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2 Lecture 27. Nonlinear elements and nonlinear dynamics. Part I 
 
Nonlinear effects in particle’s motion arise from various sources: high order kinematic 
terms in Hamiltonian expansion, spatial and temporal inhomogeneity of EM fields, edge 
effects, bending (e.g. bending plus gradient generates this order term), collective fields 
(space charge, wake-fields, beam-beam collisions). Typical methods include Hamiltonian 
perturbation methods or numerical tracking of many types (from particles tracking to 
particle-in-cell codes). A novel approach, exploiting symmetries of Hamiltonian systems 
and power of Lie algebraic tools, is the most comprehensive approach to the non-linear 
beam dynamics. Hence, a short introduction to this method. 
 
But first, let us start by discussing a typical – and very important – nonlinear effect called 
chromaticity. It is nothing else than dependence of the betatron tune on particle’s energy. 
While you can do this for fully coupled motion using our well-developed 
parameterization and perturbation methods, here –for compactness - we will consider just 
an uncoupled betatron motion with Hamiltonian in transverse magnetic field:  
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If we consider easiest scenario for a storage ring using pure dipole and quadrupole field 
we get: 
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2 x2
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eByro

poc
.    (27-3) 

expression which does not contain any nonlinear terms (cubic or higher). Remember that 
linear term in (27-3) disappears because of the condition on the reference orbit. We can 
see that angle is ′x , ′y  inverse proportional to the particle’s momentum p = po(1+δ )
while the force ′px,y  does not depend on the partcle’s momentum. Hence, the lowest order 

(cubic) term in the Hamiltonian expansion are δ ⋅ px,y
2 .  

Since here we are considering constant energy of our particles ( p =const) and betatron 
oscillations, we also can rewrite (27-1) in more traditional form 
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which clearly indicates that with fixed magnetic field, its affect on the particle is inverse 
proportional to particle’s momentum po . This is traditional way of consider chromatic 
effect. Naturally, both descriptions are identical and gave exactly the same result! But 
this is always lost in description of chromatic effects that its origin is purely geometrical 
– for the same transverse emittance, angle of trajectory is inverse proportional to the 
particle’s longitudinal momentum. In the Hamiltonian (27-4) , the lowest (cubic) terms 
are  δ ⋅ x2,δ ⋅ y2 .  



4 From our Hamiltonians it is obvious that there are nonlinear kinematic effects ~ π x,y
4 ,  

π x
2π y

2 and higher in the Hamiltonian expansion. Furthermore, there are always third 

order Kxπ x,y
2  terms. While this term can cause third order resonance (we will look at 

