Homework 7

Problem 1. 10 points. FODO cell.

Consider a general FODO cell comprised of two quadrupoles F and D separated by two
drift sections, e.g. the structure below:
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(a) 2 points: write matrix (both x and y or 4x4) of general FODO cell (not assuming any
limitations on K F,D).

(b) 3 points: write stability criteria (for x and y) for periodic lattice built of this FOD cell.
Hint — do not try to solve it!

(c,d) make transition to short lens approximation and assume equal strength of
1
[.K.=-K,l,= ? =const,l, , —>0
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and

(c) 3 points: show that both x and y motion can be stable (e.g. prove so called strong
focusing: combination of focusing and defocusing length can provide focusing in both
directions);

(d) 2 points: define (e.g solve) the stability criteria for such cell.

Problem 2. 2x5 points. Find not-trivial solution for building an unit 2x2 transport matrix
out of repeating cells:

M*=LM#1
(a) 5 points: show that one of the solutions trace(M )= 0; Hint: used M*=-1I,
(b) 5 points: for a “symmetric” FODO cell and finite length equally strong quadrupoles
K,.=-K,=K;l,=1,=L; | =1,=1[ write the condition that M} =M =1, e.g.
the 4x4 transport matrix is unit.

Solutions: Problem 1:

(a) We know already matrices of all these elements and need just multiply them in correct
order
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and similarly ugly expression for vertical matrix,
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(b) stability criteria are:
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Stability criteria is

Trace[M ]
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can be satisfied for both directions.

Problem 2. Ignoring trivial solution and complications imposed by M?* =1

M*=1— M*==I pick M>=~I; ad-bc=1
a b a b |_ a’*+bc bla+d) ala+d)—1 b(a+d) | -1 0
c d| ¢ d| | card) & +be cla+d) da+d)-1 | | 0 -1
has obvious solution
TraceM =a+d=0

Using previous problem, we can write
TracelM,,]1=0
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This a transcendental equation, which has solution which can be found numerically.



