { - least expensive } \\
& \text { - most accessable }
\end{array}
$$

Brightness Comparison

Undulator/Wiggler

Radiation from Undulator/Wiggler

Bending Magnet

They are 'insertion devices' in straight sections. Modern accelerators provides many long straight sections.

An Undulator Up Close

ALS U5 undulator, beamline $7.0, \mathrm{~N}=89, \lambda_{\mathrm{u}}=50 \mathrm{~mm}$

$$
\frac{\lambda^{\prime}}{\Delta \lambda^{\prime}} \simeq \mathrm{N}
$$

Doppler shortened wavelength on axis:

$$
\begin{aligned}
& \lambda=\lambda^{\prime} \gamma(1-\beta \cos \theta) \\
& \lambda=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\gamma^{2} \theta^{2}\right)
\end{aligned}
$$

Accounting for transverse motion due to the periodic magnetic field:

$$
\lambda=\frac{\lambda_{\mathrm{u}}}{2 \gamma^{2}}\left(1+\frac{\mathrm{K}^{2}}{2}+\gamma^{2} \theta^{2}\right)
$$

where $\mathrm{K}=\mathrm{eB}_{0} \lambda_{\mathrm{u}} / 2 \pi \mathrm{mc}$

Electron Motion inside planar Undulator
 Bending Magnet

$$
B=B_{y}=B_{0} \cos \frac{2 \pi z}{\lambda_{u}}
$$

$$
\begin{aligned}
v_{x} & =\frac{e B_{0} \lambda_{u}}{2 \pi m \gamma} \sin \frac{2 \pi z}{\lambda_{u}} \equiv \frac{K c}{\gamma} \sin \frac{2 \pi z}{\lambda_{u}} \\
K & =\frac{e B_{0} \lambda_{u}}{2 \pi m c}=0.934 B_{0}[T] \lambda_{u}[\mathrm{~cm}]
\end{aligned}
$$

Formulas (SI, D. Attwood)

Magnetic fields in the periodic undulator cause the electrons to oscillate and thus radiate. These magnetic fields also slow the electrons axial (z) velocity somewhat, reducing both the Lorentz contraction and the Doppler shift, so that the observed radiation wavelength is not quite so short. The force equation for an electron is

$$
\begin{equation*}
\frac{d \mathbf{p}}{d t}=-e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \tag{5.16}
\end{equation*}
$$

where $\mathbf{p}=\gamma \mathrm{mv}$ is the momentum. The radiated fields are relatively weak so that

$$
\frac{d \mathbf{p}}{d t} \simeq-e(\mathbf{v} \times \mathbf{B})
$$

Taking to first order $\mathrm{v} \simeq \mathrm{v}_{\mathrm{z}}$, motion in the x -direction is

$$
\begin{aligned}
& m \gamma \frac{d \mathrm{v}_{x}}{d t}=+e \mathrm{v}_{z} B_{y} \\
& m \gamma \frac{d \mathrm{v}_{x}}{d t}=e \frac{d z}{d t} \cdot B_{0} \cos \left(\frac{2 \pi z}{\lambda_{u}}\right) \quad\left(0 \leq z \leq N \lambda_{u}\right) \\
& m \gamma d \mathrm{v}_{x}=e d z B_{0} \cos \left(\frac{2 \pi z}{\lambda_{u}}\right) \\
& \quad m \gamma d \mathrm{v}_{x}=e d z B_{0} \cos \left(\frac{2 \pi z}{\lambda_{u}}\right)
\end{aligned}
$$

integrating both sides

$$
\begin{gather*}
m \gamma \mathrm{v}_{x}=e B_{0} \frac{\lambda_{u}}{2 \pi} \int \cos \left(\frac{2 \pi z}{\lambda_{u}}\right) \cdot d\left(\frac{2 \pi z}{\lambda_{u}}\right) \\
m \gamma \mathrm{v}_{x}=\frac{e B_{0} \lambda_{u}}{2 \pi} \sin \left(\frac{2 \pi z}{\lambda_{u}}\right) \tag{5.17}\\
\mathrm{v}_{x}=\frac{K c}{\gamma} \sin \left(\frac{2 \pi z}{\lambda_{u}}\right) \tag{5.19}\\
K \equiv \frac{e B_{0} \lambda_{u}}{2 \pi m c}=0.9337 B_{0}(\mathrm{~T}) \lambda_{u}(\mathrm{~cm}) \tag{5.18}
\end{gather*}
$$

