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Let’s start from HW1/2 solutions
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Problem 1. Show explicitly that two successive Lorentz transformations in the same 

direction are equivalent to a single Lorentz transformation with  v = v1 + v2
1 + (v1v2 / c

2 )
.  

Solution: Each Lorentz transformations along x-axis corresponds to the block-
diagonal matrix with parameterization of : 

Li =
Li O
O I
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ;Li = γ i

1 βi
βi 1
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ;O =

0 0
0 0
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ; I =

1 0
0 1
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ;  det Li = γ i

2 (1 − βi
2 ) = 1  

and we should find parameters of L by brining it to the same form 

L =
L O
O I
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = L2L1 =

L2 O
O I
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
L1 O
O I
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

L2L1 O
O I

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ; L = L2L1 . 

The fact that det L = γ 2 (1 − β 2 ) = 1 for any L is taking care of the rest: 

.# 

L = L2L1 = γ 1γ 2
1 β2
β2 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 β1
β1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= γ 1γ 2

1+ β1β2 β1 + β2
β1 + β2 1+ β1β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= γ 1γ 2 (1+ β1β2 )

1 β1 + β2
1+ β1β2

β1 + β2
1+ β1β2

1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Problem 2. Show that trace of a tensor is 4-invariant, i.e. Fi
i ≡ Fi

i
i
∑ = inv . 

Solution:  Trace( ′ F ) = ′ F i
i =

∂ ′ x i

∂xk
∂x j

∂ ′ x i Fk
j =

∂x j

∂xk Fk
j = δ k

jF k
j = Fk

k = Trace(F) #  

Problem 3. Lorentz group 
 

a) 5 points. For the Lorentz boost and rotation matrices K and S show that  
 

 
!
ε
!
S( )3 = −

!
ε
!
S; !ε

!
K( )3 = !ε !K;∀ !ε =

!
ε *; !ε = 1 ; 

or 
 
!a
!
S( )3 = − !a

!
S ⋅ !a2; !a

!
K( )3 = !a !K ⋅ !a2;∀ !a = !a . 

 
b) 5 points.  use this results to show that  

 

 

e
!ω
!
S = I +

!
ω
!
S
!
ω
sin
!
ω +

!
ω
!
S( )2
!
ω 2 (cos

!
ω −1);

e
!
β
!
K = I +

!
β
!
K
!
β
sinh

!
β +

!
β
!
K( )2
!
β 2 (cosh

!
β −1);

 
 
Draw connection to Lorentz transformations (e.g. boosts and rotations). 
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  L = −
! 
ω 
! 
S −
! 
ς 
! 
K ;A = e−

! 
ω 
! 
S −
! 
ς 
! 

K ;      (B-44) 
with  

  

� 

! 
S = ˆ e x

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e y

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e z

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;   (B-45) 

  

! 
K = ˆ e x

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e y

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e z

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;    (B-46) 
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Solution: it is possible to do it by multiplying three matrices and getting confirmation. 
Otherwise, we can test that: 

  
! a 
! 
K ( )3 = ! a 

! 
K ( )2 ⋅ ! a 

! 
K ; 

KαKβ =
1 0
0 0
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ δαβ +

0 0
0 uχε
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ δχαδεβ ;u =
1 1 1
1 1 1
1 1 1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
; 

and use it to calculate square of the matrix: 

  

! a 
! 
K ( )2 ≡ aαaβKαKβ

α ,β =1,2,3
∑ =

! a 2 0
0 0

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ +
0 0
0 aαaβuχε

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ δχα δεβ
α ,β =1,2,3
∑ =

! a 2 I + X; 

  
X =

0 0
0 aαaβuχε

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ δχα δεβ −
! a 2
0 0
0 I
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

α ,β =1,2,3
∑

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ . 

