F. Méot
BNL, C-AD, Upton, NY

An introduction to Beam Optics

e We will address in this lecture the theory of the guiding and focusing of charged particles in
accelerator structures. We will start discussing the methods of ‘“Beam Optics” by introducing the
basic tools needed in that domain :

(i) We will investigate how particle motion in electrostatic fields and magnetostatic fields is gov-
erned by the fundamental laws of dynamics

and how approximations of these into convenient mathematical tools will make our lives (some-
times !) much simpler

(ii) We will introduce the basic “optical elements’ used in accelerator structures as beam lines,
circular accelerators, spectrometers, etc., which ensure guiding, focusing and other beam manipu-
lations.

e Then, we will “visit” : describe, try to understand, some typical cases of such optical ensembles.
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1 Some Basic Considerations

e Optical systems in the Gauss approximation are assemblies of simple optical elements,
within which rays - ‘‘particle trajectories’ in the case of charged particles optics -
are governed by generally simple geometrical rules.

e Beam optics very often deals with optical elements as, for instance :

Ex. 1 - Drift space :

This is the simplest optical element one can imagine : a portion of space where the particle drifts
freely, subject to no external force. The particle follows a straight line.

(Note that, in doing that assumption, we neglected the mutual interaction between particles, see
“Space charge” lectures)

{:cf =z, + Ltan(f) = x; + 2/ L

A
gjf_xl 3 xfor¥

L =s;—s;

VU)

“Transverse coordinates” we will use : z, 2/, y, v/,
“longitudinal coordinate” : s,
see ‘“JUAS Nomenclature” leaflet
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The transport of the particle from s; to s; can be treated using a “transfer matrix”

“Matrix transport” allows to move the particle from an initial state (z;, z;) to a final state (x, 2’;) :
!/ T !/
T ) 0 1 T ),

M(sy + s;) = [(1) f]

is the transfer matrix of the .—long drift.

 Xory
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Ex. 2 - Focusing or defocusing lens, often treated in the thin lens approximation :
Defocusing lens

Focusing lens
Ay
A x
V
L S L‘E S
f
a’; :x °
{ o P What is & ?

Considering the focusing lens and a ray launched from the left, parallel to the optical axis (z} = 0),
one gets =, = tan(0) = — (z/[f[), [ is the focal distance, k= —1/|f|.
In a general manner, given a non-zero incidence, z; , the lens causes a Az’ “kick™

Az = :1:} — ot = Fz/|f|, (-) for a focusing lens, (+) for a defocusing lens.
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Particle transport can be expressed in the matrix form,

MR I

1 0 f > 0, focusing lens
—1/f 1 f < 0, defocusing lens

is the transfer matrix of the thin lens.

M(sy < si) = [

Defocusing lens

Focusing lens
A
X

X _Focus
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EXERCISE

A basic brick of optical systems :
“FD DOUBLET”

Consider the following optical series :
First, a focusing lens with focal distance f ; next, a drift of length [ ; next a
defocusing lens with the same focal distance f.
1/ Calculate the transfer matrix, 7'.
2/ Verify that the determinant of 7' is 1.

3/ What is the focal distance of the system ?

4/ At what condition linking f and [ is the system globally converging ?
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EXERCISE

A basic brick of optical systems :
“FODO CELL”

Consider the following optical series :
First, a focusing lens with focal distance f ; next, a drift of length [ ; next a
defocusing lens with the same focal distance f, and finally, another drift of length
L.

1/ Calculate the transfer matrix, 7.
2/ Verify that the determinant of 7' is 1.
3/ At what distance from the system downstream end is its focus ?
4/ At what condition linking f and [ is the system globally converging ?

ANSWER

1 0 1 10 -4
1/TX<1/f1>X<Ol)X<—1/f1)(—flzflJr})

2/ det(T) = Mp x M; x My that all have determinant 1, so has to be the case for
T'. Calculation of 1, 15 — 115 15, above does yield determinant = 1.
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3/ Consider an additional drift of length A downstream of the FD section. The
transfer matrix of the system is

p_ (1 AN (T T _ ( T+ ATy T+ ATy
01 T T 15 15

The distance to the focus is obtained from the condition that a ray coming in
parallel to the axis (z(, = 0) will, downstream of the doublet, cross the axis

(xp = 0) at the focus, which writes ( ;3 ) — P x ( xoo )
ja

The top row yields 0 = T, + ATy ie., A = —T1,/To; = f2/l — f

Focus being downstream requires A > Oi.e., [ < f.
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¢ In a general manner, the design
- of beam transport lines,
- and of circular accelerators as well - including the largest ones !
in first approximation only require elementary functions as parabola, sine, cosine, hyperbola, ex-
ponential.
e The complexity of optical assemblies arises from the variety of these laws and of their combina-

tion :

a particle will follow arcs of circles, arcs of parabola, sine trajectories, ‘“pseudo-sine’’ laws, etc.

e As a consequence, a very limited mathematical toolbox makes it is possible to deal with sometimes
very complex optical assemblies.
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EXERCISE

Going from point 1 to point 2 of an optical system built up from a series of lenses,
the transport writes

()= (a) (%)

Going from point 2 to point 3 a similar series of lenses is traversed in reversed
order.

What is the transfer matrix from 2 to 3 ?
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EXERCISE

Going from point 1 to point 2 of an optical system built up from a series of lenses,

the transport writes ( :1:,) = (a b) ( x,)
), cd z ).

Going from point 2 to point 3 the same series of lenses is traversed in reversed
order.
What is the transfer matrix from 2 to 3 ?

ANSWER
Let ( ; £ > be the transport through the miror section.
a b e e a b
Thus the two products ( . d) X (g i) on the one hand, and X (g ;:) < . d)
have to identify.

Identification of the two matrices coefficient by coefficient yields
(i) fc = bg, which is possible if f = b and g = ¢,
(@) eb+ fd= fa+ hb, ga+ hc=ec+ gd
eb+ fd = fa + hb with (i) yields e + d = a + h, which is possible if (e=a and h=d), trivial, or (e=d,
h=a)

Hence,(é i)z(i 2)
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EXERCISE

We consider an optical series, FLDL, with the two lenses distant [ and tuned to the same focusing
distance |f|.

1/ Calculate the transfer matrix of this FODO cell (use earlier exercise, complete with a drift).

Let us introduce a particular notation for 7', namely,
T, =1 cosp, +J sinpu

. . . . a [

with [ the identity matrix and J = —1 = ( )
2/ Make sure J?> = —]
3/ What is the condition linking «, (3, -y so that the determinant of 7, is 1 ?
4/ Considering the trace of 7}, in the latter notation, and by comparison with the trace of 7’
obtained from 1/, what is the condition linking f and [/ such that the notaton 7, = I cos u, + J sin p

is valid ?

5/ Show that (7},)" = T,,(Nu)
What does that mean in terms of particle transport ?
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EXERCISE

We consider the earlier optical series, DLFL, with the two lenses tuned to the same focusing
distance | f|.
1/ Calculate the transfer matrix of this FODO cell (use earlier exercise, complete with a drift).

Let us introduce a particular notation for 7', namely,

T, =1 cosp, +J sinp

with ] the identity matrix and J = /-1 = ( O; b N )
2/ Make sure J?> = —]
3/ What is the condition linking «, 3, v so that the determinant of 7, is 1 ?
4/ Considering the trace of 7}, in the latter notation, and by comparison with the trace of 7’
obtained from 1/, what is the condition linking F' and D such that the notaton
T, = I cosp, +J sin p is valid ?
5/ Show that (T,)" = T,(Np)

ANSWER
4/ One has 1 Trace(7),) = cos 1 = 1 — 2sin” 4, whereas s Trace(T) = 1 — %
Identification between the two notations requires sin® g = %,
and thus for 7' to be writeable under 7}, form the condition that % <1, l.e, [<2f.

5/ Hint : Recurrent demonstration.
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2 Motion of a Charged Particle in Electric or Magnetic Fields

e Optical rays are deflected - and reflected - using dioptric and catadioptric systems,
e charged particles are deflected, reflected, and accelerated too,

- using magnetic fields

- and using electric fields

- or combinations of both,

- either static or varying in time.

e Prior to looking in a detailed way to the optical elements proper to charged particle optics,

we will first review the basis of the motion of charged particles in magnetic and electric fields.
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Notions of dynamics

e The force that acts on a charged particle,

is the Lorentz force :
q : charge of the particle (Coulomb, C)
v : velocity of the particle (m/s)
E : electric field, in Volt/m (V/m)

—

B : magnetic field, in Tesla (T)

=Sl

el

<\

woll
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e The ELECTRIC FORCE, F = ¢F :
(A) An electric force can be of electrostatic origin :

e No varying fields in that hypothesis, 0B —0andso curlE = 0 (Maxwell’s equations)
ot

the static field E derives from a potential, E = —grzndV(M), the variation of V" in space is the
cause of the existence of I

e The electrostatic force I = qﬁ works :

In the hypothesis where V' does not depend on time ¢,
then between points A and B the work by F'is

T = / F.ds = q/ gradVds = —qV|5 = q(Vu — Vp)

The work by F only depends on initial and final positions A and B,
it does not depend on the path followed fromA to B5.

In particular, on a closed path, 7 = [ F.ds o [ [curlE dr = 0 by
virtue of cﬁrlgmd =0
This has an important consequence :

In a circular accelerator, the beam follows a closed path, thus it is not possible to accelerate par-
ticles by means of an electrostatic field, the energy gained from possible electrostatic gaps located
between A and B has to be lost (somewhere) in the path from B to A.
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(B) Induction electrostatic force :

The electrostatic field takes its origin in a time varying vector potential, E = —%—1?

Note : A magnetic field is linked to A by Maxwell’s equation B = curl ff, and so curl E = —%—?.

The existence of F arises from the time variation of a magnetic flux.
The work of an induction force over a closed path is not necessarily zero.
As a consequence it is possible to accelerate on a circular path using an inductive electric field.

Fic. 7. Photograph of the complete accelerator.

Applications of induction acceleration can be found in :

Slow extraction from circular accelerators using a “betatron yoke”
Induction linacs, for production of high power beams,
Acceleration of muons in the neutrino factory,

Induction acceleration of heavy ions in a synchrotron has been demonstrated a few years ago at
the KEK PS
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e The MAGNETIC FORCE :

e A manifestation of the magnetic force is the Laplace force on an electrical circuit :

F=1IdlxB

e Another manifestation is the force experienced by particle with non-zero velocity, v :

—

F:qﬁxé,

Under the effect of F' the charged particle undergoes a deviation, its trajectory is curved.

e A magnetic force does not work :

F = ¢(7 x B) entails that F' is orthogonal to 7 = ds/dt,
as a consequence,

T = F.ds =q(7 x B).

Yy
wefl
!

=0=q(¥x B).0dt =0

An important consequence : magnetic forces cannot change particle energy, they can only change

the direction of the velocity vector, i.e., deviate particles.

NG 109N o ‘sondo weaeg ‘3ISyO NdS



Two rules that allow inferring how a moving charged particle is deviated by a magnetic field

Both rules yield the orientation of F:
e /dl, B and F', in that order, form a direct triedra :

“Horizontally focusing dipole” “Horizontally defocusing dipole”
“Vertically defocusing dipole” “Vertically focusing dipole”

fo

center

fo
center

e Rule of the 3 right hand fingers :
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Discussing the fundamental equation of dynamics

Classical mechanics Relativistic mechanics
Ccilg F', m is constant dd% — F,  m varies with 7

These two similar forms of the differential equation that governs charged particle motion state that
the motion is defined by a second order differential equation.

