PHY 554. Homework 8.

Handed: September 24, $2018 . \quad$ Return by: October 1, 2018
Electronic copies accepted at vladimir.litvinenko@stonybrook.edu
HW 1, 3 points. Using representation of transport matrices using $\boldsymbol{\beta}$-functions from Lecture, and a weak quadrupole error:

$$
\begin{gathered}
M_{o}\left(s_{1} \mid s_{2}\right)=\left[\begin{array}{cc}
\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \Delta \psi_{12}+\alpha_{1} \sin \Delta \psi_{12}\right) & \sqrt{\beta_{1} \beta_{2}} \sin \Delta \psi_{12} \\
-\frac{1+\alpha_{1} \alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \sin \Delta \psi_{12}-\frac{\alpha_{1}-\alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \cos \Delta \psi_{12} & \sqrt{\frac{\beta_{1}}{\beta_{2}}}\left(\cos \Delta \psi_{12}-\alpha_{2} \sin \Delta \psi_{12}\right)
\end{array}\right] ; \\
\Delta \psi_{12}=\psi_{2}-\psi_{1} ; M_{\delta}\left(s_{1}\right)=\left[\begin{array}{cc}
1 & 0 \\
-k\left(s_{1}\right) d s & 1
\end{array}\right] ; \\
M\left(s_{2} \mid s_{2}+C\right)=M_{o}\left(s_{1} \mid s_{2}+C\right) M_{\delta}\left(s_{1}\right) M_{o}\left(s_{2} \mid s_{1}\right) ; \beta_{i} \equiv \beta_{o}\left(s_{i}\right) ; \psi_{i} \equiv \psi_{o}\left(s_{i}\right)=v \phi_{o}\left(s_{i}\right) ; \\
\delta M_{12}\left(s_{2} \mid s_{2}+C\right)=M\left(s_{2} \mid s_{2}+C\right)-M_{o}\left(s_{2} \mid s_{2}+C\right)
\end{gathered}
$$

prove the modification of the transport matrix element M_{12} is indeed what we used in Lecture 8:

$$
\begin{gathered}
\delta M_{12}\left(s_{2} \mid s_{2}+C\right)=-\beta_{1} \beta_{2} k\left(s_{1}\right) d s \cdot \sin \left(\psi_{1}-\psi_{2}\right) \cdot \sin \left(\mu_{o}-\psi_{1}+\psi_{2}\right) \\
=\frac{1}{2} \beta_{1} \beta_{2} k\left(s_{1}\right) d s \cdot\left[\cos \mu_{o}-\cos \left(\mu_{o}-2\left(\psi_{1}-\psi_{2}\right)\right)\right]
\end{gathered}
$$

HW2: 3 points. Prove that relative value of $\boldsymbol{\beta}$-beat has the forced socillator equation with doubel betatron frequency:

$$
\begin{gathered}
f(s)=\frac{\delta \beta(s)}{\beta_{o}(s)}=-\frac{1}{2 \sin \mu_{o}} \int_{\psi(s)}^{\psi(s)+\mu} \beta_{o}{ }^{2}(z) k(z) \cdot \cos \left(\mu_{o}+2(\psi-\varphi)\right) d \varphi ; d \varphi=\frac{d s}{\beta_{o}} \\
\frac{d^{2}}{d \psi^{2}} f(s)+4 f(s)=-2 \beta_{o}{ }^{2}(s) k(s)
\end{gathered}
$$

HW3, 4 points: Prove that it is impossible to compensate both horizontal and verticla chromaticity in a storage ring with uniform weak focusing.
Hints:
(a) Use the fact that β-functions are constants;
(b) Prove that both natural chromaticities are negative;
(c) Show hat dispersion fnction is constant and positive;
(d) Use this fact to show that sextupoles have equal opposite effect on tow chromaticities independently of locaion