them later) its role is not as important as that of the chromaticity of betatron oscillations. 
Hence, let’s leave in the Hamiltonian (27-4) only linear (up to quadratic term) for 
transverse motion while keeping particle momentum arbitrary: 
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Note, that similar (but much-much longer) expression can be derived for arbitrary 
magnetic and electric fields. While possible, it does not bring any new physics into what 
we considering here. 
We already found what (in first order of perturbation) the tune shift will result from 
variation of the Hamiltonian (using our perturbation method): 
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δ
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δ
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e.g. the betatron tunes in such storage ring depend on the particle momentum (energy). 
Note that keeping 1+δ  in the denominator is overestimation of accuracy in (27-6) – 
there are other terms of order δ 2  and higher. The linear term in (27-6) is called 
chromaticity  
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5 Note that the linear chromatic term is strictly speaking is result of non-linear (thirst order) 
term in the Hamiltonian. Still, there is tradition to call it linear chromaticity and call the 
higher orders - higher order chromaticity. One important observation is that natural 
chromaticity (27-7) usually has negative values (“focusing of higher energy particles is 
weaker”) for practically all storage ring. While statement in brackets is generally 
speaking is speculative, it is true that for very high energy particles will not notice 
focusing and tunes will go to zero. A better explanation is coming from observation that 
in strong-focusing storage rings beat-functions are reaching maxima in focusing elements 
(e.g. βx  reaches maxima in focusing quadrupoles, while βy  reaches maxima in 
horizontally de-focusing quadrupoles where K1<0) and therefore this tendency is correct. 
Furthermore, expectation for their values is that of the storage ring tune: 
Cx,y ~ −(1÷ 2) ⋅Qx,y . Still, it is impossible to prove this rule explicitly in general case. 
Chromaticity has multiplicity of effects on particle’s dynamics in storage rings. In 
modern storage rings with Q ~ 10-100, chromatic effects are very important. 
Chromaticity can generates spread of betatron tunes (for a typical energy spread ~10-3- 
10-4), which can move particles onto linear and non-linear resonances. It also can impede 
injection into the storage rings as dynamics aperture (e.g. limit amplitudes of stable 
oscillations). Hence, chromaticity is usually corrected (by sextupoles, as we discuss it 
later in the lecture) to few units.  
But the most important problem that natural (e.g. negative) chromaticity cleats is so 
called head-tail instability, which occurs at energies above critical when the slip factor is 
negative. Head-tail instability is one of few major menaces in storage rings, which can 
simply kill the beam if forgotten to be taken care off: (1) wring lattice, which is unstable; 
(2) Robertson instability (operating RF cavities with right sign of detuning, we are not 
discussing it), (3) integer and parametric resonances (and frequently 3rg and 4th order 
resonances); (4) head-tail instability. Even nasty microwave instability fortunately 
saturates by inducing growth of energy spread, but not head-tail instability.  
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Let’s consider this menace using a simple two-macro-particle model, which was 
originally used to describe this experimentally observed phenomena. In Fig. 1 we depict 
this simple model when two macro-particles execute slow synchrotron oscillations 180-
degrees out of phase – hence the name, head and tail: when one particle is in front of the 
bunch, the other is at the tail, and vice-versa. Since instability is simply sensitive to the 
sign of the chromaticity, details (such as strength of the wake-field and value of the 
amplitude of the oscillations) are not important. It is also an indication of universality of 
this problem – it just occurs if chromaticity is on a wrong sign! (e.g. negative for negative 
slippage). We will simply use some arbitrary values assuming that synchrotron 
oscillations are much slower that betatron ones. Finally, one more important fact you 
learned from the class on wake-fields and instabilities: particles in front of the bunch 
generate wake sensed by those in the tail, not vice-versa! Hence: for the Fig. 1 (a) we can 
write equations of motions as (we use y as generic transverse coordinate):  

′′y1 + K1(s) 1−δ1( )y1 = 0;
′′y2 + K1(s) 1−δ 2( )y2 =W ⋅ y1;

   (27-7) 

where W  is a transverse focusing (or defocusing) induced by macro-particle ahead. 180-
degrees later, it changes to  

′′y1 + K1(s) 1−δ1( )y1 =W ⋅ y2;

′′y2 + K1(s) 1−δ 2( )y2 = 0;
   (27-7) 
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where we just need to add 

δ1 = δ cosϕs;δ 2 = −δ cosϕs; ϕs = Ωs; S =
π
Ωs

;

τ1 = τ sinϕs;τ 2 = −τ sinϕs;

′′y1 + K1(s) 1−δ1( )y1 =W 1− sign(τ 2 −τ1)
2

⋅ y2;

′′y2 + K1(s) 1−δ 2( )y2 =W 1+ sign(τ 2 −τ1)
2

⋅ y1;

   (27-8) 

 

   
 

(a)               (b) 
Fig. 1 Two macro-particles executing synchrotron oscillations. (a) particle 1 is in front of 
particles 2, (b) 180-degrees later – particles exchange the positions. 
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8 Let’s consider particle (1) and (2) having complex amplitudes of oscillations a1 and a2 
starting at zero s.  For the first ϕs ={0,180} degrees in picture (a).  

y1 = wyRea10e
i ψ +Δψ( );y2 = wyRea20 e

i ψ −Δψ( );

