Options for Coherent electron Cooling

Vladimir N Litvinenko

Department of Physics and Astronomy, SBU Collider-Accelerator Department, BNL Center for Accelerator Science and Education

Outline

- Options for Coherent electron Cooling
- □ What are advantages of various schemes
- □ What can be tested?
- □ How to evaluate cooling
- **Conclusions**

What is Coherent electron Cooling

- Short answer stochastic cooling of hadron beams with bandwidth at optical wave frequencies: 1 1000 THz
- Longer answer

Coherent Electron Cooling

Vladimir N. Litvinenko^{1,*} and Yaroslav S. Derbenev²

¹Brookhaven National Laboratory, Upton, Long Island, New York, USA ²Thomas Jefferson National Accelerator Facility, Newport News, Virginia, USA (Received 24 September 2008; published 16 March 2009)

Litvinenko, Wang, Kayran, Jing, Ma, 2017

Litvinenko, Cool 13

Hybrid laserbeam amplifier

- The best studied and fully explored scheme
- Experimentally demonstrated both as instability and amplifier
- 3D FEL theory and simulation are very advanced
- Can operate at relatively low electron beam peak currents
- Allows in principle economic option without separating electron and hadron beams

- When compared with microbunching amplifier, it has relatively lower bandwidth ~ few % of the FEL frequency
- FEL saturates at lower gain than micro-bunching amplifier
- Semi-periodic structure of the modulation limits the range where cooling occurs

- Very broad band amplifier
- Micro-bunching instability was experimentally demonstrated
- Can operate at significant gain without saturation and can be extended to LHC energies
- Ratner's original scheme is in principle insensitive to longitudinal space charge effects in the electron beam

- Micro-bunching amplifier was not demonstrated
- Less studied especially numerically in 3D - than other CeC schemes
- Requires electron beam with low energy spread
- Definitely require separation of electron and hadron beams

Multi-Chicane Microbunching amplifier

- Very broad band amplifier, can operate at significant gain without saturation
- Plasma-cascade micro-bunching instability was experimentally demonstrated
- Has good theoretical model and is extensively studied in 3D numerical simulations
- Cool hadrons with all energy deviation (no anti-cooling)
- Does not require (full) separation of electron and hadron beams

- Micro-bunching amplifier was not demonstrated
- Requires better quality electron beam than FEL amplifier
- Can operate for medium hadron energies (up to hundreds of GeV, such as US EIC), but can not be extended to LHC energies
- Less studied than FEL-based CeC

Plasma-Cascade Microbunching amplifier

- Relatively broad-band amplifier
- Take advantage of laser technology
- Does not require high peak current electron beam
- Take advantage of flexibility provided by high K-wigglers to adjust wavelength of radiation to that of the laser-amplifier
- Has some synergy with opticalstochastic cooling

- Not studied in details
- Definitely require separation of electron and hadron beams
- Would require rather significant delay of the hadron beam may require R_{56} reduction scheme for hadrons
- Semi-periodic structure of the modulation limits the energy range where cooling occurs

Hybrid laser-beam amplifier

What can be tested experimentally?

Changing CeC amplifier from FEL to PCA

Small gap in FEL wigglers is not compatible with low energy RHIC operations of the Beam Energy Scan (BES-II) program

- Mechanical design new of the CeC system is completed. We used SBU NSF "Center for Accelerator Science and Education" grant to procure new hardware
- We procured and commissioned new laser system with controllable pulse structure
- All new vacuum chambers with beam diagnostics are built and installed
- All supports are built and installed
- All solenoids are designed, manufactured, delivered and undergo magnetic measurements
- Assembly of the plasma-cascade based CeC can be completed during this year's RHIC shut-down

How to evaluate CeC: the original recipe

Free Electron Lasers and High-energy Electron Cooling, Vladimir N. Litvinenko, Yaroslav S. Derbenev, Proceedings of 29th International Free Electron Laser Conference, Novosibirsk, Russia, August 27-31, 2007

• Linear response of electron beam on perturbations – no saturation, superposition principle