First term gives us desirable answer if product of matrix X and   
! a 
! 
K  is zero. It is easy to 

show: 

  

! a 
! 
K =

0 ! a 
! ˜ a 03× 3

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ; −
! a 2

0 0
0 I
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ⋅

0 ! a 
! ˜ a 03× 3

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = −

! a 2
0 0
! ˜ a 03× 3

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ; 

  

aαaβδχαδεβ

0 0
0 uχε

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ ⋅
0 ! a 
! ˜ a 03× 3

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

α ,β =1,2,3
∑ =

0 0
! ˜ b 03× 3

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

bχ = aαaβδχα δεβaε =
α ,β ,ε =1,2,3
∑ aχ aβδεβaε

α ,β ,ε =1,2,3
∑ = aχ ⋅

! a 2 ⇒
! 
b = ! a ⋅ ! a 2

. #K 
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For S it is even easier, noting that it is already block-diagonal matrix: 

Sα = eαβγ
0 0
0 uβγ
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

and further we can drop all time components operating with 3x3 matrix: 

  
Sα[ ]βγ = eαβγ ;

! a 
! 
S [ ]βγ = aαeαβγ ; 

  

! a 
! 
S ( )2 βη= aαaεSαSε[ ] = aαaε eαβγ eεγη ; eαβγ eεγη = −eαβγ eεη γ = −δαεδβη + δαηδβε ;

δαε aαaε =
! a 2 ;aαaεδαηδβε = aηaβ ;

! a 
! 
S ( )2 βη = I! a 2 + aβaη; aβaηaµeµηθ ≡ 0!

 

which is equivalent to  

  
! a 
! 
S ( )2 ! a 

! 
S ( )= −

! a 2 ! a 
! 
S ( )   #S 
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b) is trivial for any matrix 
 M3 = (−1)n x2M; n = 0,1 

which also means that  
M4 = (−1)n x2M2 ;  

Separating series into zero order, odd and even terms: 

eM =
Mk

k!k=0

∞

∑ = I + M2k +1

(2k + 1)!
+

M2 k

(2k)!k=1

∞

∑
k=0

∞

∑  

and then use induction principle to remove all powers higher then two: 

M2k +1

(2k + 1)!k=0

∞

∑ = (M2 )k

(2k +1)!k= 0

∞

∑ M = M
(−1)n x2{ }k
(2k +1)!k=0

∞

∑ ;

M2k

(2k)!k=1

∞

∑ = (M2 )k

(2k)!k=1

∞

∑ = M2 (−1)n x 2{ }k
(2k)!k=1

∞

∑
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M2k +1

(2k + 1)!k=0

∞

∑ = (M2 )k

(2k +1)!k= 0

∞

∑ M = M
(−1)n x2{ }k
(2k +1)!k=0

∞

∑ ;

M2k

(2k)!k=1

∞

∑ = (M2 )k

(2k)!k=1

∞

∑ = M2 (−1)n x 2{ }k
(2k)!k=1

∞

∑
 

brining the rest of the problem to known exponents: 

in x
(−1)n x2{ }k
(2k +1)!k= 0

∞

∑ = 1
2
ei

nx − e−i
n x{ };

1 + (−1)n x2
(−1)n x2{ }k
(2k)!k=1

∞

∑ = 1
2
ei

nx + e− i
nx{ }

; 

Therefore, both cases are identical with exception of the split between regular sin/cos and 
their hyperbolic twins. 
In addition: 

  

M = ! a 
! 
S ⇒ x = ! a ;⇒ M

x
=
! 
a 
! 
S 
! a 

= ˆ e 
! 
S ;

M =
! 
a 
! 
K ⇒ x =

! 
a ;⇒ M

x
=
! 
a 
! 
K 
! 
a 

= ˆ e 
! 
K ;

ˆ e →
! 
β ; ! a → ζ

## 

Since had typo (“-” sign) – everybody who got correct sign, had extra 10 points!  
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Problem 1. 10 points Motion of non-radiating charged particle in constant uniform 
magnetic field is a well known spiral: 

 

 

d!p
dt

= e
c
!v ×
!
H⎡⎣ ⎤⎦ =

e
c
H êxvy − êyvx⎡⎣ ⎤⎦;