is the non-dimensional "magnetic deflection parameter." The "deflection angle", θ, is

$$
\theta=\frac{\mathrm{v}_{x}}{\mathrm{v}_{z}} \simeq \frac{\mathrm{v}_{x}}{c}=\frac{K}{\gamma} \operatorname{sink}_{\mathrm{u}} \mathrm{z}
$$

In a magnetic field γ is a constant; to first order the electron neither gains nor looses energy

$$
\begin{align*}
\gamma & \equiv \frac{1}{\sqrt{1-\frac{\mathrm{v}^{2}}{c^{2}}}}=\frac{1}{\sqrt{1-\frac{\mathrm{v}_{x}^{2}+\mathrm{v}_{2}^{2}}{c^{2}}}} \\
\frac{\mathrm{v}_{z}^{2}}{c^{2}} & =1-\frac{1}{\gamma^{2}}-\frac{\mathrm{v}_{x}^{2}}{c^{2}} \tag{5.22}\\
\frac{\mathrm{v}_{z}^{2}}{c^{2}} & =1-\frac{1}{\gamma^{2}}-\frac{K^{2}}{\gamma^{2}} \sin ^{2}\left(\frac{2 \pi z}{\lambda_{u}}\right)
\end{align*}
$$

thus

Taking the square root, to first order in the small parameter K / γ

$$
\begin{equation*}
\frac{\mathrm{v}_{z}}{c}=1-\frac{1}{2 \gamma^{2}}-\frac{K^{2}}{2 \gamma^{2}} \sin ^{2}\left(\frac{2 \pi z}{\lambda_{u}}\right) \tag{5.23a}
\end{equation*}
$$

Using the double angle formula $\sin { }^{2} k_{u} z=\left(1-\cos 2 k_{u} z\right) / 2$, where $k_{u}=2 \pi / \lambda_{u}$,

$$
\frac{\mathrm{v}_{z}}{c}=\underbrace{1-\frac{1+K^{2} / 2}{2 \gamma^{2}}}_{\begin{array}{c}
\text { Reduced } \\
\text { axial velocity }
\end{array}}+\underbrace{\frac{K^{2}}{4 \gamma^{2}} \cos \left(2 \cdot \frac{2 \pi z}{\lambda_{u}}\right)}_{\begin{array}{c}
\text { A double frequency } \\
\text { component of the motion }
\end{array}}
$$

The first two terms show the reduced axial velocity due to the finite magnetic field (K). The last term indicates the presence of harmonic motion, and thus harmonic frequencies of radiation.

Averaging the z -component of velocity over a full cycle (or N full cycles) gives

$$
\begin{equation*}
\frac{\overline{\mathbf{v}}_{z}}{c}=1-\frac{1+K^{2} / 2}{2 \gamma^{2}} \tag{5.25}
\end{equation*}
$$

We can use this to define an effective Lorentz factor γ^{*} in the axial direction

$$
\begin{equation*}
\gamma^{*} \equiv \frac{\gamma}{\sqrt{1+K^{2} / 2}} \tag{5.26}
\end{equation*}
$$

As a consequence, the observed wavelength in the laboratory frame of reference is modified from Eq. (5.12), taking the form

$$
\lambda=\frac{\lambda_{u}}{2 \gamma^{* 2}}\left(1+\gamma^{* 2} \theta^{2}\right)
$$

that is, the Lorentz contraction and relativistic Doppler shift now involve γ^{*} rather than γ

$$
\begin{gather*}
\lambda=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)\left(1+\frac{\gamma^{2}}{1+K^{2} / 2} \theta^{2}\right) \\
\lambda=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right) \tag{5.28}
\end{gather*}
$$

where $\mathrm{K} \equiv \mathrm{e} \mathrm{B}_{0} \lambda_{\mathrm{u}} / 2 \pi \mathrm{mc}$. This is the undulator equation, which describes the generation of short (x-ray) wavelength radiation by relativistic electrons traversing a periodic magnet structure, accounting for magnetic tuning (K) and off-axis $(\gamma \theta)$ radiation. In practical units

$$
\lambda(\mathrm{nm})=\frac{1.306 \lambda_{u}(\mathrm{~cm})\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right)}{E_{e}^{2}(\mathrm{GeV})}
$$