$$\begin{split} \delta \vec{\mathbf{E}}_{h} &= Ze \cdot \vec{\mathbf{G}}_{Eh} \left(\vec{r}, \vec{r}_{h}, \gamma_{h}, t, t_{h} \right); \delta \vec{\mathbf{B}}_{h} = Ze \cdot \vec{\mathbf{G}}_{Bh} \left(\vec{r}, \vec{r}_{h}, \gamma_{h}, t, t_{h} \right); \\ \delta \vec{\mathbf{E}}_{e} &= -e \cdot \vec{\mathbf{G}}_{Ee} \left(\vec{r}, \vec{r}_{e}, \gamma_{e}, t, t_{e} \right); \\ \delta \vec{\mathbf{E}}_{e} &= -e \cdot \vec{\mathbf{G}}_{Be} \left(\vec{r}, \vec{r}_{e}, \gamma_{e}, t, t_{e} \right); \\ \vec{\mathbf{E}} &= Ze \cdot \sum_{h} \vec{\mathbf{G}}_{Eh} \left(\vec{r}, \vec{r}_{h}, \gamma_{h}, t, t_{h} \right) - e \cdot \sum_{e} \vec{\mathbf{G}}_{Ee} \left(\vec{r}, \vec{r}_{e}, \gamma_{e}, t, t_{e} \right); \\ \vec{\mathbf{B}} &= Ze \cdot \sum_{h} \vec{\mathbf{G}}_{Bh} \left(\vec{r}, \vec{r}_{h}, \gamma_{h}, t, t_{h} \right) - e \cdot \sum_{e} \vec{\mathbf{G}}_{Be} \left(\vec{r}, \vec{r}_{e}, \gamma_{e}, t, t_{e} \right); \end{split}$$

- Evaluation of hadron distribution function using Fokker-Plank equation with both damping and diffusion terms
- Cooling transversely using coupling with longitudinal degrees of freedom

How to evaluate CeC: the original recipe

Free Electron Lasers and High-energy Electron Cooling, Vladimir N. Litvinenko, Yaroslav S. Derbenev, Proceedings of 29th International Free Electron Laser Conference, Novosibirsk, Russia, August 27-31, 2007

• Linear response of electron beam on perturbations – no saturation, superposition principle

$$\delta E_{i} = eZ \int \vec{\mathbf{E}} \cdot d\vec{r}_{i}; \quad \delta \vec{p}_{i} = eZ \int \left(\vec{\mathbf{E}} + \frac{\left[\vec{p}_{i} \times \vec{\mathbf{B}} \right]}{\gamma_{i}m} \right) \cdot dt; \quad X^{T} = (x, P_{x}, y, P_{y}, z, P_{z});$$

$$\delta E_{i} = (eZ)^{2} \cdot g_{Eh}(X_{i}, t_{i}) - Ze^{2} \cdot g_{Ee}(X_{i}, t_{i});$$

$$g_{Eh}(X_{i}, t_{i}) = \sum_{h} \int \vec{\mathbf{G}}_{Eh}(\vec{r}_{i}, \vec{r}_{h}, \gamma_{h}, t_{i}, t_{h}) \cdot d\vec{r}_{i}; \quad g_{Ee} = \int \sum_{e} \vec{\mathbf{G}}_{Ee}(\vec{r}_{i}, \vec{r}_{e}, \gamma_{e}, t_{i}, t_{e}) \cdot d\vec{r}_{i};$$

$$\delta \vec{p}_{i} = (eZ)^{2} \cdot \vec{g}_{ph}(X_{i}, t_{i}) - Ze^{2} \cdot \vec{g}_{pe}(X_{i}, t_{i});$$

$$\vec{g}_{ph}(X_{i}, t_{i}) = \sum_{h} \int \left(\vec{\mathbf{G}}_{Eh} + \frac{\left[\vec{p}_{i} \times \vec{\mathbf{G}}_{Bh} \right]}{\gamma_{i}m} \right) \cdot dt_{i}; \quad \vec{g}_{pe} = \sum_{e} \int \left(\vec{\mathbf{G}}_{Ee} + \frac{\left[\vec{p}_{i} \times \vec{\mathbf{G}}_{Be} \right]}{\gamma_{i}m} \right) \cdot dt_{i}$$

- Evaluation of hadron distribution function using Fokker-Plank equation with both damping and diffusion terms
- Cooling transversely using coupling with longitudinal degrees of freedom

How to evaluate CeC: the original recipe

Free Electron Lasers and High-energy Electron Cooling, Vladimir N. Litvinenko, Yaroslav S. Derbenev, Proceedings of 29th International Free Electron Laser Conference, Novosibirsk, Russia, August 27-31, 2007

- Linear response of electron beam on perturbations no saturation, superposition principle
- Evaluation of hadron distribution function using Fokker-Plank equation with both damping and diffusion terms

$$\overline{f} = \left\langle \tilde{f} \right\rangle; \quad \widetilde{f} = \sum_{h} \delta \left(X - X_{i}(t) \right)$$

$$\frac{\partial \overline{f}(X,s)}{\partial t} + \frac{\partial}{\partial X_{i}} \left[\frac{dX_{i}(X,t)}{dt} \overline{f}(X,s) \right] - \frac{1}{2} \frac{\partial^{2}}{\partial X_{i} \partial X_{k}} \left[D_{ik}(X,t) \overline{f}(X,t) \right] = 0$$

$$\left\langle \frac{dX_{i}(X,t)}{dt} \right\rangle = \frac{1}{\tau} \int (X_{i} - Z_{i}) \cdot W(Z, X | \tau, t) dZ = \frac{1}{T_{o}} \left\langle \delta X_{i} \right\rangle$$

$$2D_{ik}(X,t) = \frac{1}{2\tau} \int (X_{i} - Z_{i}) (X_{k} - Z_{k}) W(Z, X | \tau, t) dZ = \frac{1}{T_{o}} \left\langle \delta X_{i} \cdot \delta X_{i} \right\rangle$$