!
H = êzH

 

 

E = c m2c2 + !p2 =conts; γ = const;v = const;
pz = const; z = vozt + zo;  
px
2 + py

2 = const; px + ipy = p⊥e
iϕ (t ) = mγ v⊥e

iϕ (t )  

 
simple substitution gives: 

 

mγ v⊥
deiϕ (t )

dt
= e
c
!v ×
!
H⎡⎣ ⎤⎦ = −i e

c
Hv⊥e

iϕ (t )

r⊥ = x + iy = iωmγ v⊥
deiϕ (t )

dt

ϕ(t) =ωt +ϕo; ω = − eH
mγ c

 

and trajectory: z = vozt + zo; x + iy = v⊥ /ω ⋅ eiωt . Do not forget to apply Re or Im to all 
necessary formulae. Use analytical extension of the Lorentz transformation to complex 
values by going into a reference frame with x-velocity going approaching infinity 
β ⇒ ∞;χ → 0;χβ → 1 . Show that transverse electric field becomes a magnetic field 
(with an imaginary value) and visa versa. Follow this path and transfer 4-coordinates to 
that frame. Use analytical extension of exp, sin, cos to complex values and transform the 
solution above in that for motion in constant magnetic field. Compare it with known 
solution is your favorite EM book . 
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Solution: Let’s, formally, apply Lorentz transformation as it is not limited to velocities 
lower than the speed of the light. In this sense, we are analytically extending Lorentz 
transformation into all range if the velocities: both real and imaginary.  
Lorentz transformation with speed exceeding the speed of the light are analytic 
extensions of real transformations forβ >1  and two choices of sign (±): 

L = ±

iχ iχβ
iχβ iχ

1
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

; χ = 1/ β 2 −1

.

 

Applying this transformation to a pure electric field Ey  , we got 

′ E y = ±iχ ′ E y; ′ H z = ±iχβ ′ E y;  
and by applying  

β ⇒ ∞;χ → 0;χβ → 1  

we got desirable transformation: 
′ E y = 0; ′ H z = ±iEy  

with imagine magnetic field instead of real electric field.  
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Our solutions for pure magnetic case should extended (I use specific initial conditions): 

′z = voz ′t ;ω = −
e ′Hz

poc
;

′x = v⊥ /ω ⋅sin(ωt);
′y = v⊥ /ω ⋅cos(ωt)

.

 

using coordinate and fields transformation have two branches 
′t = ±ix; ′x = ±it, ′z = z; ′y = y and ′Hz = ±iEy

′E = ±ipx; ′px = ±iE; ′py = py; ′pz = pz;
 

into ( I use +i branch): ′t = +ix; ′x = −it, ′z = z; ′y = y and ′Hz = iEy :  

z = ivozx;ω = −i
eEy

poc
;

−it = v⊥ /ω ⋅cos(iω x +ϕ );
y = v⊥ /ω ⋅sin(iω x +ϕ )

!
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And choosing constants easily transformable to well know result for an uniform electric 
field (we have to rename some of the constants of motion): 

z
x
=
voz
vox
; Ω =

eEy

poc
;

t = Eo

ecEy

⋅sinh
eEy

poc
x

⎛
⎝⎜

⎞
⎠⎟
;

y = Eo

eEy

⋅cosh
eEy

poc
x

⎛
⎝⎜

⎞
⎠⎟
.

 

Naturally we used that sin(iϕ ) = −isinhϕ; cos(iϕ ) = coshϕ .  
The goal of this problem was to demonstrate close connection of Lorentz 
transformations, special relativity and E&M fields. Not only that fields are transform into 
each other but also that solutions for particle’s trajectory are analytical extensions of each 
other.  
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Problem 2. 4 points
 