From a mathematical viewpoint, this has the consequence that the motion is considered as defined
by

- the knowledge of the forces that intervene

- the knowledge of the initial state of the particle m : initial position and initial velocity
in particular, initial acceleration or past motion play no role

Classical mechanics Relativistic mechanics
> dzM dv dmv _
F =1m d t2 = d 7 dt - F )
which one can write m varies with ¢
F— dmu _dp
dt dt

with p = mv the impulse, or momentum

m =my/+/1— 3% with g =v/c

with p = mv the impulse, or momentum

m = constant = m,
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Classical mechanics

Work of the force during the interval ¢, to ¢,

Relativistic mechanics

Work of the force during the interval ¢, to ¢,

The variation of the kinetic energy in the time interval [t,,1,| is equal to the work of the forces

to . . .
T = / F(M,t).dM with dM = (¢) dt
t

2 4y
= m—.Udt
" dt

=Wy — W

W = %va is the Kinetic energy. No need to
define the nature of the force

(magnetostatic, inductive...)

The work by Fis
T =W,

Wy, = %m(v% — v?)

applied.

T = [ F(M,t).dM with dM = (t) dt

moU R
ftl dt{ 1 — U2/C2}vdt

9
V- - —
_ o [ gy, 020
o\ /1 —0v2/c? (1—?}2/02)3/2
pta mpcU.du t moc?
o Jh (1 2/C )3/22 t1 /1—?}2/C2

= [ d(mc?) = (my

‘" — my)c?

An energy is associated with the mass m,
E =md,

hence a “rest energy” F, = myc’.

The Kinetic energy is defined by W = I/ — Ej,

v<<cC

The work by Fis T = By — By = Wy — W,
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EXERCISE

Show that ﬂg = W2 — W1 = (mg — m1>C2

v<<ce
o
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Deviation of a charged particle in a uniform electric field

—

e The Lorentz force equation : F' = ¢(E + ¢ x B) is reduced to

F=qE

We simplify the problem by taking p, orthogonal to E.

We further simplify the demonstration by taking

E//(x).
and, at 7 : po//(s)
dp R
) 7 =4 E =

;gzs - ﬁs = DPs0
% — ¢ E, hence, by integration | g, = qF,t + p,o = qF,t
d_ﬁy — 0 Py = Dyo
dt

We consider the usual
frame (s, z,y).
We take E oriented
parallel to (x).

A
X

E
p=pS T

y
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Integration of these equations of motion is not a simple task :

Let’s first introduce, p = mv

m _ myo _ my
V1= 1_,0_; 1_v§+v§+v§
C 02

The integration is complicated by the entangling of the variables, s, z, y : in any equation all three
ds dzx dy
dt’ dt’ dt
appear.

with m =
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Two steps allow removing this difficulty :

a/ The energy satisfies  E? = E? + p>c? = (mgc?)? + pc?
with £y = mc® the rest energy
and with p the momentum,  p* = p? +p} + p = p + (¢Eut)’
yielding the time dependence, FE*(t) = E + p?,c® + (qE.t)*c?
and  E*(t) = E? + (qE,t)*c*,  with E; the total energy at ¢t = 0

2
b/ p = mu can be written v = %ﬁz %ﬁ,

given that £ and p are known (p results from the first integration, above)

One thus has

ds _ psOC2

= Vs = 1
dt VE? + qE ct)? )
dr — , _ qE,tc? 9
dt ="~ VE? + (qE,ct)? 2)
d
d—% =v, =0 (3)

Note an unexpected property : the equation (1) above tells that the longitudinal velocity v, de-
creases with time ¢ = a transverse acceleration has the effect of decelerating longitudinally !

On the other hand v, increases with time, yet with a limit : which limit ?
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¢ Slope of the trajectory

At this step, we can calculate the slope of the trajectory.

As a matter of fact, the study of particle motion, and the design of accelerators and beam lines

requires the knowledge of the slope of trajectories, %’ %
I qE, tc?
d_CC = E — \/E2 qE Ct — qE$tCQ — Cfste N
ds —— ds psOC2 - psOC2 -
at VE? + (qE,ct)?

The slope increases proportionally with time ¢.
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EXERCISE

qE, tc?

Uy =

\/E2 qE ct)?

Show that v, i
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EXERCISE

qFE, tc?
\/E2 qE ct)?

Show that v, i

Uy =

Solution :

Ey = moc?, rest mass, a constant
E; is the initial E; = E? + p%,c? is fini A, ’
; 1s the initial energy, I, = L + p3,c” is finite { 1. is the initial momentum
As a consequence, Limit (E? + (¢E,ct)?) = (qE,ct)?
t — o0

o qF, tc? _ gE gt qE
Limit — dzatt
t Lméo VE?+ (qE.ct)? /(qBct)?  akuct

quid erat demonstrandum
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¢ Integration of the velocity equations

We start from the expression derived earlier for v, v,, v, and proceed further :

_ psocidt _ PsoC - _ _E;
N - B PN 1o e Vi a= g
dr = v, dt = C%
Va2 + t?
dy = v,dt =0 (3)

In order to simplify further the equations, we assume s =z = y = 0 at time ¢ = 0,

On the other hand, one has

_ Awnh b tdt 2 42

fm Asmha,f\/m vas+t

so that
psOC pSOC __ DPs0€ ; quCt
fo a2 + = fo [A sinh } = q—EO;EA sinh Ei
tdt
x—cfo a2+t2—c{\/a2+t2h:c[\/a2+t2— }— [\/E2 (qE.ct)? — E;
= (0 (the trajectory stays in the (Osx) plane !)
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e Trajectory

Its equation can be obtained by removing time between the equations for s and for x :

from our earlier s = g % Asinh q%  one gets

B . . qFE,s
qF.,.ct = E;sinh ps—gc

which, given the earlier » = [\/ E? + (qE,ct)? EZ} thus yields

\/1+smh2(f—g§—1]

Using in addition cosh? u + sinh? u = 1, one then gets

_ b
- qk,

\/Ef 1 E?sinh? % )

T = % (cosh qLy CS 1)

Catenary equation
0.6 . .

T
cosh -1 (gEx>0)
05 p —

04 | .

(x/Db)

03 - 1
02 - ]

01 1
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EXERCISE

Show that in the “classical mechanics” case, id est, v << c, the trajectory is a
parabola.

Hint : derive the equation of that parabola from the “relativistic mechanics’ one,

_ EZ qE:US L )
T = o (cosh DaoC 1
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EXERCISE
Show that in the ‘“‘classical mechanics” case, id est, v << c, the trajectory is a parabola.

Derive the equation of that parabola from the ‘‘relativistic mechanics” one,

_ B qb.s
T = oA (cosh DaoC 1)

Solution :

v=pPec<<c yields /1-—0=1, p=mybc/\/1— %= mg

and in particular p,, =~ mgv

On the other hand, the initial energy satisfies

E} = migc! + pioc® = mie! + mivie® = mic! (1 + v /) ~ mige!
hence F; ~ mgc?

° %?E)xg << 1,sothat cosh()—1=~1+()?/2—1=()* xs? hence the trajectory is a parabola.
e This yields
9 272 .2 5
r = Z%i zéz “giz and, after simplification, the equation of that parabola T = g 77El fg 2—8
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Deviation of a charged particle in a uniform magnetic field

—

e The Lorentz force equation : F’

¢(E + 7 x B)isreduced to|F = q7 x B

e Remember that the fundamental relation of dynamics yields,
mocé—g =qU X B in “classical mechanics” (v << o).

dmu

- = 4 ¥ x B in “relativistic mechanics” (when v is no longer negligible compared to velocity
of light).

e Remember also that 5 does not work, it cannot induce a change in energy, the velocity and the
mass are constant :

Lorentz relativistic factor v = 1/,/1 — v?/¢?> = constant.
The relativistic mass m = ym, is constant.

As a consequence, both classical and relativistic equations can be written under the form
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e Only basic considerations will be introduced in the present chapter, we will have many occasions

to sophisticate things further later during the lecture :

so, for the moment, we simplify the problem by taking v, orthogonal to B.

e We simplify the notations, without loss in the generality, by
taking B “vertical” : B//(y).

As a consequence the initial velocity is contained in the ‘“bending
plane”, also very often called the ‘“horizontal plane”, v, € (Osx).

e Projection of m% =qU X B onto the axes yields

t S Ly .
m Clcé—f =q|lxz x|0 =gq|—sB, (weintroducedcél—QZ())
dy v 1B, 0
dt

We consider the usual
frame, a direct triedra
(s,2,9).

We take B oriented
parallel to (y).
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Let’s now introduce the “precession frequency”’

LB
m w is also known as
we then get : the ‘““cyclotron frequency”
) i.e., the angular velocity CCZl_g
Z—f =ws (1) of a particle in a cyclotron
d_a2: = —ws (2) accelerator.
g}y Note that w does not
az y (3) depend on the radius of the circular
trajectory : same period
T = 27 /w to perform
one turn (¢ = 27), whatever the radius.
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EXERCISE

A magnet is designed for a proton with velocity 0.2¢ to perform precession at a rate of 10~° second
per turn.

What magnetic field value is needed ?

What is the radius of the uniform magnetic field region ?
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EXERCISE

A magnet is designed for a proton with velocity 0.2¢ to perform precession at a rate of 10~° second
per turn.

What magnetic field value is needed ?

What is the radius of the uniform magnetic field region ?

Solution :

B = mw/q with
qg=1.60210"" C
E =mc* — m = 938.2720310%eV/c?] x e/c* g =1.66803911111e-27 kg,
e =1.602107" C, ¢ = 2.99792458 10°m/s
T = 1us,w = 2w /Teycle/s = 6.28 10° cycle/sec

0.017 T (Tesla), 0.17 kG (kGauss), 170 Gauss

p=mv/(qB),v << c= E ~mv?/2, E =10°eV

NG 109N o ‘sondo weaeg ‘3ISyO NdS



1st integration Equations (1)-(3) cannot be solved independently, they are coupled : = appears
in Eq. (1) whereas s appears in Eq. (2).

However a first integration is possible and will allow uncoupling the variables :

s _ i (1) o
g &lg $—8 =  w(r—1x0)
= @fgz—ws 2) = |i—3) = — w(s— s
y _ (3) Y=Y = 0 ’
dt?
We now introduce the initial conditions : sg = 0,20 = 10,79 =0, ®
and thus get the first integrals X
0 >
§ =Sy +wr (1) a
T =Ty — ws (2') Yo
y =0 (3,) s
Re-introducing these first integrals into Eqgs. (1)-(3) then gives
d? : . .
d_f =  w(Ty— ws) i.e., dZtQ +wis = wiy (1)
Ccli?%: = — w(s$ + wx) i.e., dt2 Ll = — ws (2")
d
- o )
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Solving (3”)

Integration of differential equation (3”) is straightforward :

d’y dy
112 i Yo, Y=Y Yo

Given the initial conditions 1y, =0, y9=0, one gets

the motion stays in the (Osx) plane.
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Solving the equations of motion (17), (2”)

d—%Qer S = Wji'g (1”)
?ZTCQUerQ:U = — WSy (2"

Integration of (1), (2”°) resorts to the regular techniques for solving a second order differential
equation of the form :

— 4+ Kz =CC", withC a constant, z stands for either s or z

The general solution is the superimposition of the general solution of the homogeneous equation,

right hand side zero :
d’z
ﬁ + Kz=0 (4)

with a particular solution of
d’z
W + Kz = C (5)
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A mathematical parenthesis :

. d?z
e General solution of +Kz=0:

dt?
ifK=0:2=At+B A and B integration constants
if K <0 : 2= Acoshy/—Kt+ Bsinhv/—Kt that depend on initial conditions
h x —z
if X\ >0 : 2= AcosVKt+ Bsin VKt (;Osh(a:)—%)
2
e Particular solution of % + Kz=C":