• Cooling transversely using coupling with longitudinal degrees of freedom

Transverse cooling: the original recipe University

• Cooling transversely using coupling with longitudinal degrees of freedom by making energy kick depending on transverse motion (via R₅₁, R₅₂, R₅₃, R₅₄ or by displacing beam center in the kicker section)

$$X^{T} = [x, x', y, y', \tau, \delta]; \tau = -c(t - t_{o}); \delta = \frac{E - E_{o}}{\beta_{o} E_{o}};$$

$$\Delta E = F(X); \ \Delta \delta \equiv \Delta x_{6} = \frac{F(X)}{\beta_{o} E_{o}} \approx const - \sum_{i=1}^{6} \zeta_{i} \cdot x_{i};$$

$$\Delta X^{T} = \begin{bmatrix} 0 & 0 & 0 & 0 & \Delta x_{6} \end{bmatrix}; S = \begin{bmatrix} \sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & \sigma \end{bmatrix}; \sigma = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\begin{split} X &= \sum_{k=1}^{3} \left(a_{k} Y_{k} e^{i\psi_{k}} + a_{k}^{*} Y_{k}^{*} e^{-i\psi_{k}} \right); \quad Y_{j} S Y_{k}^{*T} = -2i\delta_{kj}; \\ Y_{k}^{T} &= \begin{bmatrix} y_{1k} & y_{2k} & y_{3k} & y_{4k} & y_{5k} & y_{6k} \end{bmatrix}; \\ \Delta a_{k} &= \frac{i}{2} \Delta X^{T} S Y_{k}^{*T} = \frac{iy_{5k}^{*}}{2} \Delta x_{6} e^{-i\psi_{k}} = -\frac{iy_{5k}^{*}}{2} e^{-i\psi_{k}} \sum_{i=1}^{6} \zeta_{i} \cdot x_{i}; \quad x_{i} = \sum_{j=1}^{3} \left(a_{j} y_{ij} e^{i\psi_{j}} + a_{k}^{*} Y_{k}^{*} e^{-i\psi_{k}} \right); \\ \Delta a_{k} &= -\frac{iy_{5k}^{*}}{2} \sum_{i=1}^{6} \zeta_{i} \sum_{j=1}^{3} a_{j} y_{ij} e^{i(\psi_{j} - \psi_{k})} \rightarrow \left\langle \Delta a_{k} \right\rangle = -\xi_{k} a_{k} \rightarrow a_{k} = a_{k0} e^{-n\xi_{k}}; \\ \sum_{k} \operatorname{Re} \xi_{k} = TrD = \zeta_{6} \equiv \zeta_{\delta} \\ \left\langle e^{i(\psi_{j} - \psi_{k})} \right\rangle = \delta_{kj}; \left\langle e^{-i(\psi_{j} + \psi_{k})} \right\rangle = 0; \quad \xi_{k} = \frac{i}{2} \sum_{i=1}^{6} \zeta_{i} y_{5k}^{*} y_{ik}; \quad \operatorname{Re} \xi_{k} = \operatorname{Im} \sum_{i=1}^{6} \zeta_{i} y_{5k}^{*} y_{ik} \end{split}$$

Stony Brook **Transverse cooling: the original recipe**

University

Cooling transversely using coupling with longitudinal degrees of freedom by • making energy kick depending on transverse motion (via R₅₁, R₅₂, R₅₃, R₅₄ or by displacing beam center in the kicker section) – we can only redistribute cooling decrements between three eigen modes

$$\left\langle \Delta a_k \right\rangle = -\xi_k a_k \to a_k = a_{k0} e^{-n\xi_k}; \quad \xi_k = \frac{i}{2} \sum_{i=1}^6 \zeta_i y_{5k}^* y_{ik}; \quad \sum_k \xi_k = TrD = \zeta_6 \equiv \zeta_\delta$$

For slow synchrotron oscillations ($Q_s \ll 1$)

Hence, introduction dependencies on the components of transverse motion and non-zero dispersion in the kicker section allows to re-distribute cooling decrements

Instead of conclusion

- ✓ There is a variety of amplifiers suitable for CeC
 - ✓ In addition to what we discussed now, Yaroslav Derbenev is proposing using coherent synchrotron radiation instability as CeC amplifier – one need a specific schematic to understand how it fit into the CeC family
- ✓ Theoretical evaluation is typically limited to 1D, but 3D simulation are performed for two CeC schemes
- ✓ Two CeC options can be tested experimentally at RHIC we currently pursuing CeC with plasma-cascade amplifier
- ✓ The evaluation scheme that I presented only looking simple evil is always in details
- ✓ Following presentations will give a much deeper view into physics and realities of CeC