Find maximum energy of a charged particle (with unit charge e!) which can be 
circulating in Earth’s larges possible storage ring: the one going around Earth equator 
with radius of 6,384 km.  
First, find it for storage ring using average bending magnetic field of a super-conducting 
magnet with strength of 10 T (100 kGs).  
Second, find it for a very strong DC electric dipole fields of 10 MV/m. 
Compare these energies with current largest (27 km in circumference) circular collider, 
LHC, circulating 6.5 TeV (1 TeV = 1012 eV).  
Hint: assume that particles move with speed of the light. Check the final result for 
protons having rest mass of 938.27 MeV/c2 
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Solution: 
Magnetic field:  

 

d!p
dt

= −
!
Ω× !p⎡⎣ ⎤⎦;Ω =

!v
R
; !v ⊥

!
H ; d!p

dt
= d!p
ds
!v = pv

R
= e
c
v
!
B

pc = eBR  

Using  ratio from the class notes: 1 Tm is 0.3 GeV (0.3*109 eV). It means that 1 T km is 
0.3 TeV. Then we get 

E ≅ pc = eBR = 19,150 TeV ~1.9 ⋅1016 eV
 

which is ~2,700 higher than LHC energy. One should note that there will be another 
problem, which we will study when we look into synchrotron radiation. Still, a long way 
to go! Relativistic factor for proton is >2 107.  

Electric field:  

 

d!p
dt

= −
!
Ω× !p⎡⎣ ⎤⎦;Ω =

!v
R
; !v ⊥

!
H ; d!p

dt
= d!p
ds
!v = e

!
E

pc ≅ eER = 63.84 TeV ~ 6 ⋅1013eV  

Just short of 10-fold higher than LHC, but 300-fold lower that possible with magnets. 



Matrices and matrix functions
•  When somebody wants to build an accelerator, she or he 

should use some approximations
•  One of VERY popular design approximation is called “an 

element (usually a magnet)” with nearly constant parameters
•  Then our Hamiltonian is step-wise s-independent and the 

linear motion is easy:

•  E.g. we just need to learn how to calculate
•  Finally, she or he than should try to build such elements. They 

never ideal but can be relatively close to the ideal boxes… 

15 

exp SHi s − si( )( )



Accelerator Hamiltonian
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� 

˜ h = P1
2 + P3

2

2po

+ F x 2

2
+ Nxy + G y 2

2
+ L xP3 − yP1( ) +

        δ 2

2po

⋅ m2c 2

po
2 + U τ 2

2
+ gx xδ + gy yδ + Fx xτ + Fy yτ

;   (143)  

with 

� 

F
po

= −K ⋅ e
poc

By −
e
poc

∂By

∂x
+ eBs
2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
− e
povo

∂Ex

∂x
− 2K eEx

povo
+ meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

;

G
po

= e
poc

∂Bx

∂y
+ eBs

2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
− e
povo

∂Ey

∂y
+ meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

;

2N
po

= e
poc

∂Bx

∂x
− e
poc

∂By

∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −K ⋅ e

poc
Bx −

e
povo

∂Ex

∂y
+
∂Ey

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2K

eEy

povo
+ meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  (144) 

� 

L = κ + e
2poc

Bs;         
U
po

= e
pc 2

∂Es

∂t
;  gx =

mc( )2 ⋅ eEx

po
3 −K c

vo

; gy =
mc( )2 ⋅ eEy

po
3 ;

Fx = e
c
∂By

∂ct
+ e

vo

∂Ex

∂ct
;Fy = − e

c
∂Bx

∂ct
+ e

vo

∂Ey

∂ct
.
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If momentum po is constant, we can use (134) and rewrite Hamiltonian of the 
linearized motion (143) as  
 

� 

˜ h n = π1
2 + π 3

2

2
+ f x 2

2
+ n ⋅ xy + g y 2

2
+ L xπ 3 − yπ1( ) +

        π o
2

2
⋅ m2c 2

po
2 + u τ

2

2
+ gx xπ o + gy yπ o + fx xτ + fy yτ

;   (143-n)  

with 

� 

f = F
po

; n = N
po

; g = G
po

; u = U
po

; fx = Fx
po

; fy =
Fy
po

;   (144-n)  

Note that  

� 

′ x = ∂hn

∂π1

= π1 − Ly;   ′ y = ∂hn

∂π 3

= π 3 + Lx;  ;   (145)  
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Types of magnetic elements

!

