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What you learned in last class:
Distributed dipole field errors & integer resonances
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Connection between orbit distortions and 
dispersion function• Equation for orbit distortions and dispersion function differ 

only by expression on the right-hand side 
• Hence – they have the same analytical form of expression

• Integer resonances - instable orbits:
• Note: Qx,y is frequently used in accelerator literature instead of   
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The picture can't be displayed.

′′x + Kx s( )x = eδ By (s)
pc

⇔ ′′D + Kx s( )D = K0 s( ) ≡ 1
ρ s( )

x s( ) = wx s( )
sin

µx
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⎜
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⎠
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⎠⎟
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ν x ,y



Today we will focus on

• Effects of quadrupole field errors 

• And related effects:
– β-beat

– Chromaticity (tuned dependence on momentum)

– Parametric resonance
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• Hill’s equation for particle moving in modified focusing:

where change in focusing can be caused by quadrupole strength errors 
or a deviation of momentum from the ideal, or orbit deviation in 
nonlinear elements (sextopoles, quadrupoles, etc.)

′′x + Ko s( )x = 0⇒ x s( ) = a β s( )cos ψ s( )+ϕ( );
′′x + Ko s( )+ k s( )( )x = 0



Matrix of short quad

will modify one-turn matrix Mo

give us tune shift
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k s( ) ≡ k ′s( )
C
!∫ δ s− ′s( )d ′s ⇒δν = δµ

2π
= 1
4π

β s( )k s( )ds
C
!∫

x→ x; ′x → ′x − x ⋅δ k s( );δ k = k s( )ds;
Mδ s,s+ ds( ) = 1 0

−δ k 1
⎡

⎣
⎢

⎤

⎦
⎥ +O ds2( );

δ s− ′s( )k ′s( )d ′s

Perturbation by a infinitesimally short quadrupole

M = Mδ ⋅Mo =
1 0

−dδ k 1
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⎥
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⎣
⎢
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⎦
⎥
⎥
=

m11 m12
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
≡

cosµo +α sinµo β sinµo
−γ sinµo cosµo +α sinµo

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;

cosµ ≡ cos µo + dδµ( ) = TraceM
2

= cosµo −
δ k ⋅β sinµo

2
;

cos µo + dδµ( ) = cosµo cosdδµ − sinµo sindδµ ≅ cosµo − dδµ sinµo

dδµ = δ k ⋅β
2

=
β s( )k s( )ds

2
;dδν =

β s( )k s( )ds
4π



There is also associated changes in β-function
The β-function can be obtained by a one-turn map, i.e. 
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Mδ s1( ) = 1 0
−k s1( )ds 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;βi ≡ βo si( );ψ i ≡ψ o si( ) = νφo si( );

M s2 s2 +C( ) = Mo s1 s2 +C( )Mδ s1( )Mo s2 s1( );
δM12 s2 s2 +C( ) = −β1β2k s1( )ds ⋅sin ψ 1 −ψ 2( ) ⋅sin µo −ψ 1 +ψ 2( )

= 1
2
β1β2k s1( )ds ⋅ cosµo − cos µo − 2 ψ 1 −ψ 2( )( )⎡

⎣
⎤
⎦

δM12 s2 s2 +C( ) ≡ δ β2 sinµ( ) = δβ2 sinµo +δµ ⋅β2 cosµo;δµ = 1
2
β1k s1( )ds;

δβ2
β2

= −
β1

2sinµo
k s1( )ds ⋅cos µo + 2 ψ 2 −ψ 1( )( )

HW8
Problem 1 

k s( ) ≡ k ′s( )
C
!∫ δ s− ′s( )d ′s ⇒

δβ s( )
βo s( ) = − 1

2sinµo
βo z( )k z( )dz ⋅cos µo + 2 ψ s( )−ψ o z( )( )( )

s

s+C

∫

β-beat occurs with double of the betatron phase advance 
and for distributed errors is expressed as an integral



Parametric resonances or stop-bands
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f s( ) = δβ s( )
βo s( ) = − 1

2sinµo
βo

2 z( )k z( ) ⋅cos µo + 2 ψ −ϕ( )( )
ψ s( )

ψ s( )+µ

∫ dϕ;dϕ = ds
βo
;

d 2

dψ 2 f s( )+ 4 f s( ) = −2βo
2 s( )k s( ).

HW8
Problem 1 

β-beat and parametric resonances : ν=half integer
We can rewrite the expression for β-beat with clear indication of double 
betatron frequency oscillation of relative value of β-function:

While it is obvious that β-function become infinite when tune is a half-integer 
and                . Fourier expansion of the term under integral just makes it 
obvious with             appearing in the denominator   

βo
2 z( )k z( ) = An

n=−∞

∞

∑ e
2π in

ψ z( )
µo ;An = βo z( )k z( )e

2π in
ψ z( )
µo!∫ ds;Δψ C( ) = µo = 2πνo;

Δβ s( )
β s( ) = −2νo

An
2νo( )2 − n2n=−∞

∞

∑ e
i
nψ s( )
ν = −2νo

An
2νo − n( ) 2νo + n( )n=−∞

∞

∑ e
i
nψ s( )
ν

sinµo = 0
2νo ± n
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Parametric resonances : ν=half integer
In fact there is are of unstable betatron motion around each half-integer tune 
resonance. It takes a bit more math to prove it, but this picture tell the story 
vary well that the amplitude of oscillation will grow exponentially at 
parametric resonance
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Chromatism: betatron tune dependence on 
particle’s momentum
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Origin of term

p = po;
′′x + Kx s( )x = 0
′′y + Ky s( ) y = 0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
;
Kx s( ) = Ko2(s)− Ky s( )

Ky s( ) = − eG
poc

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

;
G =

∂By
∂x

=
∂Bx
∂y

ρo s( ) = poc
eByo s( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

;

p = po 1+δ( ); ′′D + Kx s( )D = Ko(s) ≡
1

ρo s( )⇒ x = Dδ + xβ +O δ 2( );

Expand : ′′x − Ko 1+ Kox( ) = − e
poc 1+δ( ) 1+ Kox( )2

xβ′′ + Kx s( )+δ ⋅ kx s( )( )xβ = O δ 2( )
′′y + Ky s( )+δ ⋅ ky s( )( ) y = O δ 2( )

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
;
kx s( ) = −2Ko

2(s)− ky s( )
ky s( ) = −Ky s( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
;

For off-momentum particle



Strong focusing case
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1
ρo

2 1+ K ⋅ D
ρo

⎛

⎝⎜
⎞

⎠⎟
<< Kx ,y

xβ′′ + Kx s( )+δ kx s( )( )xβ = O δ 2( )
′′y + Ky s( )+δ ky s( )( ) y = O δ 2( )

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
;

δ kx s( ) ≈ −δ ⋅Kx s( )
δ ky s( ) = −δ ⋅Ky s( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
;

δν x ,y =
δµx ,y
2π

= δ
4π

βx ,y s( )kx ,y s( )ds
C
!∫ ⇒

def

Cx ,y ≡
dν x ,y
dδ

= 1
4π

βx ,y s( )kx ,y s( )ds
C
!∫

Definition of chromaticity

δν x ,y =
δµx ,y
2π

= − δ
4π

βx ,y s( )Kx ,y s( )ds
C
!∫ ⇒

def

Cx ,y ≡
dν x ,y
dδ

= − 1
4π

βx ,y s( )Kx ,y s( )ds
C
!∫

The chromaticity induced by focusing element of the ring is called natural
chromaticity. It is obviously negative for weak focusing lattice. With β-functions
having maxima where K is positive, it is negative in general. Even though, it is not
a mathematically rigorous statement….



Simple FODO cell
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⇒
def

ξx ,y =
Cx ,y
ν x ,ySpecific chromaticity

Cx ,y ≡ − 1
4π

βx ,y s( )Kx ,y s( )ds
C
!∫ ≅ 1

4π
βx ,y
flenses

∑ = − 1
4π

βmax
f

−
βin
f

⎛
⎝⎜

⎞
⎠⎟

Using available expression for FODO cell we can estimate the 
specific chromaticity to be ~ 1

but for high luminosity colliders and high brightness light sources 
it can be significantly large than one- typically 2 to 4.

CFODO x ,y ≅= −
tanΔµcel
Δµcel

ν x ,y ∝ν x ,y ⇒ ξ FODO ∝1
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Why do we care about chromaticity
• It was discovered early in operating storage rings that negative values of chromaticity cause 

violent collective “head-tail” transverse instability (to be exact – for ring operating above 
transition energy, which are normal for electron storage ring) – you will learn about it later 
in the course

• This instability occurs at very low beam current and has to be suppressed
• The only known way is to have slightly positive chromaticity for both vertical and 

horizontal planes – this is called chromaticity compensation
• It possible to do for strong focusing lattice using nonlinear element called sextupoles.
• In your home work you are asked to prove that using sextupoles in weak focusing ring does 

not allow to compensate chromaticity
• Sextupoles, as nonlinear elements, introduce nonlinear high order resonance – you will 

study them late in the course    

20

By + iBx = S x + iy( )2 ;
By s( ) = S ⋅ x2 − y2( );Bx s( ) = 2s ⋅ xy



How it works? Particles with momentum 
deviation experience difference focusing:

Alternating sign of sextupole field – positive where D βx is large and 
defocusing where D βy is large. 
For strong focusing lattice we have a combination to bring to zero
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By s( ) = S ⋅ x2 − y2( ); x = D s( )δ + xβ ⇒δG s( ) = ∂By
∂x

x=Dδ

= 2δ ⋅D s( ) ⋅S s( )

kSx s( ) = D s( ) ⋅K2 s( );K2 s( ) ≡ 2 eS s( )
pc

;kSy s( ) = −kSx s( );

ΔCSx ,y ≡ ± 1
4π

D s( )βx ,y s( )K2 s( )ds
C
!∫

Cx ≡
1
4π

βx s( ) D s( )K2 s( )− Kx s( ){ }ds
C
!∫ ;

Cy ≡ − 1
4π

β y s( ) D s( )K2 s( )+ Ky s( ){ }ds
C
!∫ .



Summary
• We calculated (using perturbation approach) tune and β-function 

variation caused by errors (variation) of the focusing strength of 
quadrupoles – to be exact by variation of K(s) in Hill’s equations

• Using this equations we found additional parametric resonances, 
where particles motion would be unstable

• We used the method to describe tunes variation of off-momentum 
particles and introduced chromaticity

• Finally, we discussed the way to compensate chromaticity using 
nonlinear elements called sextupoles

• We will return to discussing both chromatic effects as part of 
collective effect studies and sextupoles, as drivers of non-linear 
resonances 
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