Narrow Cone Undulator Radiation, Generated by Relativistic Electrons Traversing a Periodic Magnet Structure

Corrections to $\bar{P}_{\text {cen }}$ for Finite K

Our formula for calculated power in the central radiation cone $\left(\theta_{\text {cen }}=1 / \gamma^{*} \sqrt{N}, \Delta \lambda / \lambda=1 / N\right)$

$$
\begin{equation*}
\bar{P}_{\mathrm{cen}} \simeq \frac{\pi e \gamma^{2} I}{\epsilon_{0} \lambda_{u}} \frac{K^{2}}{\left(1+K^{2} / 2\right)^{2}} \tag{5.39}
\end{equation*}
$$

is strictly valid for $K \ll 1$. This restriction is due to our neglect of K^{2} terms in the axial velocity v_{z}. The $\bar{P}_{\text {cen }}$ formula, however, indicates a peak power at $K=\sqrt{2}$, suggesting that we explore extension of this very useful analytic result to somewhat higher K values. Kim* has studied undulator radiation for arbitrary K and finds an additional multiplicative factor, $f(K)$, which accounts for energy transfer to higher harmonics:

$$
\begin{equation*}
\bar{P}_{\text {cen }}=\frac{\pi e \gamma^{2} I}{\epsilon_{0} \lambda_{u}} \frac{K^{2}}{\left(1+K^{2} / 2\right)^{2}} f(K) \tag{5.41a}
\end{equation*}
$$

where

$$
\begin{equation*}
f(K)=\left[J_{0}(x)-J_{1}(x)\right]^{2} \tag{5.40a}
\end{equation*}
$$

and

$$
\begin{align*}
x & =K^{2} / 4\left(1+K^{2} / 2\right) \\
f(K) & =1-x-\frac{x^{2}}{4}+\frac{3 x^{3}}{8}+\cdots \tag{5.40b}
\end{align*}
$$

\boldsymbol{K}	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{K})$
0	0	1.000
0.5	0.0556	0.944
1.0	0.1667	0.828
$\sqrt{2}$	0.2500	0.740
1.5	0.2647	0.725
2.0	0.3333	0.653
2.5	0.3788	0.606

[^0]$\hbar \omega_{\mathrm{o}}=4 \pi \hbar \gamma^{2} c / \lambda_{\mathrm{u}}$
$$
\bar{P}_{\mathrm{cen}}=\frac{2 \pi e \gamma^{2} I}{\epsilon_{0} \lambda_{u}} \cdot \frac{\hbar \omega}{\hbar \omega_{0}}\left(1-\frac{\hbar \omega}{\hbar \omega_{0}}\right) f\left(\hbar \omega / \hbar \omega_{0}\right)
$$
$$
\bar{P}_{\text {cen }}=\left(1.14 \times 10^{-5} \mathrm{~W}\right) \frac{\gamma^{2} I(\mathrm{~A})}{\lambda_{u}(\mathrm{~cm})} \cdot \frac{\hbar \omega}{\hbar \omega_{0}}\left(1-\frac{\hbar \omega}{\hbar \omega_{0}}\right) f\left(\hbar \omega / \hbar \omega_{0}\right)
$$

Power in the Central Radiation Cone For Three Soft X-Ray Undulators

$f\left(\hbar \omega / \hbar \omega_{0}\right) \simeq \frac{7}{16}+\frac{5}{8} \frac{\hbar \omega}{\hbar \omega_{0}}-\frac{1}{16}\left(\frac{\hbar \omega}{\hbar \omega_{0}}\right)^{2}+\cdots$