Typical elements of accelerators are dipoles and quadrupoles (or their combination), 
sextupoles and octupoles (they a nonlinear), solenoids, wigglers…. Let’s start from a 
linearized Hamiltonian (143) magnetic DC elements – this is typical accelerator beam-
line.  
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!h = P1
2 + P3

2

2po
+ F x

2

2
+ Nxy +G y2

2
+ L xP3 − yP1( ) + δ 2

2po
⋅m

2c2

po
2 + gxxδ ; (188)  

with 

F
po

= e
poc

By
⎛
⎝⎜

⎞
⎠⎟

2

− e
poc

∂By

∂ x
+ eBs

2poc
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
; G
po

= e
poc

∂Bx

∂ y
+ eBs

2poc
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

N
po

= e
poc

∂Bx

∂ x
⎡

⎣
⎢

⎤

⎦
⎥; L =κ + e

2poc
Bs;      gx = −K c

vo

;

∂By

∂ x
= ∂Bx

∂ y
;∂Bx

∂ x
= −

∂By

∂ y
;

   (189) 

If momentum po is constant, we can use (134) and rewrite Hamiltonian of the linearized 
motion as  

 

!hn =
π1

2 +π 3
2

2
+ f x

2

2
+ n ⋅ xy + g y

2

2
+ L xπ 3 − yπ1( ) +  π o

2

2
⋅m

2c2

po
2 + gxxπ o ;  (188-n)  

with 

f = F
po

; n = N
po

; g = G
po

; ;   (189-n)  
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Focusing/defocusing in transverse direction can come from  

(a) a dipole field By  or in other words, form the curvature of trajectory. Note that it is 
always focusing. 

(b) from quadrupole field 
∂By

∂ x
= ∂Bx

∂ y
 . Note that quadrupole is focusing in one direction 

and defocusing in the other. 

(c) from solenoidal field, Bs . Note that it is always focusing. 

The other terms, are responsible for coupling  

(a) the transverse motion (x & y): solenoidal field, Bs  and torsionκ  as well as SQ-

quadrupole ∂Bx

∂ x
.  

(b) or transverse and longitudinal motion: gxxδ  - it is responsible of dependence of the 
time of flight on transverse coordinate. 

Finally, there is δ
2

2po
⋅m

2c2

po
2  term which is corresponds to the velocity dependence on the 

particle energy. It is frequently neglected at very high energies when 
m2c2 / po

2 ≈ γ −2 <<<1 . But it should be kept for many accelerators, including RHIC.  
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We should not forget one of the most common element in any accelerator lattice – an 
empty space, call drift. 

In standard accelerator physics book you will find solution (matrices) for various 
elements of the lattice: drift, bending magnet (with or with field gradient), quadrupole. 
Then, piecewise, you can see introduction of solenoids, SQ-quadrupoles….  Instead of 
solving dozen of second, fourth and sixth order differential equations… we will use 
matrix function approach to find all solutions at once. 

Calculating matrices 

Next, we focus on the question of how matrices are calculated. We already discussed 
general idea than they can be integrates piece-wise wherein the coefficients in the 
Hamiltonian expansion do not change significantly. In practice, accelerators are build 
from elements, which, to a certain extent, offers such conditions. The typical elements in 
high-energy accelerators contributing to the linear part of the equations are the drift (free 
space, vacuum), the dipoles with and without transverse gradient, the quadrupoles (both 
normal and SQ), and the RF cavities for acceleration and bunching. Except for the last, 
the typical elements are magnetic and DC (or varying very slowly compared with the 
passing or turn-around time for particles). Electric elements are rare, so simplifying the 
Hamiltonian to some degree: 
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In general, many elements of accelerators are designed to keep constant the coefficients 
of Hamiltonian expansion, with exception of edges. Here we will consider simple rigid-
edge elements, where the magnetic field ends abruptly (compared with the wavelength of 
betatron oscillations).  

