Transverse (Betatron) Motion

Linear betatron motion

Dispersion function of off momentum particle
Simple Lattice design considerations
Nonlinearities



What we learned:
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The values of the Courant-Snyder parameters a,, B,, v, at s, are related to a,, B, y; at s; by
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The evolution of the betatron amplitude function in a drift space is
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Passing through a thin-lens quadrupole, the evolution of betatron function is
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(X,P,) form a normalized phase space coordinates with
X?+P,?=28J, here Jis called action.

Courant-Snyder Invariant
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The betatron phase space ellipses of a particle with actions J = 10m mm-mrad.
The btatron parameters are B, = 10m, and a,, shown by each curve. The scale for
the ordinate y is mm, and y’ in mrad. The betatron parameters for each ellipse
are marked on the graph. All ellipses has the maximum y coordinate at (ZByJ)l/z.
The maximum anglular coordiante y"is (2(1 + a, )J/By)l/z. All ellipses have the
same phase space area of 2J.



Courant-Snyder Invariant
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Emittance of a beam Centroid

Slope=-y/ o

Given a normalized distribution function p(X, X') with [p(X, X')dXdX' =1, the
moments of the beam distribution are
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Where o, and o, are the rms beam widths, o, is the correlation, and r is the
correlation coefficient. The rms beam emittance is then defined as
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The rms emittance is invariant in linear transport:
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The Gaussian distribution function

The equilibrium beam distribution in the linearized betatron phase space may be
any function of the invariant action. However, the Gaussian distribution function
is commonly used to evaluate the beam properties. Expressing the normalized
Gaussian distribution in the normalized phase space, we obtain

PX,Py) = 5y e 0X4P203
' 270
where <X2> = <P, %> = 0,2 = B, €, With an rms emittance €, .. Transforming (X,P,)

into the action-angle variables (J, {) with

X =,2p)cosy, P, =—/28]siny

The Jacobian of the transformation is B, and the distribution function becomes

p(Jd)= ie—wsm, p(e) = P L ostzem,

grms grms
The percentage of particles contained within €/ €rms 2[4 ]6 |8
e=ne._ is1-e™"/2 Percentage in 1D [%] | 63 | 86 | 95 | 08
rms Percentage in 2D [%] | 40 | 74 | 90 | 96

The maximum phase-space area that particles can survive in an accelerator is
called the admittance, or the dynamic aperture. The admittance is determined by
the vacuum chamber size, the kicker aperture, and nonlinear magnetic fields.



Adiabatic damping and the normalized emittance: € =€y

The Courant=Snyder invariant, derived from the phase-space
coordinate X, X, is not invariant when the energy is changed. To obtain
the Liouville invariant phase-space area, we should use the conjugate
phase-space coordinates (X, P,) in Hamiltonian. Since p, = p,’ = mcfyX/,
where m is the particle’s mass, p is its momentum, and By is the
Lorentz relativistic factor, the normalized emittance defined by €_=€By
is invariant. The beam emittance decreases with increasing beam
momentum, i.e. e=g_/By. This is called adiabatic damping. Since the
transverse velocity of a particle does not change during acceleration,
the transverse angle X' = p,/p becomes smaller at a higher particle
momentum. Thus the beam emittance e=¢, /By decreases with energy.
The adiabatic damping also applies to beam emittance in proton or
electron linacs.

Because of the quantum fluctuation, The beam emittance in electron
storage rings increases with energy (~y?). The corresponding
normalized emittance is proportional to y3.



Betatron motion: Effects of Linear Magnetic field Error
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Effect of dipole field error:

We consider a single localized dipole error with the kick angle given by 6=AB€/Bp.
Because of the dipole field error, the reference orbit is perturbed! The idea is to
find a new closed orbit that include the dipole field error.

X"+ K, (S)X =656(s—s,)

The closed orbit is given by the following condition:
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Where ®=2nv, v is the betatron tune, the parameters a,, B,, and y, are values

of the Courant-Snyder parameters at the kicker location. The solution is
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We have solved the closed orbit at one point s,. The closed orbit
of the accelerator can be obtained by making mapping matrix:
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G(s,S,) = cos[zv—|y(s) —w(Sy) ]

Note that the closed orbit is described
by Green’s function. When the betatron
tune is an integer, the closed orbit A
diverges. Each time, when the particle
arrives the same location will receive a =
coherent kick and the particle becomes Sort
unstable.

How? And Why
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Left, a schematic plot of the closed-orbit perturbation due to an error dipole kick
when the betatron tune is an integer. Here p,=B,AX'=B,6, where 6 is the dipole
kick angle and B, is the betatron amplitude function value at the dipole. Right, a
schematic plot of the particle trajectory resulting from a dipole kick when the
betatron tune is a half-integer; here the angular kicks from two consecutive
orbital revolutions cancel each other.



An accelerator with
circumference 360 m is
made of 18 FODO cells. The
horizontal betatron tune of
the synchrotron is v,=4.8. If
one of the 36 dipoles has an
error of -2 mrad and another
has error of -1 mrad.




TLS orbit vs dipole field error: Lecture note by C.C. Kuo (2002 OCPA Singapore)

8 . - :l ) — .
0.5 mrad kick ‘
4 ?u ‘
S <
- 3 1
5 <
<. ‘o U |
A ‘
0.5 mrad kick :
% 20 40 & 8 W 120 4 e ( 2"); -
Position{m) B
¢ - - ~ ~ - - - -
¢ ! mrad kick } 1 mrad kick
p } ‘
o~
v
= 1
<9 .2
¥)
% 20 W0 7 %) 100 120 - ; - -
Position(m) Hi2m)



Thin lens — use with care

2
cos® =1— le, singzi
2f 2 2f

In this FOFDO cell with Lg=1.0 m,
L_dipole=2.0 m, drift length of 0.25 m,
and thus L1=3.5 m. Thin lens
approximation is good except when the
focusing strength is high. The
percentage error at high focusing
gradient can be larger than 11%.
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