2
HK:O:z:C%

. ., _C
if K #0 : 2=

2
e Hence the general solution of % + Kz=0C":

P
ifK=0::=C5+At+B
if K <0 : z:Acosh\/—Kt—l—Bsinh\/—Kt—k%
if K >0 : Z:ACOS\/Ft—i-BSiH\/?t—l—%

NG 109N o ‘sondo weaeg ‘3ISyO NdS




EXERCISE

ider 42 _
e We consider 72 +Kz=10

Prove that
] if K =0: z=At+ B A and B integration constants

Prove that
’ifK>O . ZZACOS\/?t—I—BSiH\/Et
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Back now to our earlier system,

df +uwls = g (1)
dtQ +w’r = — ws (27) y
Introducing the initial conditions, att =0: s =0, 290 =0, § = 59, T = 19 T B
we get _ _ . O
_ _ 2y S0 240
s——.wcoswtqt.wsmwtfw o
_ 50 L0 o S0 Vo
r = 7y coswt + Tsinwt —

We get the trajectory by eliminating the time ¢ between these equations, which yields,

coswt =1+ %(sox — 10S)
: TR which lends itself to  cos® +sin®* = 1, thus yielding
sin wt = ( s + Tox)
L] L4 2 ° 2
X S Sp T X
(s =2+ (x+3)? = sz :

y
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: - 2 2
L0\2 S Syt
(s =+ @+ ) ="~
) . .
This is the equation of a circle with radius p = SIOWT 10 = ‘Zﬁ" , centeredats= "0 z=—20,
DISCUSSION
A
y A
y
N T U Y e et C .
C e i \ \ X
L /7/ 777777 « \“. . " \_\ - ,/ >
’ qB/m >0 ' O
S Vo o
S v

Note : one can write | Bp = p/q|, givenp = muv,v =uvy= /${+ 13 and w = ¢B/m.

We call | Bp the rigidity of the particle|.
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3 An Introduction to Guiding and Focusing Optical Elements

Introduction

e Charged particle beams are guided and focused by means of magnetostatic or electrostatic de-
vices.

Sometimes both functions of guiding and focusing are combined in a single device.

e The relative efficiency of electric and magnetic fields scales as follows :

Fp  qF  E[V/m]
Fg  quB  fBclm/s|B[T]

With E in ~MV/m range at most, 5 in ~Tesla range, thus F; is orders of magnitude smaller than
Fp.

e As a consequence, only magnetic fields can be efficient in focusing and guiding
high energy hadron beams.

Only at low energy, 3 < 10~ — 1072, are electrostatic devices of interest.
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SBU CASE, Beam Optics, F. Méot, BNL

Magnetic quadrupole

3.1




Magnetic quadrupole

A quadrupole is a magnetic structure with quadrupolar
symmetry that realizes a field 5(B5,, B,, B;) of the form

||
OQ@

B,
B =B,
By

— in the ““ideal’” case

That form of the field determines the pole profile, by virtue of :

—

curl B = 140 ; 0 since in the gap between the poles ] = (.

Hence B = +grzldV, V' the magnetic potential
As a consequence,

B, =Gy =+
B, =Gz =+

g‘z/ = |V=Gxy
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e The equipotentials form a network of constant 1/, in the (Oxy) frame the equation of the network

is

V

Y=gt A family of rectangular hyperbolae.

e (5 is usually referred to as the “field gradient”.




The quadrupole is defined physically by materializing the four branches of the hyperbola.

However, generally, a symmetric realization is technologically simple, and allows passage for the
particle beam at the center of the quadrupole.
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In a practical manner, the hyperbolas are truncated, and on the other hand the pole shape is ad-
justed (departing slightly from an hyperbola) so to ensure constant gradient GG in the beam region,
the central region in the quadrupole.

-

K

: B, h :
S SN B G

Focalisation | B i
%% i {éh:«c‘s :-q . | &'&L{alxﬁha‘t
e h— = - - S
td & - .
i

. Jﬁs @. 3
31_5. | R | —IF

5

b

L

¥

Focusing effects :
The horizontal, I, = G z, and vertical, I, = G y, components of the strength

—

ﬁ:qﬁXB

that acts on a moving particle have opposite effects, focusing or defocusing.
The magnetic quadrupole is said to be “focusing in one plane, defocusing in the other”.

Reversing the current in the coils, or reversing the direction of prop-
agation of the beam, will reverse these functions.
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Particle motion in a quadrupole

The equations of motion are obtained in a way similar to what we have seen earlier :

The force law

m% =qU X B
is projected onto the axes, and writes
@ . . . d2
g g;fj S 0 xBy — B,y d—%: = —%SBy = —%UGQIZ‘
m- ?:qx.x B, =q¢q .—sBy = d%y_q. g
Y Y B, sB, az mSBe = Gy

Here, we have introduced an approximation : we have assumed

2.2 "2
X .
—y2) = 8(1 + 33'/2 + le) ~

v:\/S2+:i:2+y'2:S(1+?+s

dx

d
%‘ <<

which means, and

(‘FCJJ

| =
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That approximation

v=/8 32+
to the first order in = and y allows eliminating the time ¢ in the differential equations of the motion,
which finally write, to first order in z and vy :

dx [ G .
M_ﬁyzg
ds p

G uadrupole gradient .
K = qp = gp — 4 Dar tz']g To ngi ity is the quadrupole strength.
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We have calculated earlier the solution of a similar system, namely, noting ()’ =

If K =qG/p=G/Bp >0

i.e., assuming ¢ > 0, radially focusing quadrupole,
then G > 0, B, = Gz and z have the same sign,

Note : we now note (s — sg) = L = length of the quadrupole

/ /
LUZCEQCOS\/EL—I—\S/UOESiH\/KL y = yocosh VKL + \:/y%sinh\/ﬁl)

x’:—xo\/Fsin\/FL—i—xgcosﬁL y’:yo\/?sinh\/EL—l—y(’)cosh\/?L

Hence the transfer matrices :

p— 1 .
cosvV KL ——sinvV KL
M, (s < s9) = VK

_—\/Esin\/EL COS\/EL

] , horizontally focusing lens

1 .
coshvV KL ——sinhvVKL
M,(s < syg) = VK ], vertically defocusing lens.

i VK sinhvVKL  coshvVKL
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If K =qG/p=G/Bp <0

i.e., assuming ¢ > 0, radially defocusing quadrupole,
then G < 0, B, = Gz and = have opposite signs,

/
xr = xgcosh /| K|L + \/%sinh |K|L
x' = xgy/|K|sinh /| K|L + x{ cosh /| K| L

/
y =1yocos/|K|L+ \/y|0?|sin |K|L
Y = —yo/| K| sin /| K|L + y cos /| K| L

Hence the transfer matrices :

cosh /K| L L sinh /KL
It RV

V| K|sinh/|K|L  cosh+/|K|L

M, (s < s9) = , horizontally defocusing lens,

cos /| K| L L sin /KL

M, (s < sg) = , vertically focusing lens.
y
—/|K|sin\/|K|L  cos+/|K|L
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EXERCISE
Using complex algebra, prove that the transfer matrix of a quadrupole can be written under the

form
cos VKL \/% sin VKL
—VKsinvVKL cosvVKL

whether that quadrupole is focusing or defocusing, indifferently.

M,(s < sg) =
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EXERCISE
Using complex algebra, prove that the transfer matrix of a quadrupole can be written under
cos VKL \/LE sin VKL

—\/Fsin\/fl) COS\/EL

defocusing, indifferently.

the form M, (s < s9) = , whether that quadrupole is focusing or

ANSWER
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A remark concerning the linear model

For the transport through a quadrupole lens, we have
obtained to the first order in z, 2/, y, i/ :

COS\/?L \/%Siﬂ\/ﬁlz
—\/Esin\/KL COS\/EL

This model leans on two approximations :

M(s < sg) =

- one was explicit :

d d
0= VET R (18 ) D
dt dt

Namely, to first order in dz/ds and dy/ds, |v = %

(dz/ds and dy/ds terms happen to be zero).

AY

Huk

This configuration of the poles
causes a superimposition of all
multipoles having like

symmetry :
Quadrupole : 4x1 pole
dodecapole : 4 <3 poles
20-pole : 4 x5 pole, etc.

- the second approximation arises from the technology : the magnetic poles are not perfect hy-
perbolae : they have to be truncated, and they are further adjusted so to ensure V = Gxy in the

beam region.

As a consequence, non-linear components of the magnetic field have been omitted : rather than

B, =Gz

as in our first order model, one actually has

B, = Gy + higher order terms in x and y
B, = Gx + higher order terms in x and y
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The real quadrupole

It differs from the ideal quadrupole by two aspects : T . !

- the field in its central region is perturbed,
itdiffers from V' = Guxy,
due to the limited extent of the hyperbolic poles,

- the gradient is not constant over the all length of the mag-
net :

The real quadrupole with gradient G(s) (curve 2) will yield the same deviation as its ‘“hard edge”
model with constant gradient G, and length L (curve 1),
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. . . . . daj q > d2—x —|_ ﬁ I — O
namely, it will yield a deviation of : A— =~ (—)=x / G(s)ds N 2
ds P dfy qG
. g2~ pY="
if : / G(s)ds = GyL. L is called the “gradient length”
G G
! = 20 — K isthe strength of the quadrupole
p/a  Bp

KL 1is the integrated strength of the quadrupole




The thin lens model

Note : he thin-lens model is not anodine
it is abundantely used for tracking in large machines including colliders as LHC, RHIC

In a thick lens the trajectory is progressively deflected at the traversal of the magnet.
The thin lens model is the limit case where the length

L—0

(from a practical point of view, this means, L. << |f|),
while maintaining the integrated gradient G L, such to preserve the deviation, which writes

* G(s)ds G L
Aaz':(—)f_oo (5) z=(-)Lg=—-KLux
p/q Bp
Note the analogy with the thin lens, seen in introduction : Az’ = %

Passage to the limit uses Taylor series of the sine and cosine functions :

— j i
cosr=1——+ .., sinyr =x — — + ...

2 6

2 3

x x
coshr=1+—+ .., sinhxr=x+—+ ...

2 §
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yielding

[ cos VKL \/%Sin\/?[/] _ 1— KIL2+ ... VKL + ...

—VKsinVKL  cos VKL VE(VKL+ ...) 1—\/§L2

N 1 L
| -KL 1

B 1 0 KL > 0, focusing lens
| =KL 1 KL < 0, defocusing lens

cosh VKL \/% sinh VK L
VK sinhvKL coshvVKL

Using this thin-lens model, a “thick-quadrupole”, i.e. a quadrupole with non-zero length L, can
be approximated by a upstream-drift/thin-lens/downstream-drift combination,

and similarly for the diverging quadrupole, [

Thinlens

A

Up drift Downdrift s

>
-

with transfer matrix
M = Md—dm’ft X Mthm lens X Mu—dm’ft
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A remark, in complement to the focusing properties of the magnetic quadrupole

e We know how to realize assembles of lenses, that focus or defocus in both x and y planes :

nvnul\.ix AV AV A Y A YA

el ' ™ wh'lr i::l.b'ﬂln- L s g L-\J"
potddan deadye t:,fgw, e (ompelineT (ST 0

e An optical system maintains its nature, either focusing or defocusing, when attacked backward.
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The chromatism of quadrupoles

A quadrupole lens manifests itself by the strength it applies on a particle that traverses it.

For a given magnetic field B in the lens, or given gradient G = M, it is clear that stiffer

T'pole—tip

particles : particles with greater stiffness Bp = P will be less deflected than particles with smaller

. q
stiffness.