Hence, initially we will explore a general way of calculating matrices, and then 
consider few examples. When the matrices D are piece-wise constant and the D from 
different elements do not commute, we can write  

� 

M so s( ) = M si−1 si( )
i
∏ ;M si−1 s( ) = exp Di s− si−1( )[ ]

elements
∏    (193) 

The definition of the matrix exponent is very simple 

� 

exp A[ ] = I+ A k

k!k=1

∞

∑ ;    exp D ⋅ s[ ] = I+ Dksk

k!k=1

∞

∑    (194) 
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According to the general theorem of Hamilton-Kelly, the matrix is a root of its 
characteristic equation: 

� 

d(λ) = det[D− λI];  d(λk ) = 0     (195) 

� 

d(D) ≡ 0     (196) 

i.e., a root of a polynomial of order ≤ 2n. There is a theorem in theory of polynomials 
(rather easy to prove) that any polynomial p1(x) of power n can be expressed via any 
polynomial p2(x) of power m<n  as 

� 

p1 x( ) = p2 x( ) ⋅ d x( ) + r x( ) 

where r(x) is a polynomial of power less than m. Accordingly, series (194) can be always 
truncated to  

� 

exp D[ ] = I + ckD
k

k=1

2n−1

∑ ,     (197) 

with%the%remaining%daunting%task%of%finding%coefficients%ck!%There%are%two%ways%of%
doing%this;%one%is%a%general,%and%the%other%is%case%specific,%but%an%easy%one.%%
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Starting from a specific case when the matrix D is nilpotent (m<2n+1), i.e., 

� 

Dm = 0 . 

In this case, 

� 

Dm+ j = 0 the truncation is trivial: 

� 

exp D[ ] = I + Dk

k!k=1

m−1

∑ .    (198) 

We lucky to have such a beautiful case in hand – a drift, where all fields are zero and 
K=0 and κ=0: 

� 

˜ h = π1
2 + π 3

2

2
+ πδ

2

2
⋅ m2c 2

po
2 ;  D =

D1 0 0
0 D1 0
0 0 D2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
;D =

0 1
0 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;D2 = 0 m2c 2

po
2

0 0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
; (199) 

where it is easy to check: 

� 

D2 = 0. Hence, the 6x6 matrix of drift with length l will be 

� 

Mdrift = exp D ⋅ l[ ] = I+ Dklk

k!k=1

∞

∑ = I+D ⋅ l =
Mt 0 0
0 Mt 0
0 0 Mτ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; Mt =

1 l
0 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;Mτ =

1 l /(βoγ o)
2

0 1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; (200) 
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The general evaluation of the matrix exponent in (193) is straightforward using the eigen 
values of the D-matrix: 

� 

det D − λ⋅ I[ ] = det SH − λ⋅ I[ ] = 0    (201) 

When the eigen values are all different (2n numerically different eigen values, 

� 

λi = λi ⇒ i = j, no degeneration, i.e., D can be diagonalized),  

 

D = UΛU−1; Λ =

λ1 0 0
0 λ2 0

... 0
0 0 0 λ2n

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

;     (202) 

we  can use  Sylvester’s formula that is correct for any analytical f(D), 
http://en.wikipedia.org/wiki/Sylvester’s_formula for evaluating (193): 

� 

exp Ds[ ] = eλk s
D− λ jI
λk − λ jj≠k

∏
k=1

2n

∑     (203) 
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Let’s prove this very useful formula. First, let consider a polynomial function  

fN x( ) = ak
k=0

N

∑ xk     (204) 

and apply it to (202) 

fN D( ) = ak
k=0

N

∑ Dk = ak
k=0

N

∑ UΛU−1( )k = U ak
k=0

N

∑ Λk⎧
⎨
⎩

⎫
⎬
⎭
U−1 = U ⋅ fN Λ( ) ⋅U−1

fN Λ( ) ≡
... 0 0
0 fN λi( ) 0
0 0 ...