Δψ s( ) = 2πCyδ cosΩss ds
0

s

∫ =
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a2 (s) = a20 +
1
2i

W
o

s

∫ wy
2e2iΔψds; a21 = a2 (S) = a20 + a10 Wwy

2 1
2i

e2iΔψ ds
o

S

∫

 (27-9) 

Now, let’s look how the amplitude of oscillation of first particles changes during next 
half of the synchrotron oscillation: 

y1 = wyRea1(s)e
i ψ −Δψ( );y2 = wyRea21 e

i ψ +Δψ( );
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1
2i

W
o

s

∫ wy
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2 1
2i
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o

S

∫
 (27-10) 

with matrix of 
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⎦
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2
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 (27-11) 



9 Note that determinant of matric is 1, hence is one solution is growing, the other is 
damped. Since we are considering weak wake-field, we can write the eigen   

u ≈ a21 Wwy
2 S

2i
+
2πCyδ
Ωs

⎛
⎝⎜

⎞
⎠⎟
; λ1,2 ≅ e

±a21 Wwy
2 S

2i
+
2πCyδ
Ωs

⎛
⎝⎜

⎞
⎠⎟  (27-12) 

and the growth rate is proportional to the chromaticity and its value should be limited. 
The detailed studies (which we skip) show that + (sign instability corresponding to 
positive chromaticity) is much weaker and that having a small positive chromaticity for 
storage ring above transition (negative slip factor) is required for stability of the beam – 
this is the mode in which most of electron storage ring and high energy hadron colliders 
do operate.  

 
Fig.2. Two extreme positions. 
 
Intuitively this can be described as follows. Let’s consider negative chromaticity and the 
fact that the strength of the transverse wakefield is increasing with the distance between 
particles, e.g. most of the impact will come from the head particle (1) when it is in 
extreme forward position. (1) excites the tail particle (2) resonantly it oscillates in phase.  

 !y2 = !y20 +Tε !y10        

τ=vo(to-t) 

δ 
η<0 

2 

1 

τ=vo(to-t) 

δ 
η<0 

2 1 
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When they exchange position, the exited the tail particle (2) oscillates with higher 
betatron frequency (it passes through lower energy) than the (1) having higher energies. It 
means that particle (2) comes to head position with positive phase advance – it 
corresponds to an effective response from the future  

 Δ!y1(t) = Tε !y20 (t +τ )+Tε
2 !y10 (t +τ )      

We can equivalently write  

 ′′y1(t)+ω
2y1(t) = Tε

2 !y1(t +τ ) ≈ Tε
2 !y1(t)+τ !′y1(t)( );    (27-13) 

generating growth rate of τ Tε 2 . We should note that τ = −
4πCyδ
Ωsc

 is proportional to the 

chromaticity and has opposite sign for negative slippage. For positive slippage (below 
transition), natural sign of chromaticity is favored for head-tail stability.  
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These exercises were to establish a need for chromaticity compensations. Naturally, 
linear element cannot do this (they introduce it, not compensating it!). Hence, lest 
consider sextupole fields with  

eA2
c

= eS
c
x3 − 3xy2

3!
   (27-14) 

you can easily check that it satisfies 2D Maxwell equation. We are aware that in storage 
ring closed orbit depends on particle’s momentum as  

xδ =ηx s( )δ     (27-15) 
and introduction of sextupoles in (27-5) will result is: 

H =
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2 +π y
2

2
 + 1

1+δ
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⎠⎟
+ 1

1+δ
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x =ηx s( )δ + xβ ;K2 =
eS
poc

;

H = Ho + ΔH1 + ΔHNL

ΔH1 = −δ K1 + K
2( ) x
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2
− K1
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2
⎛
⎝⎜

⎞
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+δ ⋅ηx ⋅K2 xβ
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K2

3!
xβ

3 − 3xβy
2( ) +O δ 2( );

(27-16) 
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We can calculate the linear chromaticity in the same fashion we deed above: 

 

Cx =
ΔQx

δ
≅ − 1

4π
βx K1 + K

2 −ηxK2( )!∫ ds;