For Three X-Ray Undulators

$\theta_{\text {cen }}=\frac{1}{\gamma^{\star} \sqrt{\mathrm{N}}}$
$\left[\frac{\Delta \lambda}{\lambda}\right]_{1}=\frac{1}{N}$
$\left[\frac{\Delta \lambda}{\lambda}\right]_{3}=\frac{1}{3 N}$

Courtesy of D. Attwood

Spectral Bandwidth of Undulator Radiation from a Single Electron

Radiated Wavetrain

Spectral Distribution

$$
\begin{aligned}
& \lambda_{\mathrm{x}}=\frac{\lambda_{\mathrm{u}}}{2 \gamma^{2}}\left(1+\frac{\mathrm{K}^{2}}{2}+\gamma^{2} \theta^{2}\right) \\
& \overline{\mathrm{P}}_{\text {cen }}=\frac{\pi \mathrm{e} \gamma^{2} I}{\epsilon_{0} \lambda_{\mathrm{u}}} \frac{\mathrm{~K}^{2}}{\left(1+\frac{\mathrm{K}^{2}}{2}\right)^{2}} \mathrm{f}(\mathrm{~K}) \\
& \theta_{\text {cen }}=\frac{1}{\gamma^{*} \sqrt{\mathrm{~N}}} \\
& \left(\frac{\Delta \lambda}{\lambda}\right)_{\text {cen }}=\frac{1}{\mathrm{~N}} \\
& \mathrm{~K}=\frac{\mathrm{eB}}{0} \lambda_{\mathrm{u}} \\
& 2 \pi \mathrm{~m}_{0} \mathrm{C} \\
& \gamma^{*}=\gamma / \sqrt{1+\frac{\mathrm{K}^{2}}{2}}
\end{aligned}
$$

Brightness and Spectral Brightness

Brightness is defined as radiated power per unit area and per unit solid angle at the source:

$$
\begin{equation*}
B=\frac{\Delta P}{\Delta A \cdot \Delta \Omega} \tag{5.57}
\end{equation*}
$$

Brightness is a conserved quantity in perfect optical systems, and thus is useful in designing beamlines and synchrotron radiation experiments which involve focusing to small areas.

> Perfect optical system:

$$
\Delta \mathrm{A}_{\mathrm{s}} \cdot \Delta \Omega_{\mathrm{s}}=\Delta \mathrm{A}_{\mathrm{i}} \cdot \Delta \Omega_{\mathrm{i}} ; \eta=100 \%
$$

Spectral brightness is that portion of the brightness lying within a relative spectral bandwidth $\Delta \omega / \omega$:

$$
\begin{equation*}
B_{\Delta \omega / \omega}=\frac{\Delta P}{\Delta A \cdot \Delta \Omega \cdot \Delta \omega / \omega} \tag{5.58}
\end{equation*}
$$

What defines Brightness?

Beam size (σ)

Beam angular divergence (σ^{\prime})

Courtesy of D. Attwood

Preserving the spectral line shape of undulator radiation requires

$$
\begin{equation*}
\sigma^{\prime 2} \ll \theta_{\mathrm{cen}}^{2} \tag{5.55b}
\end{equation*}
$$

Define effective, or total central cone half-angles

$$
\begin{equation*}
\theta_{T x}=\sqrt{\theta_{\mathrm{cen}}^{2}+\sigma_{x}^{\prime 2}} \text { and } \theta_{T y}=\sqrt{\theta_{\mathrm{cen}}^{2}+\sigma_{y}^{\prime 2}} \tag{5.56}
\end{equation*}
$$

Spectral Brightness of Undulator Radiation

The Synchrotron radiation community prefers to express spectral brightness in units of photons/sec, rather than power, and has standardized on a relative spectral bandwidth of $\Delta \omega / \omega=10^{-3}$, or $0.1 \% \mathrm{BW}$. To obtain a relationship for spectral brightness of undulator radiation we can use our expression for $\bar{P}_{\text {cen }}$, radiated into a solid angle $\Delta \Omega=\pi \theta_{\text {cen }}^{2}=\pi \theta_{T x} \theta_{T y}$, from an elliptically shaped source area of $\Delta \mathrm{A}=\pi \sigma_{x} \sigma_{y}$, and within a relative spectral bandwidth $\Delta \omega / \omega=1 / \mathrm{N}$. Defining the photon flux in the central radiation cone as