This goes as follows. A first integration of our earlier equation

d’x qG
— 4+ —2x=0
732 + T =
yields
dz\ —q [~ T p/4q
Al— ) =—x G(s)ds = - with f=—
(dS) p /oo (5) ds f d - G(s)ds
X4 flpd
If f,= f P g/ d is the focal distance for momentum p
and [ = f P / q 1s the focal distance for momentum p = py, + Ap s
then the focal distance of the lens undergoes the relative change |
f b Ap f f
Jo Do Do flpg+ap]

There is an analogy with photon optics : blue rays (larger optical index) are more deflected than
red rays (smaller index).
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Ampere-turns necessary for obtaining a gradient ¢

e Hypotheses :
a - We consider a quadrupolar structure with infinite extent in s

b - Magnetic permeability 1, = oo (i.e., no Ampere-turn is spent in the iron, or equivalently,
magnetization // = ( in the iron).

] -
\ o
e Ampere’s theorem tells us that \ L0 |
1
— = o & g |
f(C) Hdl=NI \ 1

g _ B _ 1 [ o_ G /o 5 _Gr “
Intheaer—luo _/J’O Bm—i_By_,uo xTe =+ — o ~ . HIE?_-—”; _|;¢-
(o = 471077 V.s/A.m, magnetic permeability of vacuum) K . - |
A ¥F XK |
2@ rpole ti G - b “

hence, fgap Hdl = T [ P dr = mrgoze i , . JF
\ |
and - N J

NI =Gy it

Lo pole tip
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EXERCISE

For a 1 MeV proton beam, a focusinng lens, 20 cm long, 10 cm aperture, with 10 meter focal
distance, is fabricated.

The power supply provides 1000 A, how many turns are needed ? 5 - -
f -
Give the field at pole tip, the gradient, strength, \ {C’} 1
and the numerical value of the transfer matrix. _ -\ L7 ’ !
‘L I
: Nr oo %
= \ : (L= = ;’i‘f//} Iu-
e
7N i
\ o« |
N\ I
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3.2 Electrostatic quadrupole

e Electrostatic quadrupoles can be used to focus low-energy particles.

e Typically, electrostatic fields in the few 100s keV range can be obtained in electrostatic optical
elements with typically cm-distances between their components (electrodes).

e As a consequence, beams of like energy can be handled.

e The force F' = qE is along E, therefore, in order to fulfill the function of focusing along both (x)
and (y) axes, the quadrupole should satisfy :
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Electrostatic quadrupole

On the other hand, we know from the laws of electrostatics that

E’ _ —g?"?LdV SIS N SO : T ol
) L - SR A 0 H‘ r_ TN T
No magnetic field 5 here, no time-varying B, curlE = _gtB =0, \_ S e I | /*-f o
q . NG
E derives from a scalar potential, by virtue of curl(grad) = 0. N
RN
e Hence the quadrupole should satisfy, with V' the scalar potential : - / N \ o h
B v S N
E,=+Ky= Oy / N
R

so that the electric potential is of the form |/ = %(x — 2

e The equipotentials satisfy y = /2 — 2V
these are rectangular hyperbolas with axes rotated 45° in the (Oxy) frame. In effect, writing

(=m0 [ 2 |G 00| 2 2 0)

In this change of axes, I = K (a:' —y?) transforms to V' = [2( uv, equation of the right rectangular

hyperbola.

M\&wﬁ
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To summarize : An electrostatic quadrupole with its poles tilted by 45° with respect to the axes
realizes the same focusing function as a magnetic quadrupole.

Careful though :
A charged particle coming from —oo, when reaching the region of an electrostatic element will
penetrate a region with changing electrostatic potential.

This change in potential results in acceleration or deceleration of the particle, i.e. in a change in
particle velocity, mass, Kinetic energy, total energy, rigidity...

This change needs be taken into account in the transport formalism : matrix transport or other.
However, very often assumptions are made as :

- paraxial motion

- negligible longitudinal effects of electric fields
- identical upstream and downstream potential
- etc.

thus allowing use of transport formalism similar to magnetic elements.

Main advice :

One should be cautious about these hypotheses and their validity

regarding the electrostatic optical system to be dealt with.
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3.3 Relative efficiency of magnetic and electrostatic quadrupoles

From F = qE + qﬁé one draws the equivalence £ = [cB E in Volt/meter, B in Tesla, ¢ =
299792458 m/s

From a technological viewpoint, it is difficult to realize electric fields larger than
Epnar =~ 300000 Viem = 310" V/im, 30 MV/m

For 8 =1, F,,,,, corresponds to B = % =0.1T
Emcax 1T

For 3 = 0.1, E,,,, corresponds to B =

We do know how to realize ‘“warm magnets’ providing B ~ 1.8 T, and even 2 to 3 Tesal in some
applications, spectrometers for instance.

Superconductivity allows even more, up to S - 10 Tesla.

e 3 =0.1for proton: Kinetic energy £ — M = M/\/1 — 3% — M ~ smv* =4.7 MeV,
rigidity Bp = \/T(T + 2M) ~ v2MT = 0.3 T.m

e note that Bp = 0.3 Tm wusing B =1 — 0.1 Tesla
means curvature radius 0.3 — 3 meter about
convenient from Lab. viewpoint (large p means large experimental room, more costly)

e Conclusion : the relative weakness of electrostatic lenses limits their use to ‘“Low Energy Beam
Lines” in proton and ion installations.
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3.4 Skew quadrupole

A skew quadrupole couples the horizontal (x,x’) and vertical (y,y’) motions :

- the differential equation for x contains y
- the differential equation for y contains x

RIGHT QUADRUPOLE

SKEW QUADRUPOLE

coupled.
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3.5 Non-linear magnetic multipoles

Non-linear lenses are used in transport lines to correct aberrations :
- chromatic aberrations
- geometrical aberrations of second order (introduced by second order terms in x, y in the equa-

tion of motion)
- of third and higher order

They may also be used to partially compensate space charge effects

In some cases they may be introduced in a beam line to, on contrary, introduced particular distor-
tions to the beam.

In circular accelerators they may be used for the correction of optical defects or as well for the
control of various parameters of the accelerator as

- the variation of the wave numbers with energy, with amplitude
- dynamic aperture
- excitation of an extraction resonance,

- etc.
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SBU CASE, Beam Optics, F. Méot, BNL

Sextupole, 2 x 3 poles



Sextupole

Functions :

- realize a component B, proportional to z* (upright sextupole)
cf. upright quadrupole = B, proportional to x

- realize a component B, proportional to y* (skew sextupole)
cf. skew quadrupole = B, proportional to y

T
I|

Upright sextupole Skew sextupole
B, =2Huxy B, = H(z* — %)
B, = H(2* — y?) B, = —2Huxy
Pole profile and equipotentials Pole profile and equipotentials
satisfy satisfy
H(2? — y?/3)y =Cte H(2?/3 — y*)z =Cte

e Upright sextupoles are used to
- correct chromatic aberrations (introduced by quadrupoles), correct geometrical aberrations
- modify the momentum dependence of the wave numbers, in a ring (the ‘“chromaticity”’)
- excite resonant extraction (‘‘slow extraction’)

e Skew sextupoles are used to correct optical aberrations.
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Octupole, 2 x 4 poles

Functions :

- realize a component B, proportional to z° (upright octupole)
- realize a component B, proportional to y° (skew octupole)

SON
\\ ' /
\\*X 7/

s ) N\ |/

Upright octupole
B, = 0(37* — y°)y
B, = O(z* — 3y*)z
The pole profile follows the equipotentials
O(2? — y*)zy =Cte
e Octupoles are used to
- correct optical aberrations,

g

S M

! /
\ / —
‘\ If////
/4

RZ

Skew octupole
B, = O(2® — 3y*)z
By, — O3z — y*)y

The pole profile follows the equipotentials

O(z/4 — 32%y* /2 + y* /4) =Cte

- modify the behavior of the wave numbers as a function of the amplitude of particle motion (an
effect in rings known as incoherent dispersion of wave numbers, or “Landau damping”’)
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An example : beam uniformization using an octupole

This is an example of a particular use of octupole lens in a beam transport line

The role of the lens is to distort the beam so to get a uniform particle density distribution on some

downstream target.
Particle trajectories Final “phase space”

Ty T T —_—

0.010:

(rad)

]
)

)

)

Us.

A PP
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0.002

(o] 2 4 6 8 10 12 14
0.08 prm S — - - SR pe 13
F = P
0.06 | Z (m - =2
oH ov - Mm :
°-%* tQuadr ﬁ%ﬂ es 1 &
0. 02 -1 1 g _w
0.0 S = m_ B
2
--02 Hy BRE T - ]
[ 1 ~ 4 1
-.0af ] w W 1
-.06 [ & m L J MW% 1
] 2 4 6 8 10 12 14 m M = = m. .

L’espace des phases vertical (Fig. du bas droite) subit une forte distortion cubique sous I’effet de
I’octupdle OV, ce qui entraine 1I’uniformisation transverse en Z au droit de la cible.
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o) 23 4 6 8 io i2 ia
2-D uniformisation at target, beam trajectories.

z (m vs. Y (m

0.1 | m%wmf

-.05

-1 -.05 0.0 0.05 0.1

Transverse section of the beam at target.

Rule : the octupole “integrated strength’ must satisfy

1 cos® @
126,67 sin¢

OL
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3.6 Dipole electromagnet - “bending magnet”

Particle motion in a uniform magnetic field perpendicular to the velocity

We have seen that a magnetic field does not work, the
particle energy remains unchanged during the motion,
its mass stays constant.

The particle is subject to the following forces :

— 2
1 - centrifugal force, F. = m% outward
2- Laplace magnetic force, 7., = —quB, cen-

tripetal, inward (we assume ¢ > 0)

2
Thus the total force is F; = m% — quB, and equilib-
rium requires F; = 0, hence :

Bp =

with p = mv

QU

The quantity Bp is the rigidity of the particle, it is measured in Tesla x meter.

mpc
qB

The trajectory of the particle in uniform B is a circle with radius 0= q%

NG 109N o ‘sondo weaeg ‘3ISyO NdS




n
tome |

T

i N |

The Ampere.turns necessary to the obtention of 5 are —
realized by means of large number, N, of windings

-

L:E.—;— E?-S‘lﬂ

| (bs)

~— <
-~ - _,JZ""LL “‘#.‘;_.‘.ﬁ.__

- P°= [ RIS _-—-—-.‘p-»—-—v

around the upper and lower magnet poles.

The current, /, in the winding is of several 1000 Am-

peres.

A typical representation of a bending magnet
providing a uniform field B for the beam that follows
a circle in the central region of the gap.

Here a ‘“‘sector dipole”, with 7/8 deviation : 8 such
dipoles would allow closing a ring accelerator.

The role of the iron yoke is

(i) to confine the magnetic flux within the magnet vol-
ume

(ii) to guide it into the gap, where the beam passes
(iii) to ensure uniform flux in the “good field region”

The yoke may be realized by stacking ~ 1.5 mm metal
sheets.

Doing so limits the eddy currents produced by the
variation of 5 when the magnet is “ramped”.
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The Ampere xturns to be provided :

Up to B = 1.5 — 1.8 Tesla about, the iron channels the magnetic flux in a quasi-perfect way.
1, ~ 3000 =~ oo, so that practically no ampere-turns are spent in the iron.

Beyond 1.8 Tesla more or less, the magnetic quality of iron degrades, ;. decreases, effective
ampere-turns (those in the gap) turn to a fraction of the ampere-turns supplied by the magnet
power supply, in addition magnetic saturation in the iron affects the yoke in a non-uniform manner
so that the quality of the field in the gap deteriorates...

3 _
} R '
| I
I e
- ™ X !
] L}
i
|
) i
) ce oe Bap
In the gap, the magnetic excitation H ,, = 710
In the iron, B;,.,, = B,,, (continuity of the normal component of 5), so that H,,,, = Emg ~
Bgap
310%u

hence H;,,, ~ 0.31073H .