Cy =
ΔQy

δ
≅ 1
4π

βyK1 −ηxK2( )!∫ ds;
  (27-17) 

and to zero chromaticities we should find distribution of sextupole fields (as function of 
s) such that that  

 

K2 s( )ηx s( )βx s( )!∫ ds = βx s( ) K1 s( ) + K s( )2( )!∫ ds;

K2 s( )ηx s( )βy s( )!∫ ds = βy s( )K1!∫ s( )ds;
  (27-18) 

Assuming positive dispersion (which is usual) it can be done by placing focusing 
sextupoles ( K2 >0) in areas where βx  is large and βy  is small, and vice versa for 
defocusing quadrupoles with K2<0. For most of know strong focusing lattices this can be 
done. The only exception is weak-focusing lattice where all terms are constants the 
compensation  

K2 ηx = K1 + K
2( );

K2 ηx = −K1;
    (27-19) 

could be possible only when K1 = −K 2 / 2 , which is exactly on the top the coupling 
resonances Qx =Qy . Hence, in general, in a weak-focusing storage ring chromaticity 
could be compensated only in one plane.  
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How the chromaticity compensation works: particle’s average orbits shifts as function of 
energy and displacement is sextupoles generates effective gradient (quadrupole) field, 
which compensate change of the focusing from regular quadrupoles. This process is 
called feed-down – displacement of a high (n-th) order multipole generates lower orders 
multipoles, from dipole up to (n-1). 
One important notion – compensating chromaticity requires orbit dependence on energy, 
which comes only as result of bending magnet. It means, that it is impossible to 
compensate chromaticity in a perfectly linear accelerator (no bends!) since transverse 
dispersion is always equal zero. 
Thus, we established that in a modern storage rings chromaticity could be compensated 
using sextupoles. What is not obvious is that this can create significant problems. Indeed, 
modern light sources in order to generate high brightness beams reducing emittance (22-
25) 

 
ax
2 = 55

32 3
γ 2 !

mc

K 3 wx ′ηx − ′wxηx( )2 + ηx

wx

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟

1−ξxy( ) K 2  

strong focusing resulting in very large betatron tunes (~30) and very small beta-functions  
β ~ R /Q   and dispersion η ~ R /Q2  measured in few cm. As follows from (27-17), we 
will need sextupole strength  

K2 ~ K1 /ηx;  
e.g. field inside the aperture of accelerator is very nonlinear and particle oscillating with 
large amplitudes can become unstable.  
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NSLS II arc lattice 

Sextupole Quadrupole 

Dipole 
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Since we introduced sextupoles, we should notice that equations of motion become non-
linear. Even though the kick is locally proportional to quarter of transverse displacement, 
we cannot assume that it will some kind of expansion of map to the second order. One 
can simply observe that there is no analytical solution for equation of motion in a 
sextupole, or that two short sextupoles will already generate forth order terms in the 
transformations, needless to say that multiple thick non-linear elements making the map 
tractable only by computers. But there is a BIG BUT – there is still a lot we can do to 
describe and to understand this nonlinear map – beyond just staring on them helplessly.  
First, let’s discuss a simple case of a week one dimensional resonance. Let’s in addition 
to our sextupole term introduce some octupole term – just to have a simple case of tune 
dependence on action (as you seen in your home work). 

ΔHNL =
K2

3!
x3 − 3xy2( ) + K3

4!
x4 − 6x2y2 + y4( )

 

(27-16) 

Again, we will use a simple parameterization uncouple linear motion: 

x = 2Ixβx cos ψ x +ϕx( ); y = 2Iyβy cos ψ y +ϕy( );

 

(27-16) 

to connect to action and angle Canonical variables. Just averaging the Hamiltonian (27-
16) we get zero from sextupole term (outside resonances) and simple  

ΔHNL = K3

4!
3
2
βx

2Ix
2 − 6βxβyIx Iy +

3
2
βy

2Iy
2⎛

⎝⎜
⎞
⎠⎟ ;

dϕx

ds
=

K3βx
2

8
Ix −

K3βxβy

4
Iy;

dϕx

ds
=

K3βy
2

8
Iy −

K3βxβy

4
Ix;  

(27-17) 

e.g. we have a well defined dependence of the betatron tunes on their actions. !