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (205) 

e.g. function of diagonalizable matrix is a similarity transformation of the diagonal matrix 
with function of it eigen values. Goin to infinite series, we get 

exp D( ) = Dn

k!k=0

∞

∑ = U ak
k=0

∞

∑ Λ( )k U−1 = Uexp Λ( )U−1

exp Λ( ) ≡
... 0 0
0 eλi 0
0 0 ...

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  (206) 
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Now we start using our refresher on linear algebra. Each eigen value of diagonalizable 
matrix corresponds to an eigen vector  

D ⋅Yi = λiYi .    (207) 

(existence comes from statement that D − λi I( )Yi = 0 has non-trivial solution if 

det D − λi I( ) = 0 ). The set of eigen vectors is a full set of vectors, e.g. any arbitrary 
vector can be expanded as 

X = α i
i
∑ Yi .     (208) 

This eigen vectors are columns of the matrix used for similarity transform to its diagonal 
form:  

U = Y1,Y2,....,Y2n[ ]     (209) 

which is trivial to prove using (208( and (209) and comparing it with (202) 

DU = UΛ; → D = UΛU−1

UΛ ≡ λ1Y1,λ2Y2...,λ2nY2n[ ]    (210) 
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Now, let build a unit projection operator on Yk : 

Pk =
M − λi I
λk − λii≠k

∏     (211) 

It is easy to show that  

PkYk = Yk; PkYi≠k = 0;     (212) 

First, each of the elements of the product (211) is unit on Yk  

M − λi I
λk − λi

⋅Yk =
λk − λi
λk − λi

Yk = 1;i ≠ k    (213) 

while there is a zero-operator for all other eigen vectors: 

M − λi I
λk − λi

⋅Yi =
λi − λi
λk − λi

⋅Yi = 0    (214) 
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Now we write  

PkU = ...0,Yk ,0...[ ]    (215) 

and  

f D( ) = U ⋅ f Λ( ) ⋅U−1

U ⋅ f Λ( ) = f λk( )
k=1

2n

∑ ...0,Yk ,0...[ ] = f λk( )
k=1

2n

∑ ⋅Pk ⋅U
 (216) 

and finally 

= U ⋅ f Λ( ) ⋅U−1

f D( ) = U ⋅ f Λ( ) ⋅U−1 == f λk( )
k=1

2n

∑ ⋅Pk ⋅U ⋅U−1 = f λk( )
k=1

2n

∑ ⋅Pk
 (217) 

e.g.  

f D[ ] = f λk( ) D− λ jI
λk − λ jj≠k

∏
k=1

2n

∑    (218) 

equivalent to  

f Ds[ ] = f λks( ) D− λ jI
λk − λ jj≠k

∏
k=1

2n

∑    (219) 

we got famous Sylvester formula.  
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We will us mostly f : exp  and Sylvester formula in form of (203). Naturally, (219) is 
comprised of power of matrix D  up to 2n-1 – perfectly with agreement that D  is a root 
its characteristic equation (196).  

Since D is real matrix, any of its complex eigen values paired with their complex 
conjugates: 

DYk = λkYk ⇔ DY *
k = λ*kY

*
k    (220) 

meanwhile real eigen values not always related. One more important ratio for 
accelerators: trace of D is equal zero, e.g. sum of it eigen values is also equal zere: 

Trace D[ ] = Trace UΛU−1⎡⎣ ⎤⎦ = Trace U
−1UΛ⎡⎣ ⎤⎦ = Trace Λ[ ] = λk

k=1

2n

∑  (221) 

It is especially useful for n=1 – you will see it in your home work. 
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exp Ds[ ] = eλks
D− λ jI
λk − λ jj≠k

∏
k=1

2n

∑

n = 1

exp Ds[ ] = eλks
D− λ jI
λk − λ j

=
k=1, j≠k

2

∑ eλ1s D− λ2I
λ1 − λ2

+ eλ2s D− λ1I
λ2 − λ1