Applying Ampere’s theorem to the circuit (C) on the figure yields :

T dl Hiron liron ~ ~ a
NI = f(c) H.dl = fgap Hyop-dl+ [, Hipon.dl = Hyqp h (1 + 7 T) ~ H,qp hythus| N1 ~ =2},

gap
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EXERCISE

One wants to accelerate a proton to 3 GeV in a ring based on the earlier magnet
(curvature radius p = 6.3381 m, gap height 7 = 0.14 m). The magnet power supply
can reach 4500 Amperes.

Find the number of turns of the coils.

Hints : first find the rigidity, Bp.
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EXERCISE
One wants to accelerate a proton to 3 GeV with the earlier magnet (curvature
radius p = 6.3381 m, gap height i = 0.14 m). The power supply can reach
4500 Amperes.

Find the number of turns of the coils.

ANSWER

At3GeV, Bp=+/3(3+2 x M)/c ~ /15 ~ 13 T.m, hence
B =~ 12/6.3381 ~ 2 Tesla.

Bh = ugNI yields N = 2[T]0.14[m] / 4w10~"4500[A] ~ 50 Turns.
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Particle motion in a dipole with index

The “field index” in a dipole is created by giving the poles a hyperbolic
shape :

following the V" = xy”’ quadrupole profile.
Such dipole can be considered as a quadrupole traversed “‘off-axis”.
The quantity n = —+H—-2, “feld index”
B, 0z ’

is a measure of the focusing (or defocusing) effect of the varying gap.
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EXERCISE

Consider a dipole with “tappered” gap :

Show that the field index —%% so created takes the value

h

qgw
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EXERCISE

Consider a dipole with “tappered” gap :

Show that the field index — L dB so created takes the value _h_

Bdr gw-
ANSWER
To the left of the gap : [, Bdl = Bg = 1yNI, hence B(g) = B) = MOéVI

To the right of the gap : |, Bdl = B(g + h) = y/NI, hence

NI NI _ NI
Blg+h) = 4o = = o 4 Iyt ol By = gy -
dB AB B(g+h)—B(g) _ h
Hence —7- = -z =~ . <)““f-%g—w
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Do

A reference trajectory can be defined, characterized by B,p, = q

The equations of small amplitude motion around that reference
curve, (r = p — py, y), are derived from
dp

— gi X B
a4

Two particular ingredients need be introduced in the first order ap-
proximation, namely

ds(

1/2
7L+ 5) +a” +y”

- the approximation v = 0

- the distance to the reference momentum :
a first order effect.

Assuming still, ds = vdt to first order in dx and dy.

Thus one gets the differential equations that describe the motion :

which now accounts for the curvature 1/p,

p = po + Ap which will be observed to introduce

dx , 1—n 1Ap
352 ™ p(Q) v = Po P
ay n

ds? +p(2)y U

NG 109N o ‘sondg weeg ‘ISvYO NGS



The resolution of these equations is similar to the quadrupole case,

Namely, by superimposition of the general solution of the homogeneous equation and of a particular
solution to the inhomogeneous equation, this yields :

Radial motion, with £ = (s — sy) being the path length along the trajectory arc :

if (1—n)>0:
_ v1—n ) \/1—n B V1—n , Ap
T = &g COs Y5 £+m [,er(l cos +—75 L) D
VA S (0 \/1—n \/1—n vV1—n,Ap
T = =0~ p; L + x( cos £+m n 7 L=
if (1—n)<0:
/
.75:51300081&Vnpo_lﬁ—k\/xoismhV £+ 20 r(1 cosh”n_ ﬁ)Ap
n _—
x’:azovnp_ sth £+asocoshV £+ Lo smh”npo_lﬁApp
Remark : Note the additional term compared to the motion in a quadrupole, the dispersive term
2,
in Ap/p, brought in by the particular solution of the inhomogeneous equation z 5 -+ 1 p_Qn xr =
0
2,
1 A g + C]G r =20
—— =2~ (whereas the lhs term was zero for the quadrupole :
popp(h the Ihs t for th drupol i_ﬁy O)
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Axial motion :

ifn>0:

Y = Yo COS n
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Summarizing under the form of 5 x 5 transport matrices

For simplication of the notations we introduce

ke =[1—n|/pg, ky=|nl/p;

Ifn<O0:

The dipole is horizontally focusing and vertically defocusing

. / cos k. L \/1]6—95 sin vk, L 0 0

x —VkgsinVk, L cosvk,L 0 0

5, - 0 0 cosh \/I?yL ﬁ sinh \/I?yL
op 0 0 \/k:: sinh \/k7y£ cosh \/I?yE

P \ 0 0 0 0

pi: (1 — cos Vk L) \

X

1 .
——sinVk, L
PV ki

0
0

! /
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Ho<n<l:
The dipole is focusing in both planes.

1 .
( . ( cos ki L N sin \/k, L 0
! —Vkysin vk, L cosk,L 0 0
;j, - 0 0 cOs \//?yﬁ \/11?1/ sin +/ky L
\ op 0 0 —\/kziysin \//?yﬁ coS \//?yﬁ
Py 0 0 0 0
Ifn>1:

The dipole is horizontally defocusing and vertically focusing.

. \ ( cosh vk, L \/1]€_$ sinh vk, L 0

x Vkysinh vk, L  cosh kL 0 0

5, - 0 0 cos \/kTJE \/11?3, sin \/kZE
op / 0 0 —/ky sin \/I?yE COS \/kTyE
r/o\ 0 0 0 0

plm(l — cosh vk, L) \

p—ll%(l—cos\/_ﬁ)\
p\/_sm\/_/i
0

0

)

1 .
sinh kL
vk vk
0
0
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Pure dipole

e This means, absence of any index, n = —B#% = 0, ““parallel gap” dipole.
y

¢ Given that the field is constant over the all beam region, then the tracjectory is an arc of a cirlce,
with length £ = pa,  with « the deviation in the dipole.

£ sin \/Eﬁ n—>Q

e On the other hand, as to the [75,] term of the matrix, X NGT: > L = pa
Y
e So that the matrix transport obtained earlier,
( cos k. L L sinvE L 0 0 ]1{: (1 — cos Vk.L) \
o —VkysinVE, L  cosvk.L 0 0 p\}k_ sin vk, L z)
y, 0 0 cos / ky L \/l? sin y/ky, L 0 y(,)
5p/p 0 0 —+/kysin\/k,L  cos/k,L 0 op/p
\ 0 0 0 0 1 )
simplifies into
x cosaw  psina 0 0 p(1—cosa) T
x! —% sina cosa 0 O sin o ()
Y = 0 0 1 pa 0 Yo
Y 0 0 0 1 0 Yo
dp/p 0 0 0 0 1 dp/p

Vertically, the sector dipole is equivalent to a drift with length L = pa.
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3.7 Cylindrical lenses

Introduction to cylindrical potentials and calculational meth

We need here the two Maxwell’s equations that concern electric
fields :

o (1) curlE = g tB is zero < static fields
Hence F derives from a gradient (curl(grad) =0), £ = —gradV
e (2) divE = 0

A consequence of (1) and (2) is,
divgradl = AV = V2V = 0, the Laplace equation.

We focus on cylindrically symmetric type of electrostatic lense,
cylindrical lenses have focusing properties of interest in beam transport.

In cylindrical coordinates (7, 0, s), the Laplacian writes

18(8V) 182V 0*V

2 —_— _
viV= 70(97" +7“ 892 0s?

=0
ror

Since we are assuming cylindrical symmetry, i.e. V' does not change with 6,

0°V _ 0
06> 7

and as a consequence the Laplace equation reduces to :
10 ( oV > 0*V

ror Uar ) T e = Y

then
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e An approach to finding solutions, or at least approximate solutions to this differential equation,
is to develop the potential in Taylor series from the axis.

This approach is of particular interest when using numerical methods to calculate particle mo-
tion, it is an easy way to get the potential at non-zero radius, and hence the field and force that
apply on the particle, starting from the mere description of the potential on the lense axis.

Doing so means that

10 [ oV 0%V
—_ (T—) +W: 0 (1)

should satisfy the following Taylor developement, with even dependence on the coordinate r, since
V(—r) = V(r) due to the f-invariance of V'

V=> asn(s)r™ (2)
i=0
From (1) and (2) such is the case if

aon($) = ———

In other words,

V(s,1) = Viso(s) — & VZ_g(s)r? + VY (s)r2 + ...

in which expression V,_(s) is the potential along the lens axis.
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EXERCISE

Given the expression of V(s,r) under the form of a Taylor developement,

V= Z Qon(8)r?" (2)

show that
10 oV 0°V
ror (a) T - 0 W
entails

1 /!
aon(S) = _W A9;,—9(S)
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EXERCISE

2 . 1
Show that %(‘597" (r%‘;) + %—S‘Q/ = 0 entails ay,(s) = _W
ANSWER

% ;T (7“ Ei" [a2n<s>r2n]> = ap,(5)(2n)r2"2

— agn—2(8>r2n—2

ng_2<8>
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Electrostatic field

e Particle motion can be computed if the electric field E(s, r), since it determines the strength
applied on the charge, F = q E.

As a matter of fact, numerical methods like stepwise ray-tracing (stepwise resolution of Lorentz
equation, using for instance Runge-Kutta method) are often used given the complexity of the motion
in electrostatic elements.

By virtue of Maxwell’s equation : E=— ngLdV
the longitudinal and radial field components : Es(s,r) E.(s,r)
can be obtained by differentiation of the potential,
oV oV
Bsr)= =) g, = -2

In cylindrical lenses for instance, V(s,r) can then be drawn from a Taylor

expansion in r with respect to the optical axis as seen earlier, Jv %
graay — ..
1 1 ..y
Vi(s,r)=Vi=o(s) — 1 Vo (s)r® + ol WL%(S)TQ oy gradyV = %5_‘9/
gradyV = a—‘S/

Careful though with manipulation of Taylor-series based approximations of fields, potentials :
it (may) work, yet within limits, which depends on the form of the OV /0s : the series convergences,
i.e., the series developement of the potential can only bring a solution,
within a radius of convergence r. (r < r.).
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e A different approach consists in finding a solution to the differential equation, when the symme-
tries allow it.

We assume again cylindrical symmetry, and thus consider the simplified form of the Laplace equa-
tion (the same as earlier, we just developped the first term in that equation)
82V+ 1(9V+(92V — 0
or:  ror  0s*

A classical method of separation of variables can be applied to this type of differential equation,
namely, we stipulate that V(r,z) =R(r)S(s)

This transforms the equation above into

R \ Or? or ) S 08?

This equality has to be satisfied whatever r and s, so that one can write - this is the principle of the
method,

L62R+ 1 OR — _k2
R 827’2 rR Or

on the one hand,

on the other hand,

with & a constant to be determined.
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The solution to this system is

R = A[O(kT)+BKO(kT)
S = C cosk(s— sg)

in which /; and K are modified Bessel functions of the second kind, A, B and C' are arbitrary
constants to be determined from the particular geometry of the problem.

Example : the bi-potential cylindrical lens
V1 V2

— o

In the possible solution in r the K (r) term is removed because non-physical, Ky(r) —

We will not go into the details of the resolution of this system. The general lines are the following :

- the origin is taken at the slot between the two tubes
- a potential of the form V(s,7) =V — w is seeked,
with the virtue of satisfying
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Looking for a solution of the form

Vi+V, .
V(s,r) =V - ——— = %:A(k:) Iy(kr) sin ks

it can be shown that

dk

ZA ) kelo(kr) _ 27V nd thus V(s,r) =

Vi+ Vs ‘/2_‘/1/00 sin ks
_|_
T 2 2 0

klo(kr)

One way to end up with that is to compute this integral numerically.

