PROPOSED PROJECTS #### **Introduction** 2 ♦ First and foremost: 11 12 18 - It is certainly not forbidden to propose a project of your own! - It can for instance be in relation with activities you might have in the framework of your home institution, or in the framework of a Master or PhD cursus. - Tell about your idea(s), we will discuss it, make sure it fits in the general learning context and level of achievement. Once this is settled... there you go. #### 8 Some indications about the project: - o The project will be concluded, by the end of PHY684, with two documents: - a set of slides for a 10 minute presentation to the class - a written report, in a "laboratory technical note" style write-up, up to 10 pages - ♦ The initial phase of the project will be a bibliographical research. It is expected that 25% of the work time will concern the bibliography. Which will include - the origins and present context (depending on the topic, it can concern a particular accelerator technology, and/or its applications, and/or the laboratory which houses/develops it, etc.), foreseen future - a technical review: overview of the theory and technology, parameter lists, detailed descriptions, etc. - beam simulations, program and other computing tools developments ... #### 21 About the bibliography: In some cases a document is indicated as a possible starting point for the bibliography. In any case, a good source for starting your bibliographical research is the accelerator conference web site www.jacow.org It offers in particular a powerful search engine, accepting authors names, pieces of text, etc. ### 1 Microtron 26 27 - Simulate the fourth stage (the highest in energy) of MAMI, the Mayence microtron [1]. - Plans for this project: - document MAMI: history of the microtron cascade, characteristics, parameter lists. And their use. - simulate the fourth stage: produce the nominal optics, optical functions, first order beam properties, beam envelopes, etc. - produce bunch tracking simulations (transverse and longitudinal phase spaces, etc.) - [1] A starting point can be: H.-J. Kreidel, M. Dehn, Computer models to optimize the setting of the MAMI double sided microtron, THP056, Proceedings of ICALEPCS2009, Kobe, Japan - https://search.cern.ch/Pages/results.aspx?k=+domain ## 2 A 270 degree magnetic spectrometer Simulate particle transport in an 270 degree magnetic spectrometer. Plans for this project: 38 40 41 42 - document magnetic mass spectrometry [1] and the 270 degree spectrometer: history including the use in plasma acceleration and in space experiments, characteristics, parameter lists. And their use over the years. - produce tracking simulations through a 270 degree "alpha" spectrometer: transverse and longitudinal phase spaces, optical and momentum aberrations, 6D transport and resoltuion, etc. [1] A starting point can be: ## 3 Spin dynamics - Produce spin dynamics simulations in the vicinity of, or across, depolarizing spin resonance. - Plans for this project: - document the acceleration and storage of spin polarized particle beams: history, from SATURNE and the ZGS to today's state-of-the art, future. Theory, technologies. - simulate spin dynamics in the vicinity of, or across resonances, in a ring, confront outcomes to theory. - [1] A starting point can be: ## 4 Edge radiation at the SPS The SPS has plans to resurrect an old synchrotron radiation diagnostics technique: the visible light edge radiation. Plans for this project: - document the "edge radiation" at the SPS: history, characteristics, parameter list. And its use. - Simulate the 1979 experiment, produce spectral-angular light distribution (Refs. [1,2] can be used as a guidance) - ⁵⁹ [1] R. Coisson, (1979) 55 [2] J. Bosser et al., Characteristics of the radiation emitted by protons and antiprotons in an accelerator ### 5 Proton-therapy Proton-therapy is in use in many dedicated cancer treatment centers over the world. It is based on the ballistic of the Bragg peak, and uses proton beams in the range 70-230 MeV. These beams are produced using synchrotron, synchrocyclotron, or cyclotron accelerators. Plans for this project: 66 68 70 - document hadrontherapy: history, method, current status. - Choose a protontherapy accelerator in operation, and simulate it, accelerate from start to end, including beam extraction towards the patient. [1] A starting point can be: ### 6 Drift tube linac - Simulate a drift tube linac. Choose a simple, classical DTL, in use today. - Plans for this project: 74 - document the DTL type of linac: history, characteristics, parameter lists, state-of-the-art. - Based on your bibliography, select a DTL inuse. Produce its parameter list, optics, optical functions, beam parameters, beam envelopes, etc. - produce start-to-end bunch tracking simulations (transverse and longitudinal phase spaces, etc.) - [1] A starting points can be: - J. Le Duff, Dynamics and acceleration in linear structures, "CAS CERN Accelerator School: 5th General Accel- - erator Physics Course", Yellow-Report CERN-94-01, http://cds.cern.ch/search?cc=CERN+Yellow+Reports&p= ### ² 7 Betatron 85 89 - Install a betatron in Zgoubi. - Plans for this project: - document the betatron accelerator [1]: history, theory, characteristics. And its use. - Write a program that simulates the magnetic and induction electric fields in the useful 3D region in the gap of a betatron circular accelerator. Install it in zgoubi - validate by appropriate numerical simulations, modeling an existing (past or present) betatron. - produce start-to-end bunch tracking simulations (transverse and longitudinal phase spaces, etc.) - [1] A starting point can be: ### 8 Slow extraction at the CERN SPS The 400 GeV proton beam at the SPS is slow-extracted towards experimental areas (the "North Hall"), using a third integer resonance technique. This is an on-going program, including theoretical studies and experiments [1], aimed at reducing beam losses at extraction. Plans for this project: 97 - document the SPS: history, theory, characteristics. And its use. - document the technique of slow extraction. And the goals of the ongoing studies at the SPS. Using the SPS computer code model, produce the nominal optics: optical functions, first order beam properties, beam envelopes, etc. - simulate the slow extraction process, provide the 6D phase space of the extracted beam spill. - [1] F.M. Velotti et al., Characterization of the SPS slow-extraction parameters, THPOR055, Proceedings of IPAC2016, Busan, Korea.