16 
Similar dependence appears in the second order perturbation by sextupoles, which you 
tried for an oscillator in HW and can try to do it also for an accelerator – it has the same 
features. For the sake of going further, we just acknowledge that there is tune dependence 

on amplitudes ∂µx

∂Ix
Ix . Now. Lets consider a case close to a third order resonance – with 

focus on inly on x-direction – when µx = 2π
N
3
+ ε
C
;ε <<1.  The Hamiltonian 

ΔHNL = Ix
3/2 2K2 (s)

3
βx

3/2 (s)cos3 ψ x s( ) +ϕx( ) + ∂µx

∂Ix

Ix
2

2

cos3θ = 3
4
cosθ + 1

4
cos3θ; K2

3!
βx

3/2 cos ψ x +ϕx( ) ;

ΔHres =
Ix
3/2

6 2
Ree3i ϕx−ε /C( ) f3 +

∂µx

∂Ix

Ix
2

2
;

f3 = K2βx
3/2e3i ψ x+ε /C( ) = K2βx

3/2e3iχx ⋅e
6πi s

C

   (27-18) 

has now a resonant term, which is a third harmonic of the periodic function K2βx
3/2e3iχx . 

Now we are ready to study this resonance, by including detuning into the phase using 
canonical transformation: 

F = − ϕx +
εs
C

+ arg f3
⎛
⎝⎜

⎞
⎠⎟ I; I = Ix;ϕ =ϕx +

εs
C

+ arg f3;

Hres = ΔHres −
∂F
∂s

= I 3/2

6 2
f3 cosϕ + ∂µx

∂Ix

I 2

2
+ ε
C
I .

  (27-19) 
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The beauty of this form (this was the entire reason for all above manipulations) is that is 
s-independent. It means that trajectories in the phase space are simply contours of 
constant Hamiltonian. Let’s first find stationary points: 

Hres =
I 3/2

6 2
f3 cos3ϕ + ∂µx

∂Ix

I 2

2
+ ε
C
I ≡ a3

24
f3 cos3ϕ + ∂µx

∂Ix

a4

8
+ ε
C
a2

2

′I = − ∂Hres

∂ϕ
= I 3/2

6 2
f3 sin 3ϕ = 0→ I = 0;sin 3ϕ = 0;ϕ = nπ

3
;

′ϕ = I1/2

4 2
f3 cos3ϕ + ∂µx

∂Ix
I + ε

C
= 0→ ± I1/2

4 2
f3 +

∂µx

∂Ix
I + ε

C
= 0.

 

with solutions at origin I = 0  and 

ϕ = nπ
3
;n = 0,1,...5; ∂µx

∂Ix
I + −1( )n I1/2

4 2
f3 +

ε
C

= 0;

2 ∂µx

∂Ix
⋅ I1/2 = 2 ∂µx

∂Ix
⋅a = −1( )n f3

4 2
±

f3
2

32
− 4 ∂µx

∂Ix

ε
C
;

  (27-20) 

with stationary points and their features depending on the sign and value of detuning. 
First, the resonance has a fixed width – the values under square root becomes negative 
when  

f3
2

32
< 4 ∂µx

∂Ix

ε
C

   (27-21) 



18 
Depending on the sign of the 

∂µx

∂Ix
 it happens either at negative or positive detuning from 

the exact resonance, where three stationary stable points are located at amplitude of 

ao =
1
4
f3
′µx

; Io =
1
32

f3
′µx

2

; ′µx ≡
∂µx

∂Ix
     (27-22) 

while the point at zero is unstable – particles go around resonances. The plot below 
shows this on (φ,I) phase plot. 

 
Fig.3. Phase plot at the exact 3rd order resonance. 

