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Sylvester formulae
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Standard case of distinct eigen values, 1… 2n

Degenerated case of with m < 2n distinct 
eigen values, ni is the height (index) of the eigen value 
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Even though it is tempting to remove electric fields, it does not either helps or hurts our 
consideration for matrix of a generic DC accelerator element. As you can see from next 
equation, it adds only a single non-relativistic term gy.  
For fields in vacuum we have  

= ,  

resulting in 

 

;  (7-2)  
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In the absence of longitudinal electric field, the momentum P2 is constant as well 

 d=const. The fact that particle’s energy does not change in such element is 

rather obvious (It is completely correct for magnetic elements. Presence of electric field 
makes it less obvious, but it comes from the fact that Hamiltonian does not depend on 

time!): , e.g. absence of the accelerating/decelerating electric field 

component. 

Equations of motion become specific: 

,  (7-3) 

   (7-4) 

and can be rewritten in a slightly different (just deceivingly looking better) way: 

       (7-

5) 
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0 1 −L 0 0 0
− f 0 −n −L 0 −gx

L 0 0 1 0 0
−n L −g 0 0 −gy

gx 0 gy 0 0 m2c2 / po
2

0 0 0 0 0 0

#

$

%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(

;

dX
ds

= D s( ) ⋅X +π o ⋅C s( ); 

dτ
ds

= gxx + gyy +π o ⋅m
2c2 / po

2; D s( ) =

0 1 −L 0
− f 0 −n −L
L 0 0 1
−n L −g 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

; C s( ) =

0
−gx

0
−gy

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.



9



10



11



12

As we discussed in previous class, characteristic equation for any linear Hamiltonian  

    (7-13) 

system is bi-quadratic. It comes from the fact tjay if  is an eigen value of  (solution 
of ), than is also an eigen value of : 

 (7-14) 

e.g.  contains only even powers of , e.g. . This fact has dramatic 
consequences for accelerators: it reduces power of the eigen value equation by a factor of 
two and allows to find analytical expressions for all possible cases. In 3D case it reduces 
equation to a cubic equation on , which has analytical solution. In general (non-
Hamiltonian case) we would face finding roots of a 6-th order polynomial, which does 
not have known analytical expressions. Again, this is demonstration of power of 
Hamiltonian approach and its symplectic metrics. 

′X = D ⋅X = SH ⋅X → d λ( ) = det D− λI[ ] = λi − λ( )
i=1

2n

∏ = 0

λi D
d λ( ) = 0 −λi D

detAT = detA; detAB = detBA; AB( )T = BTAT ; det −Am×m[ ] = −1( )m det A

ST = −S; HT = H; S2 = −I; detS = 1; ⇒

d λ( ) = det D− λI[ ] = det D− λI[ ]T = det SH( )T − λI⎡⎣ ⎤⎦ = det −(HS + λI)[ ]
−S(HS + λI)S = (SH + λI); det S(HS + λI)S[ ] = det HS + λI[ ]det2 S = det HS + λI[ ]⇒

d λ( ) = det −(HS + λI)[ ] = −1( )2n det HS + λI[ ] = d −λ( )
d λ( ) λ d λ( ) ≡ d1 λ 2( )

λ 2
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Before going to case-by-case calculations, lets use Sylvester’s formulae and try to find 
solution of inhomogeneous equation: 

.    (7-17) 

When matrix det D¹0, (7-17) can be inversed using a  as a guess and the 
boundary condition : 

    (7-18) 
is the easiest solution. Prove is just straight forward: 

 

In all cases we can use method of variable constants to find it: 

  (7-19) 

It is important to remember that M-1(s) is just the M(-s) = e-Ds. Hence in all our formulae 
for matrixes from previous lectures we need to replace s by –s to get M-1(s).   
Other vice, we have to use general formula (33) for the homogeneous solution and use 
method of variable constants (see Appendix F in last class) to find it: 

 

(7-20) 
In all specific cases I, II, III, IV and V, integrating (7-19) directly is usually easier that 
using general form of (7-20). 
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Case II: 

� 

b =  
f − g( )2

4
+ 2L2 f + g( ) + n2 = 0;

f = g; n = 0  and  L2 f + g( ) = L2 K 2 + Ω2 + El2( ) = 0;Ω = eBs / poc;E⊥ = 0.

 

i.e. there are two cases: L=0 or 

� 

f + g = 0 .  
If both are equal zero, i.e. 

� 

f + g = 0;  L = 0, this is equivalent to the case I above.  

Case II a: 

� 

f + g = 0 , K=0, Bs=0 -> L=κ. Thus, this is just a drift (straight section) with 
rotation, whose matrix is trivial: Drift + rotation. There is not transverse force – hence 
R=0. 

� 
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Md ⋅ cosκs −Md ⋅ sinκs
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⎢ 
⎢ 
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.   (IIa-1) 

R56 is as for a drift: 

� 

R56 = m2c 2

po
2 s      (IIa-2) 
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Case II b cont…
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Case III:  
We have to use degenerated case formula, but the maximum height of the eigen vector is 
2 and only for 3-rd eigen value. Since it is not scary at all: n1=1;n2=1;n3=2 
Because of the Hamilton-Cayley theorem, . Let’s do it 
 

   

   (III-1) 
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Case III continued.. 
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⎭ 
C  (III-3) 



21



22



23



24

F

F



One more - less trivial case, a solenoid

• It is interesting that it can be found in two ways
– Directly without using torsion – case 3
– Using torsion –case 2b  
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Matrix of solenoid –Case 3
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!hn = π1
2 +π 3

2

2
+ Ω2 x2

2
+ Ω2 y2

2
+ Ω xπ 3 − yπ1( ) + π o

2

2
⋅ m2c2

po
2 ; L = Ω = eBs

2 poc
; f = g = Ω2;n = 0..

a = − f + g + 2L2

2
= −2Ω2;b =

f − g( )2

4
+ 2L2 f + g( ) + n2 = 2Ω2;

� 

a + b = 0; det D = 0;  ω 2 = 2b;  λ1,2 = ±iω;λ3 = 0; m = 3.

