
Home Work PHY 554 #6.                Due October 12, 2016 
 
HW 1 (3 point): A multi-cell accelerating RF linac operating at 500 MHz in a standing 
wave π-mode (e.g. each cell has opposite sign of the accelerating voltage from the 
neighboring cell) is used to accelerate non-relativistic heavy ion (Z=2, A=79) moving 
with velocity v=c/3 (β=1/3). 
 
(а) find the length of the cell required for resonant acceleration in such a linac – 1 point 
(b) at what velocity (ies) (and energy(eis) of the ion), the energy gain in 5-cell cavity 
would vanish (became zero) – 2 point 
 
Solution: Problem defines that we have a standing wave RF voltage operating in π-mode, 
e.g. electric field can be described as  
 

 
 
where  is the electric field pattern (envelope) of one cell.  
(a) For resonant acceleration we need that acceleration is repeated in each and every cell, 
e.g. generally speaking RF phase advance should be equal odd number of π while particle 
traverse one cell: 
 

 

 
e.g. as required, a particle moving with constant velocity see the same field in each cell 
when 

 

Naturally, m=0 is preferred case (e.g. particle sample accelerating field while propagating 
through each cell), which for this problem  

   
 

For f=500 MHz λRF = 0.6 m (rounded), resulting in l=0.1 m. 
(b) The total energy gain/loss of the particle in a linac comprised on N identical cells with 
length l is given by: 
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e.g. energy gain/loss is zero independently of the time of the entering the linac (initial RF 
phase, ) when one of the multipliers inside the brackets is zero: 

 

While the second condition is possible, we cannot solve it without knowing the field 
pattern in the cell. Meanwhile the first condition is rather trivial to solve: 
 

 

In our case N=5 and we would have zero gain/loss is the cavity when  

 

Again, in our case we know that  and  ; 

It means that there are infinite number of velocities at each particles will not change 
energy (again, only if we assuming constant velocity!): 

m=-1; v/c =0.555555556 m=0; v/c =0.333333333 
m=1; v/c =0.238095238 m=2; v/c =0.185185185 
m=3; v/c =0.151515152 m=4; v/c =0.128205128 
m=6; v/c =0.098039216             …. 

 
It worth noting that at m=-2 velocity should exceed speed of the light and the above 
formulae would require velocity to be 5c/3, so far unattainable. Second note –because the 
wave is standing, it is natural the same condition would be correct for particle moving in 
opposite direction – e.g. for the negative velocity with the same absolute value. 
At m=0,5,10… we will have resonant interaction and energy gain/loos from each cell will 
simply add. 
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HW 2 (2 points): A N-cell standing wave cavity operates in π-mode with field on the 
axis describes as  

  

Find the energy gain and transit time factor in such a linac for particle moving with the 
speed of light.  
 
Extra points: what will be modification if v= βc; β ≠1. 
 
Note: to use results from previous problem, for convenience I’ll switch one sin to cos 
 
Solution: Let’s use result from our previous problem but with well defined Eo(z): 
 

 

 
Extra points: when v= βc; β ≠1, the phase advance  is not equal to π and wee need to do 
a bit more 
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HW 3 (5 points): A l=0.3 m long 500 MHz pillbox cavity operates in fundamental 
accelerating TM010 mode with peak accelerating electric field of 20 MV/m. 
 

(a) Find the energy stored in electric and magnetic fields as function of time; 
(b) What is the total energy of EM field in the cavity? Does it changes with time? 
(c) What will be losses of the energy for Q-factor of 30,000? 

 
Solution: We first should write solutions for electric and magnetic fields for TM010 mode 
in pillbox cavity: (I am using here CGS units) 
 

 

 

 

           r/a 
and a is determined from the RF frequency  

 
finding that a=0.2295 m. Than energy stored in electric field is: 

 

It is feature of Bessel functions that two integrals taken to the root of Jo are equal. 
Indeed,  
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As we discussed in class this is actually property of a cavity with ideally conducting 
walls fields that peak energy stored in magnetic field is equal that in electric field and, 
naturally – because of the energy conservation, total energy stored in EM field is 
constant. You can used SI formulae but I am just transforming 20 MV/m field into Gauss: 
Eo= 666.7 Gs and use the above formula to find stored energy being W=2.37E8 erg, or 
W=23.7 J.  
By definition (lecture 11, slide 7) the losses are connected to the Q-factor s 

 

and such tiny cavity will endure about 2.5 MW losses in the wall.  It makes it both 
“power hungry” and in practice, impossible to cool. Hence, Cu cavities usually operate at 
gradients ~ few MV/m with power dissipation measured in tens to few hundreds kW.  
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