I 

ϕ
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 (a)     (b) 

Fig.4. Phase plot at the exact 3rd order resonance for positive 
∂µx

∂Ix
; (a) below resonance, 

(c) above resonance, while islands exist. I=0 is stable point. 
 

 
(a)     (b) 

Fig.5. Phase plot at the exact 3rd order resonance for positive 
∂µx

∂Ix
; (a) below resonance 

islands still exists, (b) above resonance with conditions (27-21) satisfied, no islands. I=0 
is stable point. 
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While the above plots are all correct, it is more informative to plot in polar coordinates
asinϕ,acosϕ{ } .  

Hres =
v3 − 3vu2

24
f3 +

∂µx

∂Ix

u2 + v2( )2
8

+ ε
C
u2 + v2

2
  (27-23) 

 
Fig.6. Phase plot at the exact 3rd order resonance. 
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Fig.7. Phase plot below the 3rd order resonance. 
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Fig.8. Phase plot above the 3rd order resonance. Left with islands, right without (e.g. 
outside the resonance band-width).  

Similarly we could study resonances of higher orders, generated either by higher order 
multipoles or by higher orders perturbations from low order nonlinearities (sextupoles). 
Hamiltonian (27-16) already gives us plenty of possible resonances: 

ΔHNL =
K2

3!
x3 − 3xy2( ) + K3

4!
x4 − 6x2y2 + y4( )

x3 →Qx = n;3Qx = n; xy
2 → 2Qy ±Qx = n;Qx = n;

x4 → 2Qx = n;4Qx = n;y
4 → 2Qy = n;4Qy = n;

x2y2 → 2Qy ± 2Qx = n.  

(27-24) 



23 

Coupling resonances are a bit more complicated to study – there are four variable and it is 
hard to plot 4D contour plots… But there is one interesting feature worth mentioning; 
let’s consider a resonance nQy ±mQx = k.  It is easy to observe that resonance term in the 
Hamiltoninan will have following forms 

 

Hres = f Ix , Iy( )cos nϕx ±mϕy( )→
Ix′ = − ∂Hres

∂ϕx

= n ⋅ f Ix , Iy( )sin nϕx ±mϕy( );

Iy′ = − ∂Hres

∂ϕy

= ±m ⋅ f Ix , Iy( )sin nϕx ±mϕy( );
d
ds

±mIx − nIy( ) = 0→ mIx ∓ nIy = cons
 

(27-25) 

which indicates that for difference coupling resonances, there is limitation on the possible 
amplitudes since  mIx + nIy = inv . Meanwhile, the sum resonances do not impose such 
restriction and instead give us minimum values of the oscillation amplitudes since 
mIx − nIy = inv . 
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Sextupoles along generate in next order second,  4th and 6th order resonances in x, and a 
lot of coupling resonances (for example mQy ± nQx = k; n = 0,2,4;m = 2,4 ). You can 
continue building up the mountain of the resonances and to spice add the synchrotron 
motion and its tune into the picture. It seems that it does not matter what you do you will 
be close to some high order resonance. It became a practical matter what resonances have 
sufficient strength to mess-up life of realistic beam. As the matter of good practice, all 
resonances upto 4th order considered to be real killers (except difference linear coupling 
resonance Qx −Qy = n  which is even used to make beams round). Fig. 9 shows betatron 
tune resonance diagram below showing resonance for x-y betatron oscillations up to 4th 
order.  

 
Fig.9. A resonant tune diagram (above, for an arbitrary storage ring) and rate of particle 
losses in SIS18 storage ring (low) 
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Fig.14. A betatron resonant tune diagram to 8th order – there is practically no place to 
operate… 



26 

There is some settled difference between electron/positron storage rings, where damping 
by synchrotron radiation effectively destroy weak resonances, and hadron storage 
rings/colliders where damping is either weak or practically negligible. The later are trying 
to stay away also from 5th and 6th order resonances as a good practice. Qualitatively 
resonances are described by their strength, which can be measured/estimated by the 
oscillating frequency (tune) inside the resonate separatrix (island). For example, we can 
calculate what will be the oscillation frequency inside separatrix (island) in Fig. 6 
(exactly at 3rd order resonance) by expanding Hamiltonian around stationary point: 

Io =
ao
2

2
= 1
32

f3
′µx

2

;ao =
1
4
f3
′µx

;cos3ϕ = ± 1− 9ϕ
2

2
⎛
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⎞
⎠⎟
...