� 

M4x4 = I + D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I + sD( ) − D2

ω 2 Icosωs + D
ω

sinωs
⎛ 
⎝ 
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⎞ 
⎠ 
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ω = 2Ω

D =

0 1 −L 0
− f 0 −n −L
L 0 0 1
−n L −g 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

==

0 1 −Ω 0
−Ω2 0 0 −Ω
Ω 0 0 1
0 Ω −Ω2 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

; D2

ω 2 = 1
2

−1 0 0 −Ω−1

0 −1 Ω 0
0 Ω−1 −1 0
−Ω 0 0 −1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

;

I + D2

ω 2 = 1
2

1 0 0 −Ω−1

0 1 Ω 0
0 Ω−1 1 0
−Ω 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

; I + D2

ω 2

⎛
⎝⎜

⎞
⎠⎟
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ω 2

⎛
⎝⎜

⎞
⎠⎟

Ds vanishes



Matrix of solenoid: 
using case 3we get an unusual matrix
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� 

M4x4 = I + D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I + sD( ) − D2

ω 2 Icosωs + D
ω

sinωs
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ω = 2Ω; Ω = eBs

poc

M4 x 4 = I + D2

ω 2

⎛
⎝⎜

⎞
⎠⎟
− D2

ω 2 Icosω s + D
ω

sinω s⎛
⎝⎜

⎞
⎠⎟ = 1

2

1 + cos2Ωs sin2Ωs
Ω

−sin2Ωs −1− cos2Ωs
Ω

−Ωsin2Ωs 1 + cosω s Ω 1− cos2Ωs( ) −sin2Ωs

sin2Ωs 1− cos2Ωs
Ω

1 + cos2Ωs sin2Ωs
ω

−Ω 1− cos2Ωs( ) sin2Ωs −Ωsin2Ωs 1 + cos2Ωs

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Actually this matrix has a very simple structure, 
which can be ieasily reviled if we use torsion

(s1)



Matrix of solenoid
To bring it to Case 2, we can use torsion to 

eliminate coupling terms in the Hamiltonian

28

!hn = π1
2 +π 3

2

2
+ Ω2 x2

2
+ Ω2 y2

2
+ π o

2

2
⋅ m2c2

po
2 ; Ω = eBs

2 poc
;κ = −Ω⇒ L = eBs

2 poc
+κ = 0;

a = − f + g
2

= −Ω2;b = 0; D4x4 =

0 1 0 0
−Ω2 0 0 0

0 0 0 1
0 0 −Ω2 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= D 0
0 D

⎡

⎣
⎢

⎤

⎦
⎥;exp D4 x 4s[ ] =

exp Ds[ ] 0

0 exp Ds[ ]
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;

D = 0 1
−Ω2 0

⎡

⎣
⎢

⎤

⎦
⎥;det D− λI[ ] = λ − iΩ( ) λ + iΩ( );λ1,2 = ±iΩ;

M = exp Ds[ ] = D + iΩI
2iΩ

eiΩs − D− iΩI
2iΩ

= cosΩs sinΩs
Ω

−Ω⋅sinΩs cosΩs

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
;M4x4 = M 0

0 M
⎡

⎣
⎢

⎤

⎦
⎥

It means that in rotating coordinate system x and y motions are 
decoupled and it is simple oscillation caused by uniform focusing 

in both directions. What remains is rotation by angle 

ϕ =κ s = −Ωs



Matrix of solenoid… continued
To bring it to the same coordinate frame we need to rotate the 

coordinate back by angle   

29

R4x4 θ( ) = Icosθ −Isinθ
Isinθ Icosθ

⎡

⎣
⎢

⎤

⎦
⎥;M4x4 = R4x4 Ωs( ) ⋅M4x4 = McosΩs −MsinΩs

MsinΩs McosΩs
⎡

⎣
⎢

⎤

⎦
⎥

It means that solenoid focuses equally in all direction and rotates 
planes of oscillation by and angle 

−ϕ = −κ s = Ωs

θ = eBs

2 pos
s

(s2)

It easy to show that 4x4 matrices (s2) and (s1) are identical using 
simple ratios like cos2θ = 1 + cos2θ

2
;sinθ cosθ = sin2θ

2
;sin2θ = 1− cos2θ

2

It is interesting that matrix of s solenoid with arbitrary 
dependence of magnetic field has the same form   

M4x4 =
M s( )cosθ −M s( )sinθ
M s( )sinθ M s( )cosθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
;θ = 1

2 poc
Bs

s

∫ z( )dz.



What we learned today?
• Majority of accelerator elements are either drifts or magnets, 

located in the places where energy of the beam is constant
• Many of them can be considered to be DC, e.g. time independent
• Typical approach of calculating a beamline transport matrix is to 

consider elements with step-wise constant “coefficients”
• Since energy if the beam is constant, the 6x6 matrix is reduced to 

4x4 matrix, as special solution (4-vector) for particle with deviated 
energy and a slip-factor R56 accounting for dependence of the travel 
time on the particle’s energy.

• We applied  Sylvester formulae, derive during last class. 
• There is only five distinct cases covering any possible DC hard-edge elements, 

or any shot slice of s-dependent magnet parameter (such as magnet edge field)
• Now you should be able to write matrix of any DC element you encounter  in 

accelerator
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