$$
\begin{align*}
\bar{F}_{\text {cen }} & =\frac{\bar{P}_{\text {cen }}}{\hbar \omega / \text { photon }} \tag{5.59}\\
\bar{B}_{\Delta \omega / \omega} & =\frac{\bar{F}_{\text {cen }}}{\Delta A \cdot \Delta \Omega \cdot N^{-1}}=\frac{\bar{F}_{\text {cen }} \cdot(N / 1000)}{\Delta A \cdot \Delta \Omega \cdot(0.1 \% \mathrm{BW})} \tag{5.60}
\end{align*}
$$

on-axis

$$
\begin{equation*}
\bar{B}_{\Delta \omega / \omega}(0)=\frac{\bar{F}_{\mathrm{cen}} \cdot(N / 1000)}{2 \pi^{2} \sigma_{x} \sigma_{y} \theta_{T x} \theta_{T y}(0.1 \% \mathrm{BW})} \tag{5.64}
\end{equation*}
$$

$$
\begin{equation*}
\bar{B}_{\Delta \omega / \omega}(0)=\frac{7.25 \times 10^{6} \gamma^{2} N^{2} I(\mathrm{~A})}{\sigma_{x}(\mathrm{~mm}) \sigma_{y}(\mathrm{~mm})\left(1+\frac{\sigma_{x}^{\prime 2}}{\theta_{\text {cen }}^{2}}\right)^{1 / 2}\left(1+\frac{\sigma_{y}^{\prime 2}}{\theta_{\text {cen }}^{2}}\right)^{1 / 2}} \cdot \frac{K^{2} f(K)}{\left(1+K^{2} / 2\right)^{2}} \frac{\text { photons } / \mathrm{s}}{\mathrm{~mm}^{2} \mathrm{mrad}^{2}(0.1 \% \mathrm{BW})} \tag{5.65}
\end{equation*}
$$

Assumes $\sigma^{2} \ll \theta_{\text {cen }}^{2}$. Note the N^{2} factor.

- Brightness is conserved (in lossless optical systems)

$$
\mathrm{d}_{\text {source }} \cdot \theta_{\text {source }}=\mathrm{d}_{\text {focus }} \cdot \theta_{\text {optic }}
$$

- Starting with many photons in a small source area and solid angle, permits high photon flux in an even smaller area

Comments on Undulator Harmonics

First and second harmonic motions

Radiation patterns in the electron and laboratory frames

$$
\begin{gather*}
\lambda_{n}=\frac{\lambda_{u}}{2 \gamma^{2} n}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right) \tag{5.30}\\
\left(\frac{\Delta \lambda}{\lambda}\right)_{n}=\frac{1}{n N} \tag{5.31}
\end{gather*}
$$

Recall that the axial velocity has a double frequency component

$$
\mathrm{v}_{z}=c\left[1-\frac{1+K^{2} / 2}{2 \gamma^{2}}+\frac{K^{2}}{4 \gamma^{2}} \cos \left(2 k_{u} z\right)\right]
$$

which in the frame of reference moving with the electrons, gives

$$
\begin{equation*}
z^{\prime}\left(t^{\prime}\right) \simeq \frac{K^{2}}{8 k_{u}^{\prime}} \sin 2 \omega_{u}^{\prime} t^{\prime} \tag{5.70}
\end{equation*}
$$

where $\mathrm{k}_{\mathrm{u}}^{\prime}=\gamma^{*} \mathrm{k}_{\mathrm{u}}$ and $\omega_{\mathrm{u}}^{\prime}=\gamma^{*} \omega_{\mathrm{u}}$. The transverse motion in this frame is

$$
x^{\prime}\left(t^{\prime}\right) \simeq-\frac{K}{k_{u} \gamma} \cos \omega_{u} \gamma^{*}\left(t^{\prime}+\frac{z^{\prime}}{c}\right)
$$

