Homework 19. Due November 18
Problem 1. 20 points. 1D emittance
For an ensemble or a distribution function of particles 1D geometrical emittance is

defined as
e, = (") {y") =)

N,
D g(,.y0)

(80 == [ 38y dydy':

p
1. Show that the emittance is invariant to a Canonical linear (symplectic matrix)

transformation of
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the X matrix.
2. For one-dimensional betatron (y) distribution find components of eigen vector wy and
W’y generating a given (positively defined)
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This operation is called matching the beam into the beam-line optics.

Solution.
Problem 1. (1) Let’s prove that
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(where we use the fact that one can extract constants from the averaging brakets) which
in matrix form is equivalent to
S=M"M
The rest is easy since det M =1:
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(2) Let’s remember that
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and calculate averages using randomness of particles’ phases
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Thus, for 1D case it one can use this relation to design matched lattice for a given X
matrix of the beam — for example at injection point into a storage ring. This matching
minimizes RMS amplitudes of particles oscillation in the storage ring.