I 3/2 = Io
3/2 + 3

2
Io
1/2δ I + 3
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Io

−1/2δ I 2...; I 2 = Io
2 + 2Ioδ I +δ I

2;

± 1− 9ϕ
2

2
⎛
⎝⎜

⎞
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3/2
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3
2
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32
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32
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⎝
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⎠
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;

 

The frequency of oscillation is the measure of the damping rate required to destroy such 
separatrix (island). 
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Fig.10. Set of non-linear maps with typical characteristics of first order, 5th order, 4th 
order and 3rd order resonances (taken from E. Forset, Beam Dynamics). 
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The next effect, which is important, is stochastic trajectories, which appear in the motion 
of the particles (turn by turn) – see Fig. 11. One of a simple criteria which was developed 
is called Chirikov criteria, stating that that stochastic layer in Poincare diagrams (the 
particles motion) appears when two non-linear resonances overlap. Careful look into fig 
11 reveals that in addition to main resonance (4th and 3rd order) there are additional high 
order resonance (islands) formed – some of them clearly identifiable, some destroyed and 
turned into a stochastic layer. Usually stochastic layer cause loss of particles at large 
amplitudes. It is also typical (with exception of beam-beam effects, when the nonlinearity 
of the beam is of the order of the beam size) that motion at large amplitudes becomes 
unstable and chaotic. Area of the dynamically (not physically) stable motion of particles 
is called “dynamic aperture” or DA. 

     
   (a)     (b) 
Fig.11. Two tracking results: (a) with 4th order and (b) 3rd order resonance strictures.  
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Methods of increasing dynamic aperture are multiple and there is no one specific trick (or 
set of tricks), which does the magic – to a degree it remains to be an art form. Still, 
reducing strength of the resonant terms and low order geometrical distortion are 
necessary steps in creating modern accelerator with large dynamic aperture.  
 

 
Fig.12. Momentum dependent dynamic aperture for 4th-roder geometrical achromat (with 
zero chromaticity) Energy offsets: 0% - blue solid, 0.5%  - dashed blue, 1% - red solid, 
1.5% - dashed red, 1.5% - green. The dynamic aperture shown in a  specific place in the 
storage ring – particles launched outside the dynamic aperture do not survive and are loss 
at large amplitudes. 



30 Computers playing important role in both generating and analyzing non-linear maps. 
There is a very strong link to cosmology, which faces problems similar to that in modern 
accelerators - a long-time tracking of solar and star systems. One the modern tools in DA 
studies is borrowed from cosmology and called frequency map analysis (FMA) – the idea 
is to characterize how chaotic is the motion of particles with given amplitude of 
oscillations.  
If we perform a discrete Fourier transform on the tracking data (starting with an initial x-
y) position and obtain the betatron tunes (for N turn tracking, the precision is 1/N). If we 
repeat this process with different initial positions, we can obtain a tune map. To indicate 
the variation of the tunes over different turns of the ring, we can define a diffusion or 
regularity which describes the difference between the tunes over various periods (usually 
the first half of the tracking (Qx1, Qy1) and the second half (Qx2, Qy2)). In other words, 
we define a diffusion constant D: 

D = log10 (Qy2 −Qy1)
2 + (Qx2 −Qx1)

2 . 
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 Fig. 13. The frequency map for an ideal lattice for ALS light source (LBNL) in tune 
space (a) and real space (b). The color scheme is logarithmic, with blue indicating 
completely stable motion and red/dark read chaotic behavior close to complete loss of 
stability (white).  