To a higher degree of accuracy, we now keep the z^{\prime} / c term
for small K $\quad x^{\prime}\left(t^{\prime}\right) \simeq-\frac{1}{k_{u}^{\prime}}\left[K \cos \omega_{u}^{\prime} t^{\prime}+\frac{K^{3}}{16} \cos 3 \omega_{u}^{\prime} t^{\prime}\right]$

$$
\begin{equation*}
x^{\prime}\left(t^{\prime}\right) \simeq-\frac{K}{k_{u}^{\prime}} \cos \left(\omega_{u}^{\prime} t^{\prime}+\frac{K^{2}}{8} \sin 2 \omega_{u}^{\prime} t^{\prime}\right) \tag{5.71}
\end{equation*}
$$

Taking second derivatives to find acceleration, and squaring $\left|a^{\prime}\left(t^{\prime}\right)\right|^{2}$

$$
\frac{d P^{\prime}}{d \Omega^{\prime}} \propto n^{4} K^{2 n}
$$

Thus harmonics grow very rapidly for $\mathrm{K}>1$.

The Transition from Undulator Radiation ($\mathrm{K} \leq 1$) to Wiggler Radiation ($\mathrm{K} \gg 1$)

For Very Large K >> 1, and Large Dq, a Continuum Emerges

Wiggler Radiation

At very high $\mathrm{K} \gg 1$, the radiated energy appears in very high harmonics, and at rather large horizontal angles $\theta \simeq \pm \mathrm{K} / \gamma$ (eq. 5.21). Because the emission angles are large, one tends to use larger collection angles, which tends to spectrally merge nearby harmonics. The result is a continuum at very high photon energies, similar to that of bending magnet radiation, but increased by 2 N (the number of magnet pole pieces).

$$
\begin{align*}
E_{c} & =\hbar \omega_{c}=\frac{3 e \hbar B \gamma^{2}}{2 m} ; \quad n_{c}=\frac{3 K}{4}\left(1+\frac{K^{2}}{2}\right) \\
\left.\frac{d^{2} F}{d \theta d \Psi d \omega / \omega}\right|_{0} & =2.65 \times 10^{13} N E_{e}^{2}(\mathrm{GeV}) I(\mathrm{~A}) H_{2}\left(E / E_{c}\right) \frac{\text { photons } / \mathrm{s}}{\operatorname{mrad}^{2}(0.1 \% \mathrm{BW})} \tag{5.86}\\
\frac{d^{2} F}{d \theta d \omega / \omega} & =4.92 \times 10^{13} N E_{e}(\mathrm{GeV}) I(\mathrm{~A}) G_{1}\left(E / E_{c}\right) \frac{\text { photons } / \mathrm{s}}{\mathrm{mrad} \cdot(0.1 \% \mathrm{BW})} \tag{5.87}
\end{align*}
$$

