Homework 10. Due October 12

Problem 1. 4×5 points. Matrix of an ideal solenoid.
Consider particles with momentum p_{o} propagating along the axis of idealized solenoid with

$$
B_{s}=\left\{\begin{array}{c}
0, s<0 \\
B_{o}, 0 \leq s \leq l \\
0, s>1
\end{array}\right\}
$$

All other components of the field are zero, e.g. $\mathrm{s}=\mathrm{z}$, not curvature.
(a) Use Sylvester formula and calculate 4 x 4 transport matrix of the solenoid;
(b) Show that resulting matrix can be presented is form of focusing matrix in each direction and a rotation

$$
M_{s}=\left[\begin{array}{cc}
I \cos \varphi & I \sin \varphi \\
-I \sin \varphi & I \cos \varphi
\end{array}\right] \cdot\left[\begin{array}{cc}
F & 0 \\
0 & F
\end{array}\right]
$$

where

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ; F=\left[\begin{array}{ll}
a & b \\
c & a
\end{array}\right] ; a b-c d=1
$$

are 2×2 matrices and F is focusing one. Write expressions for φ, F through $p_{o}, B_{o}, l \ldots$,
(c) Finally use one tricks available for you since we can use torsion and decouple x and y motion:

$$
\begin{aligned}
& \tilde{h}_{n}=\frac{\pi_{1}^{2}+\pi_{3}^{2}}{2}+f \frac{x^{2}}{2}+g \frac{y^{2}}{2}+L\left(x \pi_{3}-y \pi_{1}\right) \\
& f=\left(\frac{e B_{s}}{2 p_{o} c}\right)^{2} ; g=\left(\frac{e B_{s}}{2 p_{o} c}\right)^{2} ; L=\kappa+\frac{e}{2 p_{o} c} B_{s} ;
\end{aligned}
$$

by choosing $\kappa=-\frac{e}{2 p_{o} c} B_{s}$. Show that matrix in this coordinates system is block diagonal (e.g. de-coupled)

$$
M_{s}=\left[\begin{array}{cc}
F & 0 \\
0 & F
\end{array}\right]
$$

with F identical to that in the problem (b) above. Show also that rotation is angle aroin z axis is $\kappa l=-\varphi$.
(d) Finally, explain why a simple trajectory $x=$ const and $y=$ const (which intuitively is trajectory parallel to the magnetic lines) is not a solution?

$$
\mathrm{v}_{x, y}=0 ; \rightarrow \overrightarrow{\mathrm{v}}=\hat{z} \mathrm{v}_{o} ; \vec{f}=\frac{e}{c}\left[\hat{z} \mathrm{v}_{o} \times \hat{z} B_{0}\right]=0
$$

Hint: consider what is happening at the entrance and exit to the solenoid.