However a practically identical, simpler, good approximation to the function above, generally
used in beam transport to simulate the bi-potential lens because it is easier to manipulate, is :

Vi+Vy Vo=V,
V(s,r) = 1; SR 5 1tamh% with w = 1.318, R the inner radius of the tube

When the distance between the two cylinders, say d, is not negligible, the solution of the differen-
tial equation is

V(s,r) = dk

V1+V2+V2—V1/°° sin ks sin kd
2 T o Kklg(kr) kd

and a good approximation writes

Vi4+ Vs VQ—Vll coshw(s+d)/R

Vis,r) = SRR dwd/R o8 coshw(s —d)/R
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Einzel lens

0 volts +V volts 0 yolts
Plates e ———————— ——
) —ed I AN
“Electric field lines

. e — Focus
lon path - —

0 volts +4 valts 0 yolts

It consists of three or more sets of cylindrical or rectangular tubes
in series along an axis.

It is used for beam focusing, sometimes including beam purifica-
tion : one ion specie focussed while polluting other species are de-
viated away from the lens axis.

Potentials on the first and on the last electrode are identical, hence
the Einzel lens focuses without changing the energy of the beam.

For this reason it is often called the ‘‘unipotential lens”.
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Let the length of the first second, third electrodes be

respectively L, L, L3, and the distance between B
the electrodes d. The total length of the lensis L, + Ly + L3+ 2a B *’ o
Let the two potentials applied on the electrodes be V1 and V2.

vx

The inner radius is R,.
% ) Jxel 4 X3

Thus, a model for the electrostatic potential along the axis is

_ . _

Vo V1 cosh “’(”j*@ cosh “(S_RTQ_CZ) Three-electrode cylindrical
V(s) = ———— |In " — +1In 2 unipotential lens.
2wd w<s+ 2) w(s—%)
| cosh — cosh e

where s is the distance from the center of the central electrode, and w = 1,318.

The field in the lens derives from the Taylor series derived from the potential,

E(s,r) = 8‘/8(3 .7) = Fy(s,0) — 22 = (s5,0) + <T4) i IEs (s,0)
_OV(s,r . B K, 5P o5,
By(s,r) = = DV8T) — 08 (g 0) 4 2008 (5,0) — o2 P8 (5,0)

Note that £ only is non-zero on axis, the radial component F,. (s, = 0) is zero on axis.
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3.8 Electrostatic prism

Prisms are used for deflection, as energy analyzers, or in mass spectrometers in combination with
sector dipole magnets.

Simple prisms are

- parallel plate condenser, particles move on parabolas, limited to small deflections

- toroidal deflectors, the main path is a circle following the middle equipotential.

A charge g with energy U in a toroidal deflector follows a radius r such that

2U,
To N

with vy = (2U,/ m)'/? being the velocity of the particle, 1 is the relativistic mass.

The field strength £ on the middle equipotential has to be adjusted so to fulfill this rule.
Similarly with what we have seen with magnetic dipoles, we are in-

terested in fields of the form

2
r—r r—r
Er(fl“,y: O) = ET:O,y:O [1"‘711 0 —|—n2( 0> + ...
To To
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3.9 Combined E + B optical elements

Wien filter
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3.10 Combined E + B optical elements

“Zero-chromaticity” quadrupole
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4 Treatment of Charged Particle Motion in Optical Ensembles

Now we have gone through general considerations concerning the treatment of optical elements, we
have the means to assemble these into optical structures : series of such elements, thus constituting
so-called ‘‘beam lines’’ and other “accelerator lattice cells”.

We will develop the methods assuming magnetic elements, for simplicity : constant |¢], constant
mass.

4.1 General developement of mid-plane symmetry fields

Optical structures as ‘“beam lines”’, ‘‘accelerator cells” are comprised of successions of optical ele-

ments as bending magnets, quadrupoles, higher order multipole lenses like sextupoles, octupoles,
etc.

For practical reasons all these elements are generally disposed in an ‘‘horizontal plane’’, meaning
actually :
the mid-plane of all these optical elements coincide with a common, so-called ‘“horizontal plane”.

This “horizontal plane’’ may sometimes not be horizontal, confer LHC, microtron injectors...
What matters most is the fact that this reference plane is common to all optical elements that

constitute the ensemble.

For that reason, it is often referred to, instead, as the ‘“‘bend plane”, or ‘“median plane”.
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In order to describe particle motion in optical structures, it is useful to define a single type of
reference frame, proper to be used in any of the individual optical elements.

(Os) lies in the reference
trajectory plane, tangent to
the trajectory at point 1/
projection of M,on C,
(Ox) lies in the reference
trajectory plane, normal to C
at M,

(Oy) is normal to the
reference trajectory plane

The reference frame is built on a ““reference trajectory” (C)
taken in the ‘“horizontal plane” and associated with a “ref-
erence momentum’ p :

- in a field-free section, (C) is straight line,

- in multipole lenses, (C) is a straight line : the multipole
axis,

- in a bending magnet, (C) is an arc of a circle with curvature
radius p = qu = Bp/ B, center of curvature at C,

(s,z,y) can be considered as a cylindrical system (s,7,0)
with
r=p+xz, 0=s/p
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Antisymmetry plane

In upright magnetic elements the median plane (y = 0) is an antisymmetry plane

n -
V- TI SR  m _\_*l'b__,_

S Ve g

e~ Pc.: [ 3S S

-\-\"—"-\-._
<
=

LopT 4 25m

| e

y = 0 being antisymmetry plane, one has :

B(s,x,—y) = —By(s,z,y) (= Bs=0aty=0)
B:I;(S,Qf,—y): —Bx(S,QZ',y) (_> B:l::()aty:o)

By(87 €T, _y) - By(Sa €T, y)
meaning that

Bs(s,z,y) is an odd fucntion of 7,
B.(s,z,y) is an odd fucntion of y
B,(s,z,y) is an even fucntion of y

not in “skew”’ elements

(S)

\

i

(N)
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Developement of the field
We need to have a convenient way of expressing B components, namely
By(s,x,y), Bu(s,z,y), By(s,x,y),
so to be able to inject them into the equation of motion,
F = dp)dt

Taylor expansions in = and z with respect to the reference trajectory are an appropriate way,
assuming that particle motion stays confined in the vicinity of that reference (accelerators have a
finite aperture beam pipe !).

The Taylor expansions of the field compents write :
By(s,2,y) = Y50 z'y?*1Cs; 1.(s)  (odd dependence in y)
Bu(s,z,y) = > 50y Crip(s)  (odd dependence in y)
By(s,z,y) = > %02y Cyir(s)  (even dependence in y)

where the Cs; i.(s), C; 1(s), Oyix(s) have been introduced to simplify notations, and can be built
up explicitly from the derivatives, respectively,

ai+kBS 8i+ka 8i+kBy

9

8l‘zayk sz,yzO 8xzayk sz,y:07 8xlayk x:O,y:O
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The coefficients C's, Cx, Ciy in these Taylor series can be explicited using Maxwell equations.
They are linked by Maxwell equations :

carlB=0={ _p 9By 0B, _,

p _
| Ox pTz T pTT s =

o= p OB B, 0B, , 9B,

Reporting in these equations the previous B,(s,z,y), B.(s,z,y), By(s,z,y), one gets recurrent
relations between the Taylor series coefficients Cs, Cx, Cy,

o dCyZ,]{/dS = (2]{ + 1)(082"/{ + CSZ'_L/{/,O),
° (Z + 1)Cyi+1,k = (2]6 + 1)02&'7]{;,
o dCx;i/ds = (i + 1)(Csiz1 1 + Csi—11/p)s

® 2(k + 1)(Cyi k1 + Cyiip41/p) + (¢ + 1)(Cxj jg1 + Cli ./ p) + dCs; ./ ds
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Particular notations introduced at that point, proper to beam optics, are the following :

o/ = h(S) = p(ls) = ;Oqu(S)‘m:O,yZO — _%

(remember that Bp = p,/q, rigidity, is a property of the particle)

e The first order radial derivative of the field, %
is replaced, noting n = n(s) = —1 OB, the field index, a “quadrupole term”
h[%ﬁxzoyzo é%E 2=0,5=0
. . e 0*B,
e The second order radial derivative of the field, 2
1 0*B,

. N ! / _
is replaced, noting n' = n/(s) = 2102 By|i—0y—0 Oz

a ‘“‘sextupole term”’.

x=0,y=0

A few pages of algebra, accounting for these notations and for the earlier recurrent relations,
then yield the following general developement of mid-plane symmetry fields :

By(s) = h ™ 'B, [y — (n'h?* + 2nhh + hb)zy + ...]
B.(s) = h ™' B,,[—nh*y + 2n'h3zy + ...]
By(s) = h™'Byo|h — nh*z + n/h*z* — (0" — nh® + 20/h?)y* + .. ]

That was worth the pain : you’ll live with this the rest of your life !...
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The equations of motion

Now that we have nice expressions for the field compnents, we can apply the methods we have seen
earlier in deriving particle motion in lenses.
We will not detail these lengthy calculations here, we will just summarize it - in a mere two pages !

Back to the reference frame introduced earlier :

e O is a (arbitrary) reference origin in the laboratory

e (' is the projection of O on (C), origin of curvilinear distance s
e particle position )/ at time ¢ and distance s is given by

OM = OMy + z% + yyj, with M, projection of M on (C)

/—)
°5 = d% éw 0 Ties in the reference trajectory plane, tangent to the
trajectory at point 1/,

e 7 lies in the reference trajectory plane, normal to (C) at M,
e 7/ is normal to the reference trajectory plane

The motion of the particle satisfies the following equations :

S =

®y

SSHESS

ds

dt

is the velocity of the projection ), of M on (C)

S Dlwy

I I8y

= —hi

hs
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EXERCISE

Show that
U] = $(1 4+ hx)S+ 22 + 22
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EXERCISE
Show that |v]| = $(1 + hx)5+ 22 + 22

ANSWER
Hyp.: OM = 7= OM, + 27 + yij

—

dO M,
dt
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By differenciation : 7 = 7 = +i T+x Ty Y

Intermediate calculations :

9 dOM, d(OO'+O'My) dO'M, dO'M, ds o
/) = = = =

dt dt dt ds dt
dr ds S ds
Sy e Grds sds
W) T= s aw ~ oa s
Back to v :

T=r=3$5+if+achss+yy=r=s14+ha)5+2Z+07y




Given these ingredients, and
- accounting for the field developments derived in the previous section,
- introducing further, || = s [(1 + hz)? + 2 + y”] 1
-and p = py(1 + 9)
it can be shown that the equation of motion mfl—g =qU X B yields :
2"+ (1 =n)h*x =hé + (2n — 1 — n)RP2? 4+ Waa' + Sha + (2 — n)h*xé
+ %(h” —nh? + 20’k y? + Wyy' — %hy’2 — hé?
Y +nh*y = (2n' —n)h3zy + Way' + W2y + ha'y' + nh*yd

The equations of motion simplify when considering “perfect optical elements”’, namely optical de-
vices for which it is assumed that By, n, h do not depend on s

for instance : G p
- a bending magnet with constant 5 whatever s, z, y VN o)
- - —_—
- a quadrupole magnet without fringe field Il N b 4
> L

However we will only focus, in the following, on the linear motion, namely,
the sole terms of order 0 or 1 in x, y and ¢ are retained in the equations above.