Typical Parameters for Synchrotron Radiation

Facility	ALS	ELETTRA	Australian Synchrotron	n APS
Electron energy	1.90 GeV	2.0 GeV	3.0 GeV	7.00 GeV
γ	3720	3910	5871	13,700
Current (mA)	400	300	200	100
Circumference (m)	197	259	216	1100
RF frequency (MHz)	500	500	500	352
Pulse duration (FWHM) (ps)	35-70	37	~ 100	100
Bending Magnet Radiation:				
Bending magnet field (T)	1.27	1.2	1.31	0.599
Critical photon energy (keV)	3.05	3.2	7.84	19.5
Critical photon wavelength	0.407 nm	0.39 nm	1.58 A	0.636 A
Bending magnet sources	24	12	28	35
Undulator Radiation:				
Number of straight sections	12	12	14	40
Undulator period (typical) (cm)	5.00	5.6	22.0	3.30
Number of periods	89	81	80	72
Photon energy ($K=1, n=1$)	457 eV	452 eV	2.59 keV	9.40 keV
Photon wavelength ($K=1, n=1$)	2.71 nm	2.74 nm	0.478 nm	1.32 A
Tuning range ($n=1$)	$230-620 \mathrm{eV}$	$2.0-6.7 \mathrm{~nm}$	$0.319-0.835 \mathrm{~nm}$	$3.5-12 \mathrm{keV}$
Tuning range ($n=3$)	$690-1800 \mathrm{eV}$	$0.68-2.2 \mathrm{~nm}$	$0.106-0.278 \mathrm{~nm}$	$10-38 \mathrm{keV}$
Central cone half-angle ($K=1$)	$35 \mu \mathrm{rad}$	$35 \mu \mathrm{rad}$	$23 \mu \mathrm{rad}$	$11 \mu \mathrm{rad}$
Power in central cone ($K=1, n=1$) (W)	2.3	1.7	6.6	12
Flux in central cone (photons/s)	3.1×10^{16}	2.3×10^{16}	1.6×10^{16}	7.9×10^{15}
$\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}(\mu \mathrm{m})$	260, 16	255, 23	320, 16	320,50
$\sigma_{\mathrm{x}}^{\prime}, \sigma_{\mathrm{y}}^{\prime}(\mu \mathrm{rad})$	23, 3.9	31, 9	34, 6	23, 7
Brightness $(K=1, n=1)^{a}$				
Total power ($K=1$, all n, all θ) (W)	83	126	476	350
Other undulator periods (cm)	$3.65,8.00,10.0$	8.0, 12.5	6.8,18.3 2	$2.70,5.50,12.8$
Wiggler Radiation:				
Wiggler period (typical) (cm)	16.0	14.0	6.1	8.5
Number of periods	19	30	30	28
Magnetic field (maximum) (T)	2.1	1.5	1.9	1.0
K (maximum)	32	19.6	12	7.9
Critical photon energy (keV)	5.1	4.0	11.4 keV	33
Critical photon wavelength	0.24 nm	0.31 nm	0.11 nm	0.38 A
Total power (max. K) (kW)	13	7.2	9.3	7.4

[^1]
SR is polarized light

But we simply do not have time to discuss this in detail

Polarization properties of SR

X-ray Magnetic Circular Dichroism (XMCD)

(Courtesy of Kwang-Je Kim)

What are the Relative Merits?

Bending magnet radiation

- Broad spectrum
- Good photon flux
- No heat load
- Less expensive
- Easier access

Wiggler radiation

- Higher photon energies
- More photon flux
- Expensive magnet structure
- Expensive cooled optics
- Less access

Undulator radiation

- Brighter radiation
- Smaller spot size
- Partial coherence
- Expensive
- Less access

What we learned?

- SR has a wide variety of applications
- Light sources are mostly storage ring based
- Bending magnet SR is broad band, high power, but not very bright when compared to
- Undulator radiation - which is brightest between sources: its spectral brightness is proportional to number of poles square of the number of periods
- Undulators can produce also very bright radiation on harmonics
- Wiggler is an undulator with very large field whose harmonics are overlapped (because of the electron beam parameters!) and it power and brightness is proportional to number of periods
- Ultimately, electron beam parameters (beam current, emittances and energy spread) are determining performance of the light sources
- Polarization plays critical role in studies of magnetic materials
- There is a drive for so-called diffraction limited light sources where transverse emittances of the beam are below $\lambda / 4 \pi$. In this case the diffraction of the light itself determines spatial resolution/coherence of the beam, while brightness is simply proportional to the flux.

Radiation for K<1

Bending Magnet

Radiation Bandwidth:

$$
\frac{\Delta \lambda}{\lambda}=\frac{1}{N}
$$

Angle for central cone

$$
\theta_{c e n} \sim \frac{1}{\gamma \sqrt{N}}
$$

Courtesy of W. Barletta
Power:

$$
P_{c e n}=\frac{\pi e \gamma^{2} I}{\epsilon_{0} \lambda_{u}}\left(\frac{K}{1+K^{2} / 2}\right)^{2} f(K)
$$

[^0]: * K.J. Kim, "Characteristics of Synchrotron Radiation", pp. 565-632 in Physics of Particle Accelerators (AIP, New York, 1989), M. Month and M. Dienes, Editors.

 Also see: P.J. Duke, Synchrotron Radiation (Oxford Univ. Press, UK, 2000).
 A. Hofmann, "The Physics of Synchrotron Radiation" (Cambridge Univ. Press, 2004).

[^1]:

