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What you learned 1n last class:

Distributed dipole field errors & integer resonances
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Off-momentum and dispersion

For different particle energy 5P~ Po /‘\
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Extend the matrix representation to 3 by 3
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Connection between orbit distortions and

* Equation for orbgldﬁgor}i%n? n%}sllgrp function differ
only by expression on the right-hand side

* Hence — they have the same analytical form of expression

w5 () "+ K D=K = 1
X"+ K (s)x= D" +K (s) (5)= o(s)
gSw

COS(T\W wx(s')\];

yo &
e5B )

sSin

pi gsw [ (9,5 )

V..
X,y X,y

. Integer resonances - instable orbits: V, = integer

* Note: Q,,1s frequently used in accelerator literature instead of V.,



Today we will focus on

» Effects of quadrupole field errors

* And related effects:
— B-beat
— Chromaticity (tuned dependence on momentum)

— Parametric resonance
« Hill’s equation for particle moving in modified focusing:

R A
X" +(K,(s)+k(s))x=0

where change 1n focusing can be caused by quadrupole strength errors
or a deviation of momentum from the 1deal, or orbit deviation in
nonlinear elements (sextopoles, quadrupoles, etc.)




Perturbation by a infinitesimally short quadrupole
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There 1s also associated changes 1in 3-function

The B-function can be obtained by a one-turn map, 1.e.
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[3-beat occurs with double of the betatron phase advance
and for distributed errors is expressed as an integral
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B-beat and parametric resonances : v=half integer

We can rewrite the expression for B-beat with clear indication of double
betatron frequency oscillation of relative value of B-function:

HWS 3B(s) A
s)= = z)klz)- — :do =
Problem 1 f( ) ,BO(S) 2sinL W_!;) B, ( ) ( ) COS(,uO+2(1// §0))d(0 do
i f(s)+4f(s)=—2ﬁo (S)k(S).

ds

B,

Parametric resonances or stop-bands

and siny =0 . Fourier expansion of the term under integral just makes it
obvious with 2V, * 7 appearing in the denominator

While it is obvious that -function become infinite when tune is a half-integer
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Parametric resonances : v=half integer

In fact there 1s are of unstable betatron motion around each half-integer tune
resonance. It takes a bit more math to prove it, but this picture tell the story
vary well that the amplitude of oscillation will grow exponentially at
parametric resonance

Schematic plot of a particle trajectory at a half-integer betatron tune resulting
from an error quadrupole kick py = B,AX' = =B, X/f, where f is the focal length, X is
the displacement from the quadrupole center, and B, is the betatron amplitude
function at the quadrupole. The quadrupole kick is proportional to the
displacement X. At a half-integer betatron tune, the betatron coordinate changes
sign in each consecutive revolution and the kick angles coherently add in each
revolution to produce unstable particle motion.



Example of one quadrupole error in FODO cell lattice
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Perturbation of betatron amplitude functions vs ¢ (either ¢, or ¢y) resulting from
1% decrease in gradient strength of the 10th focusing quadrupole. The betatron
amplitude function perturbation is dominated by harmonics nearest [2v,] and
[2v,]. Since B,/B,~6.37 at the focusing quadrupole location, the resulting error
ABx/Bx is about 6.37ABy/By. A single kick at the error quadrupole location can be
identified in the top 2 plots. The bottom plot shows the effect of quadrupole error
on dispersion function shown as AD,/VB, vs ¢=¢,. A single kick at the error
guadrupole location is visible to the dispersion closed orbit.



Applications of quadrupole error Ay =~ 1 f B k(s,)ds
1 1771

1. Betatron amplitude function measurement
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determined by the FFT spectrum
of the betatron oscillations, vs
guadrupole field strength. The
slope can be used to determine
the average betatron amplitude
function in a quadrupole.
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The fractional parts of betatron tunes were q,=4-v, and q,=5-v,. The experimental
result of fractional horizontal tune appeared to “increase” with the strength of the
guadrupole.

Q: Is the quadrupole focusing or defocusing? At this location, what can you say
about the betatron amplitude functions?

2. Tune jump fﬁ ﬁl AB, dgl



Chromatism: betatron tune dependence on
particle’s momentum

Origin of term For off-momentum particle
/ ‘I |y e
| N\ , 2 98, a8,
| 2 NN { x”+Kx(s x=0 } Kx(s):KO (S)_KY(S) T ox :E
p= o o G .
y +Ky(s y=0 Ky( ) pe P (S):eBpo(S)

" Achromatic doublet

Expand :x" - K_ (1 + Kox) =—

p.(s)

poc(1+5)

{ v, +(K (s)+ 8-k (s))x, = 0(5?) H k (s)=-

p=p,(1+8);D"+K (s)D=K,(s)= LI DS +x,+0(8”);
(1+K0x)2

2K (s)~k, (S) }

k, (S) =-K, (S)




14

Definition of chromaticity

ou, , def

d"x, 1
5vx,y = 71. = 4n_¢ﬁxy X,y )dSSC = d5y — 4n§ﬁx,Y(S)kXJ(S)dS

Strong focusing case
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The chromaticity induced by focusing element of the ring i1s called natural
chromaticity. It 1s obviously negative for weak focusing lattice. With B-functions
having maxima where K 1s positive, it is negative in general. Even though, it is not
a mathematically rigorous statement....
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Using available expression for FODO cell we can estimate the
specific chromaticity to be ~ 1
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but for high luminosity colliders and high brightness light sources
it can be significantly large than one- typically 2 to 4.
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Examples:

BNL AGS (E. Blesser 1987):
Chromaticities measured at the AGS.

tan(®/2)
Cﬁ?ﬂ? = /2 Vy = Vy

Fermilab Booster (X. Huang, Ph.D.
thesis, IlU 2005): The measured
horizontal chromaticity C, when SEXTS
is on (triangles) or off (stars), and the
measured vertical chromaticity C,
when SEXTS is on (dash, circles) or off
(squares). The error bar is estimated to
be 0.5. The natural chromaticities are
Craty=—7.1and C,;,=-9.2 for the
entire cycle. The betatron tunes are
6.7(x) and 6.8(y) respectively.

Specific Chromaticity

15 20
time (ms)

25

30

35



Chromaticity measurement:

AT AC  Av ( 1 )Ap
T - sl — (e — 5 )— =1
The chromaticity can be 1y ¢ v oy
measured by measuring Af/fo=—nd,
the betatron tunes vs
: dv dv
the rf frequency f, i.e. C
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o
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M. Yoon and T. Lee.
RSI 68. 2651 (1997)
The chromaticites are  .0.01 - .
Cx=12.9, Cy=+14. -4 -2 0 2 4

RF frequency variation (kHz)
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Contribution of low B triplets in an IR to the natural chromaticity is
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Why do we care about chromaticity

It was discovered early in operating storage rings that negative values of chromaticity cause
violent collective “head-tail” transverse instability (to be exact — for ring operating above
transition energy, which are normal for electron storage ring) — you will learn about it later
in the course

This instability occurs at very low beam current and has to be suppressed

The only known way i1s to have slightly positive chromaticity for both vertical and
horizontal planes — this is called chromaticity compensation

It possible to do for strong focusing lattice using nonlinear element called sextupoles.

In your home work you are asked to prove that using sextupoles in weak focusing ring does
not allow to compensate chromaticity

Sextupoles, as nonlinear elements, introduce nonlinear high order resonance — you will
study them late in the course

B +iB =S(x+iy)2;

By(s)zS-(x2 —yz);Bx(S)=2S-xy
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How 1t works? Particles with momentum
deviation experience difference focusing:

B(s)=5-(~»7): x=D(s)5+3,=5G(5)= 2" ~=2.0():5(9)
ko 5)= D) 5K, )22 20Dk )=, )
AC,,, == G D(5)B., ()K, (s)ds

Alternating sign of sextupole field — positive where D B, 1s large and
defocusing where D B, 1s large.
For strong focusing lattice we have a combination to bring to zero

C = igﬁ B.(s){D(s)K, (s)- K. (s)}ds
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Summary

We calculated (using perturbation approach) tune and -function
variation caused by errors (variation) of the focusing strength of
quadrupoles — to be exact by variation of K(s) in Hill’s equations

Using this equations we found additional parametric resonances,
where particles motion would be unstable

We used the method to describe tunes variation of off-momentum
particles and introduced chromaticity

Finally, we discussed the way to compensate chromaticity using
nonlinear elements called sextupoles

We will return to discussing both chromatic effects as part of
collective effect studies and sextupoles, as drivers of non-linear
resonances