Sum of decrements theorem

Let's consider an arbitrary linear s-dependent equation:

$$\frac{dX}{ds} = \mathbf{D}(s) \cdot X; \tag{SD-1}$$

e.g. the overall motion is not necessary symplectic

$$X(s) = \mathbf{R}(s)X_{o} \rightarrow \frac{d\mathbf{R}}{ds} = \mathbf{D}\mathbf{R} \rightarrow \frac{d}{ds}\det[\mathbf{R}(s)] = Trace[\mathbf{D}(s)]\cdot\det[\mathbf{R}(s)]$$

$$\det[\mathbf{R}(s)] = \int_{o}^{s} Trace[\mathbf{D}(\xi)]d\xi.$$
(SD-2)

Prove of the later is rather trivial

$$\mathbf{R}(s+ds) = (\mathbf{I}+ds\mathbf{D}(s^*)+ds^2\mathbf{O})\cdot\mathbf{R}(s); s^* \in \{s,s+ds\} \rightarrow \det\mathbf{R}(s+ds) = \det(\mathbf{I}+ds\mathbf{D}(s^*)+ds^2\mathbf{O})\cdot\det\mathbf{R}(s);$$

$$\det A = \sum_{i,j,k} \varepsilon_{ijk-a} a_{1i}a_{2j}a_{3k}\cdots;\det(\mathbf{I}+ds\mathbf{D}(s^*)+\varepsilon^2\mathbf{O}) = \sum_{i,j,k} \varepsilon_{ijk-a} (\delta_{1i}+dsd_{1i})(\delta_{2j}+dsd_{2j})(\delta_{3k}+dsd_{3k})\dots+O(\varepsilon^2)$$

$$\sum_{i,j,k} \varepsilon_{ijk-a} (\delta_{1i}+dsd_{1i})(\delta_{2j}+dsd_{2j})(\delta_{3k}+dsd_{3k})\dots = \prod_{i=1}^{2n} (\delta_{ii}+dsd_{ii}) + ds^2 \sum_{i\neq 1,j,k} \varepsilon_{ijk-a} d_{1i} \sum_{i,j,k} \varepsilon_{ijk-a} (\delta_{2j}+dsd_{2j})(\delta_{3k}+dsd_{3k})\dots d_{i1}\dots + ds^2 \sum_{i,j\neq 2,k} \varepsilon_{ijk-a} \varepsilon_{ij$$

Status: more details in my afternoon talk

- Mechanical design new CeC system is completed
- We procured and commissioned new laser system with controllable pulse structure
- All new vacuum with beam diagnostics are built chambers are installed
- All supports are built and installed
- All solenoids are designed, manufactured, delivered and undergo magnetic measurements
- Assembly of the plasmacascade based CeC can be completed during this year's RHIC shut-down period

Distribution of the decrements

$$X^{T} = \left\{ x, x', y, y', -c\tau, \delta \right\}$$

 $k_x = \frac{R_{52e}}{D_{zh}}$

Distribution of the decrements

$$Q_{s} << Q_{1,2}$$

$$\xi_{k} = \frac{\xi}{2i} \cdot Y_{k}^{*5} \left(k_{x}Y_{k}^{1} + Y_{k}^{6}\right)$$

$$\xi_{k} = \frac{\xi}{2i} \cdot Y_{k}^{*5} \left(k_{x}Y_{k}^{1} + Y_{k}^{6}\right)$$

$$\xi_{k} = \frac{\xi}{2i} \cdot Y_{k}^{*5} \left(k_{x}D_{x} + 1\right);$$

$$\xi_{s} = \frac{\xi}{2} \left(k_{x}D_{x} + 1\right);$$

$$\xi_{k=1,2} = -\frac{\xi}{2i} \cdot \left(Z_{k}^{*T}SD\right) \cdot k_{x}Z_{k}^{1}$$

$$\xi_{k=1,2} = -\frac{\xi}{2i} \cdot \left(Z_{k}^{*T}SD\right) \cdot k_{x}Z_{k}^{1}$$

$$\xi_{1} + \xi_{2} = -k_{x}D_{x}\frac{\xi}{2}$$

Uncoupled case

$$\xi_{y} = 0; \ \operatorname{Re} \xi_{x} = -\frac{\xi}{2} \cdot R_{52e} \frac{D_{xh}}{D_{zh}}; \ \operatorname{Re} \xi_{s} = \frac{\xi}{2} \cdot \left(1 - R_{52e} \frac{D_{xh}}{D_{zh}}\right)$$