In these hypotheses : first order approximation, linear fields, the equations of motion above become

" + K, x = hd (K, = (1 —n)h?
y'+ Kyy=0 (Ky = nh?)
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Transport matrix

As we have seen when studying optical elements : quadrupole, bending magnet, the solutions of

" + K, x = ho (K, = (1 —n)h?)
y'+ Kyy=0 (Ky = nh®)

can be written under matrix form. We will generalize the 2x2 matrix notation introduced there to
5x5 matrices so to account for both

- horizontal motion, described by its components = and 2’
- vertical motion, described by its components y and 1/

- and for the momentum deviation of the particle considered, with respect to the reference mo-
mentum, J = (p — po)/po

(33’\ (Tn T, 0 0 T16\ (ﬂfo\
x’ T, T, 0 0 T x
y |=1 0 0 T3 T3 0 Yo

y T§3 :§4 0 y6

. \80001)\5}
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A property of the determinant of the transport matrix
Differentiating the equation for =’ as drawn from the previous transport matrix yields
2" = Timo + T + Tigd  (a)

Introducing
2+ K,x=ho

and replacing = and ¢ by their expressions drawn from the transport matrix, one gets
— — K, T2y — Klegxf) + (h — KIT16)5 (b)

Comparing (a) and (b), and by analogy for the vertical coordinates, we deduce :

T = —K, T
T = =K, T
Tll/6 = —K, T+ h
Ty, = — K, T3

From these relations it results that the derivatives of the determinants of the following three

sub-matrices are zero :
T Tio The

Tll T12 T33 T34
( T/ T/ ) 9 T1,1 T112 T1/6 ’ ( T/ !
11 12 0 0 1 33 34
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(

11 119
17, 17,

):

EXERCISE

Using the relations

T = —K, T
"~ _K,Th
T{% = —K, 116+ h
Téé = —K,I3
Téil =  —K,I3

show that the matrices

Ty Tio Ty
17, Tiy Tig

0

0 1 (

0 0 T33 T34

133 T34>
/ 9
0 T33 T34
\ o

/
T33

all have zero-derivative determinant.

/Tu T2 0 0 T16\
T 17, 0 0 Tig

0

! )
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As a consequence, the determinant of the transport matrix is constant. Its value can be deter-
mined from the limit case :

If s — 0, then [T] — I, hence

det[T] = 1.

This property stems from “Liouville’s theorem”,
this is a particular form that Liouville’s theorem takes, in linear transport.

We will introduce Liouville’s theorem in the next section and come back to this property.

NG 109N o ‘sondo weaeg ‘3ISyO NdS



So, to conclude this section, we observe that :

A beam line, i.e. a succession of optical elements : drifts, lenses, bending elements, is represented
to first order in the components, x, 2/, ... by a transport matrix which satisfies

x
( : )
with X =1y
y/
\ 7/
Given that the horizontal plane and the vertical plane are decoupled (no mixed terms in the

differential equations) it is possible to independently consider, work on, each of the sub-spaces and
related sub-matrices :

X =T x X,
det(T) =1

x Ty Tio Ty Z0
' = To1 Toe Tog wf)
) 0 0 1 )

and

(?J)Z <T33 T34) <yo)
Yy Ty3 Ty Y0

with each sub-matrix having determinant 1.
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5 Notions of Phase Space. Emittance

5.1 Phase space

A linear source of rays is considered : A
X'max
. / . JXmax  paticud
- it extends over [A A’] at some location s along the = @
longitudinal coordinate axis, >
atall x € [A, A’] rays are emitted,

- the angular aperture of the emission at each
individual source is fixed,

say Max (%) =z

x'max

The beam can then be represented in a 2-D space with
x in abscissa and 2’ in ordinate,

A’ O A X

a so-called phase-space representation of the beam. —x'max

_dx

The phase space : (z,z’) is a Cartesian space with axis x, 2’ = Te

In the “local phase space at abscissa s”°, or equivalently, at time ¢, a particle is represented by a
point.
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As a consequence, a curve in the local phase space (some curve like the one that circumscribes the
rectangular domain, for instance, actually a dense set of discrete points) represents

- either a family of particles all ““photographed” at the same location (s, or ?)
(this can be a family of particles characterized by, e.g., identical momentum, or identical initial z,
etc.),

- or, for instance in a circular accelerator,
the successive states of a single particle “photographed”
upon successive passages at location s
(at periodic intervals of time ¢, + T, t + 2T'....).

The latter is also known as the “particle trajectory in phase space”.
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The area in phase-space occupied by the beam (say, the area of the domain D below) is known as
the ‘‘phase space extent” or “‘emittance” of the beam.

It is measured in meter xradian.

A

x1

(t)

(t)

O X

\J

With time, or equivalently as the beam proceeds in distance s ,
the shape of the domain D changes,
whereas fulfilling the equations of the motion.
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What is the interest of space space ? (1/2)

1/ The equation of motion of the mechanics are of second order :

dmu

= F
dt

that is to say, future motion depends
(i) on the strengths introduced
(ii) on 2 initial conditions which are the initial position and the initial velocity.

As a consequence there can not be coincidence at the same time ¢ (or at the same location s)
between 2 trajectories with different initial conditions.

A

X1

"
(t)
(t)

(t)
o) X
This configuration is not possible
as it would mean, at point P (at time ¢'),
2 different further behavior
given 2 identical initial conditions.

»
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What is the interest of space space ?  (2/2)

2/ Liouville’s theorem

A conservative system,

i.e., a system subject to strengths that do not -
work,
(t)

is such that : (t)

O X
Area of domain D, at time ¢ = Area of domain D, at time ¢,

This can be expressed mathematically in the following way.

Let A, (s¢) = f f dxodz(, be an element of surface in domain D, at location s,.
The transform of that surface element into domain D at location s writes

//dxda; _//D (20 2 d:z:()daso

whereas the Jacobian of the transform satisfies

D(x, ) _| Ox/0xy Ox/0x|

Diza. 21) 1. by virtue of Liouville’s th
D(xg,zf) | 02'/0xy Ox'/Ox , by virtue of Liouville’s theorem

Hence, A (s) = Ax(so) b
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Transformation of the emittance by a conservative optical system

Beam physicists are not so fond of distorted phase space domains, they are preferred elliptical
domains, an area with elliptical limit that circumscribes the domain D :

A X

=
N

Y
X

O

This choice has two major interests :

- an ellipse happens to be a realistic representation of beam extent in phase-space, generally en-
countered with actual particle beams,

- in a linear transport system, as beam transport optics deals with, an ellipse maps into another
ellipse with identical area.

This has the two virtues of leaving the generic shape unchanged : an ellipse, and of preserving
Liouville’s invariance : the area of the ellipse.
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Emittance, generalization

At all location along the beam propagation axis, s, each particle in a beam is represented by 6 phase
space coordinates,

x, 2, y, y',ds, ,0p/p

with
o 1,17 = gr]—g horizontal (sometimes called “radial’’) position and angle,
o y, 1y = d—z vertical (sometimes ‘‘axial’’) position and angle,
® 0s difference in path with respect to that of some reference particle,
e Op/p= P~ Po momentum difference relative to some reference momentum, p.
Po

The emittance of the beam is the 6-D volume encompassed by a
6-D hyper-ellipsoid at given isodensity.

A different choice for the emittance can be, when the beam has a finite extent, the volume
encompassed by the hyper-ellipsoid that circumscribes that finite beam.
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Liouville’s theorem establishes that, when transporting a 6-dimensionnal beam along a conser-
vative optical system, the local density within the 6-D phase space volume stays constant.

D(xz,2',y,vy, ds,0
JIY oz v s = [} acotsiimaasmamisn. - 5=t -
» (0 y» J0O? 9

On the other hand, as we have seen, the three sub-spaces, transverse (z, '), (v, y’) and longitudi-
nal, (s, 0p/p) are often un-coupled.

Un-coupling has the consequence that Liouville’s theorem applies to the projected sub-spaces,
namely the emittances in these sub-spaces are preserved :

- the 3-dimensionnal space z, z', 0p/p,

- the 2-dimensionnal projection (z, =) of an ensemble of particles with identical 6p/p (horizontal
phase space),

- and as well the 2-dimensionnal projection (x, =) of an ensemble of particles at a location s where
x does not depend on 6p/p (i.e., if T15 = 0, or if Vs, % = 0),

- the 2-dimensionnal projection (1, v') (vertical phase space),

- the 2-dimensionnal projection (Js, 6p/p) (longitudinal phase space).
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Some transformations of a propagating phase space ellipse

Drift space

AX=LYX

(s1)

E'F' remains unchanged, area remains unchanged.
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Thin lens

<
[

|

I 0
—1/f 1

|

(s+, diverging)

(s+, converging)
F

E'F remains unchanged, area remains unchanged.
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Thin bending magnet (“kicker”)

X
O (s-)
@) X ]

The deviation does not depend on z, the ellipse is unchanged, it is 2’'-translated.
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5.2 The beam matrix, beam transport

Now we are convinced that the ellipse representation of the beam in phase space is relevant, let’s

proceed with this representation, and with its transport along beam lines.

The general equation of an ellipse can take the form

€
vx? 4 20xx’ + fx? = =
T

with €, the surface of the ellipse.

The orientation and shape of the ellipse, i.e. the
coefficients v, o, 3, depend on s. They

are connected by the relation Centroid

By —a’=1

This equation of the ellipse can be written under the form

1=Xo'X

with X = ( ;U, ), X = (z,2') the transposed vector, and

This allows introducing the “beam matrix”,

T

021 022

U_g[ B —CV] _ [011 012

|
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EXERCISE

Prove

. €
l1=Xo'X = ’}/X2—|—204XX,—|—BX/2:;
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The beam matrix has the following properties :

at all s,

o det|o] = (%)2
® 021 — 012

® /011 = Tmax

Centroid
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EXERCISE

Prove the relations :
o deto = (%)2
* \/0'711 — Lmax
® /02 =)y,

o 711

\/0-711 — ml[xmax]

o 712 _

T x[x';na:z:]
vV 022

Hint : First show that the equation of the ellipse can take the two forms,

€

T

|-

x4 (ax + Bx)?] = %[(WX + ax')? + x|
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EXERCISE

Prove the relations :

2
det[O'] = (%) s \/O011 = Tmaxes \/ 022 — xmax’ \?-%11 = xl[xmax] % = ZC[’CU;TLCLJ:]

ANSWER

Writing the ellipse under the form
€ =SB+ (x4 X% = [l ax)? + X7
™ g
/

then, v = x4, for ax + f2’ =0, and 2 =2/ for~vyr+az' =0

az)

hence the relation above by writing :

€
™

_2 € _ 1
Bmax’ T = ymax?
+ ax! 0

max T

We can see that if « = 0 (012 = 0) one has :
2 2
d@t[O’] = (%) 6’7 — 011022 — 7271(1:1: X x,T?Lam - (%)
in that case, the surface of the ellipse, ¢, satisfies
€

meLI X [Ema;p — T
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EXERCISE

Consider a high energy collider where with ¢, /7 = 1.5 mm.mrad et injection.
The ellipse parameter at injection point into the ring is 5, = 100 meter.

Estimate the boundaries of beam excursion, in position and in angle, at the injection point.
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Transport of the emittance ellipses

or ‘“Transport of the ellipse parameters”
or ‘“Transport of the beam matrix”
At s = (0 the equation of the ellipse writes :

X() 0'0_1 Xo =1 (1)
At s = s; it becomes i

X1 0'1_1 X1 =1 (2)
with X being related to X, and X to X, by

XlzTXo; XlzTXOZXQT
With (2), this yields o
XO TO‘l_lT XO =1

and by identification with X, oy 'X,=1:

oyl =To'T thus oy=T"'o (T)™"

and eventually

01 :TO'()T

Q) B s

SHI

|

~

X T<81 < 80)
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From

01 — TO'()T

and det[T] = det[T] = 1, we infer

det[o1| = det|oy] = (£>2

-
since det[T] = 1,

which is in agreement with the result established earlier :

the beam emittance, (%) , is preserved in a conservative system.
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Complements

An other way of writing

o1 = To 0 T
is (this can be proved by developing it)
B T? —2T11179 17, o]
« = —TnTo1 T1To +TioTo —T12T% @’
g T5 — 215112 Ts g

s1 50

In particular, this yields the transport of the optical function 3(s) :

B(s) =T2 By — 2T Ta o + T o

bearing in mind that

By —a’=1

In addition, by differenciation we obtain

d
d—f = 21T}, By — 2(T{{ T2 + T11T}5)ag + 2T12T 570 = —2a(s)

whereas, results we got earlier : 77, = 15, T|, = T, so that, by comparison with the expression for
a(s) from the matrix above, we get

afs) = —f'(s)/2
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Transport of the beam envelope

In order to define the envelop of a beam along a transport line, that is to say, determine the
region the beam will occupy transversally in optical elements, one calculates at all s along the line
the quantity

mma:v(s) - 6(3)2 —V 011(8)

starting from initial values of the optical functions at some abscissa s, : «(sg), 5(s0), V(s0)

namely,
— & /T2 OT\ T T2
mmozx(s) — ; 11 50 - 11412 g + 1270
BETA- LNS v5. 10 /01/ 10/ 99/ 24-Cct-01 13: 25: 08 1st O. OOOE+0O0
_ : : BEAM ENVEL OPES ————
NUX = ' ' ' | DNUX 0..000E+H00
NUD . o= HOO

0. 015

[T PR AN

-. 005

—

-.015
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EXERCISE
If a new variable is defined,

X' =az+ B2

show that the beam in the so-defined phase-space (x, X’) is represented by a circle
with radius /J ¢/.
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6 A Tour of Some Optical Systems

6.1 Energy loss spectrometer

“Energy loss” spectrometers are optical assemblies allow determining the energy lost by interaction

between a beam and a fixed target,

by measuring the position of the reaction products in the focal plane of the spectrometer :
The position of the reaction products on the focal plane is a measure of their energy and of the

energy loss of the reaction.

The Kaon KAOS spectrometer
at GSI, Darmstadt, Germany

B8 .7Be + p Coulomb dissocigtion at Kaos

Separation of three different momenta
at % =0, 4 30%, by the

spectrometer dipole :
S9°RRI L 67°P Y (M ovs. X (M

o %7. 0 0.5 1. 1.5 2.

The three momentum families
converge to three different, separated
images, in the focal plane of the
spectrometer.
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Energy resolution of an optical system

Two particles with identical initial conditions at the target of the optical assembly, but for initial

momenta that differ by Ap
will be separated in the image plane of the optical system

- in posisition by Ax = Ty Ap/p

- in angle by Az’ = Ty Ap/p

given
x IRTRATINAT: )
g | = | T Thy Tog g
) 0 0 1 )

the transport matrix in the dispersive plane of the
optical assembly,

- from the object at target
- to the image at the “focal surface” of the system.

If the optical system constitutes a focusing system, then
particles issued from the target with impulses ranging
in [py — Ap, po + Ap,] will form a continuum of mono-
chomatic images spread along a line which is the trace,
in the dispersive plane, of the so-called focal surface of
the system.

(m vs. X (M

§§9k'/8ir!-59°f" Yy

2. |

0. 5/

0. OF

"%:.0

Py B I

Separation of beam ellipses at the focal
surface
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Energy resolution of an optical system (cont’d)

The resolution in momentum, R, is defined by

IR €z

Pl T Tis

i.e., the relative momentum such that the dis-

tance
Ax = Tig Ap/po

between the images at p, and p, + Ap respec-
tively is equal to the image size, 2.

Beam surface in the dipole

An important ingredient in maximizing the resolution R
of a spectrometer is, maximizing the surface of the beam
in the dispersive plane inside the spectrometer dipole(s).

This property stems from general theorems regarding
beam transport, however a qualitative understanding
can be provided by considering phase space properties
of the transport though the spectrometer dipole.

Xy

SecMRrlgRP Y (M vs. X (m
1.5:

1. |

o.5f

) S—

70 05 i 18 .
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Maximize beam surface in the dipole

For the purpose of simplifying the demonstration a thin-lens approximation of a magnet dipole
is considered below, with curvature radius p causing a deviation o of the beam for the reference

momentum p.
Remember, pure dipole :
The separation of the p, and p, + Ap ellipses, v e psima 80 P(1;n023“> &
is given by v |=| "o 0 1opa 0 "
Y 0 0 0 1 0 Yo
) dp/p 0 0 0 0 1 dp/p
Az’ =Ty Ap/p ~ o Ap/p
X’ A X’ A
R +AP — Py +AP
M o ;
> i i > K_\Oi >
Un % I
° \V 1 i
minimum maximum
envelope envelope
At entrance exit of thin-lens, exit of thin-lens,
to the thin-lens case of case of

minimum envelope maximum envelope
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X’ A X1 A
( Py AP
p,+Ap
/ \ ! \ pO‘
> ] /\: B>
\ / X i ~_ X
Po | |
mTr;aJm imaximum:
envelope envelope
At entrance exit of thin-lens, exit of thin-lens,
to the thin-lens case of case of

minimum envelope

maximum envelope

The resolution so acquired will not be changed (i.e., neither lost), whatever the downstream fo-
cusing, as long as no other dipole is encountered.
At the image in the focal plane, the separation between the Ap image and the p, + Ap image is

Ax

= Ti6—
p

and will dependend on the focusing down to that location, however, the ratio

is invariant.

Images at the focal plane will be the more separated, the larger the beam is in the dipole.
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The transfer from the target to the focal plane of the spectrometer is given by :

X S11 S12 Sie X
0 = | So1 Soo Sa 0
focal 0 0 1 0 target

with S;5 = 0 by definition at the focal plane.

The transfer from the object O analyzed, and the focal plane of the spectrometer is given by :

XF St 0 Sis An A A X0 X
O | = | S21 S22 So A9 Ay Agg Oy | =117 6o
5p 0 0 1 0 0 1 5 5

Achromatism in position imposes
Tie =0, hence S11A15+ Si6=0

S1¢ being given, the analyzer is tuned so to ensure

This relation expresses that the dispersion of the analyzer system must be equal to the inverse
dispersion of the spectrometer.
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In terms of the resolutions of the spectrometer and of the analyzer, respectively, by definition ;

R(S) _ Qi:‘focal and R(A) _ 2§3target
S1e A
and taking into account the following relations :
L . S16
[’CfOC(ll — Sllxtarget and A16 — —S_
11

it comes

R(S) _ 2Slit§rget _ _R(A)

In other words, the resolution of the analyzer must equal that of the spectrometer for the system
Analyzer+Spectrometer to be achromatic in position.

The actual value of RS is specified by the users, it is a design specification that depends on the
sharpness of the measurements to be realized.
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6.2 A high resolution mass separator (HRS)

Mass separators are part of the typical equipments used to handle radioactive beams.

Mass separation leans on the property that trajectorires of non-relativistc particles with equal
ratio Kinetic-energy/charge (i.e., particles that have “seen” the same voltage) are independent of

particle mass.

By contrast, particles of identical energy and different masses follow different trajectories in a

magnetic field.

T
N
F
S
LINAG
G3
Level DESIR
besp o
RFQ+ E Level -B
HRS -,
I - |
Production
building GANIL/
SPIRAL

Schematic layout of the DESIR facility
in the GANIL, Caen, France.

An RFQ will provide the beam quality
needed for the high-resolution separa-
tor HRS to achieve its design goal of a
resolution of

M /AM = 20000

Both RFQ and HRS will purify beams
from the SPIRAL2 production build-
ing. Beams will also arrive from the

S3 Super Separator Spectrometer and
from SPIRALIL.
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T woal v 7997
] ‘.? 3601 i 75 95
i { ---g - -u-'-ﬁ:" ——am=f__] %350&- lR-ﬂm i?gg‘ . 5 . |
: " : I Jases : -
a® %I o 79383
. i %96 1 7am n—ﬁ“ﬁ:.
o W W R R TR
% Charge number Z Charge number Z
'i—-HH—hl i : e T
| i
Implementation diagram of the Masses of different nuclei : A=36 (left) and A=80
HRS-alpha into the SPIRAL2 (right). The arrows indicate the separation power of a
production building. separator with a resolution of 2000 and 15000.

For light masses a resolution of the order of 1000-2000 is enough to separate exotic nuclei. How-
ever, for the medium-mass nuclei produced by SPIRAL?2, a resolution well in excess of 10000 is
needed.
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Mass spectrometer

Non-relativistic particles that have undergone the same accelerating voltage (they have the same
W/q) follow the same trajectory in electrostatic fields, independent of their mass. By contrast with
magnetic fields : trajectories of particles with same 1//¢ depend on their mass.

For that reason electric lenses are preferred for focussing heavy particles.

Lattice configuration for HRS-C135

Element Length Element Length
(mm) (mm}
Drift length 300 Drift length 360
Matching quadrupole MQ1 Dipole D2 p = 50cm,
200 B= 67.5° p1=p2=27.5" 589
Pole gap=0.04m; width= 0.62m
Drift length 100 Drift length D2 1282
Matching quadrupole M()2 200 Focus quadrupole FQ2 240
Drift length 267 Drift length 60
Focus sextupole FS1 120 Focus sextupole FS2 120
Drift length 60 Drift length 267
. Focus quadrupole FQ1 240 Matching quadrupole MQ3 200
Layout of the HRS-C135. Focusing Drift length DI 1282 | Drift length 100
and corrective elements are all Dipole D1 p = 50cm, Matching quadrupole MQ4
. b= 67.5° p1=p2=27.5" 589 200
electrostatic and thus Pole gap-0.04m; width = 0.62m
Settings are independent Of mass. Drift length 360 Drift length 300
Multipole M 240 Slits

The ion optical design of the HRS-C135 separator consists of two 67.5 degree magnetic dipoles
(D) with 27.5 degrees entrance and exit angles, four matching quadrupoles (MQ), two focusing
quadrupoles (FQ), two focusing sextupoles (FS) and one multipole (M) with the configuration
QQSQDMDQSQQ. Mirror symmetry with respect to the mid-plane minimizes optical aberrations.
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HRS-C135. °°
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-.06

-.04

-.02 0.0

0.02 0. 04 0. 06

Separation of three momenta

Ap/p =0, =+ 0.0005, at final-focus.

Effect of strong second order
aberration (Y/6?) is visible.

AR B 2 o

(rad) vs.

Zo

5 T

0.00

0.00

-.00

-.00

-.00

e

iy

-.0015 -. 001 -.0005 0.0 0.0005 0.001 0.0015

YY’ and ZZ’ distributions at
beginning of HRS-C135.
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Rigidity Bp = p/q

e Because F = dp/dt = qVv x B,
it results that, with 55 normal to 7,

Bp=p/q

e Exercise: demonstrate that.

e This means:
dipped in a magnetic field ]§, with its
velocity Vv = p/m (assume vV | B),
a particle travels along a circular arc p
of radius p such that

(local B) x (local p) = momentum/charge
e In other words: For a particle launched on Y, = RM to follow a

circle of radius RM, DIPOLE[R,, By] must match OBJET[BORO].

NG 109N o ‘sondo weaeg ‘3ISyO NdS



Wave Numbers
This is the number of oscillations, around the closed orbit, over one
turn around the accelerator.
e Note s, x, y the particle coordinates in the moving frame
¢ In cylindrically symmetric field B,
with field index n = —£45 wey—o (0<n <1,

the wave numbers are v, = /1 — n, vy = \/n, both < 1,
and v + v =1
e Adding drifts,

to the first order in R /p, vx = \/p%(l —1n), Vy = 4 /p%n,
one or the other, or both, may be > 1 (i.e., an oscillation takes less than

a turn),
depending on drift length and field index value,
and v + v = R/pg
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