Homework 15. Due November 8

Problem 1. 30 points. Statistical definition of beam emittance.

We consider a statistical distribution of non-interacting particles in phase space (x, x '). Let $\rho\left(x, x^{\prime}\right)$ be the distribution function with

$$
\int \rho\left(x, x^{\prime}\right) d x d x^{\prime}=1
$$

the first and second moments of beam distribution are

$$
\begin{array}{crl}
\langle x\rangle=\int x \rho\left(x, x^{\prime}\right) d x d x^{\prime} & \left\langle x^{\prime}\right\rangle & =\int x^{\prime} \rho\left(x, x^{\prime}\right) d x d x^{\prime} \\
\left\langle x^{2}\right\rangle=\int x^{2} \rho\left(x, x^{\prime}\right) d x d x^{\prime} & \left\langle x^{\prime 2}\right\rangle & =\int x^{\prime 2} \rho\left(x, x^{\prime}\right) d x d x^{\prime} \\
\sigma_{x}{ }^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2} & \sigma_{x^{\prime}}{ }^{2} & =\left\langle x^{\prime 2}\right\rangle-\left\langle x^{\prime}\right\rangle^{2} \\
\sigma_{x x x^{\prime}}{ }^{2}=\left\langle x x^{\prime}\right\rangle-\langle x\rangle\left\langle x^{\prime}\right\rangle \stackrel{\text { def }}{=} r \sigma_{x} \sigma_{x \prime} &
\end{array}
$$

here σ_{x} and σ_{x}, are rms beam widths, and r is the correlation coefficient. The rms emittance is therefore defined as

$$
\varepsilon_{r m s}{ }^{2}=\sigma_{x}{ }^{2}{\sigma_{x \prime}}^{2}-{\sigma_{x x \prime}}^{2}={\sigma_{x}}^{2} \sigma_{x \prime}{ }^{2}\left(1-r^{2}\right)
$$

a) Assuming that particles are uniformly distributed in an ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{x^{\prime 2}}{b^{2}}=1
$$

show that the total phase space area is $A=\pi a b=4 \pi \varepsilon_{r m s}$
b) Show that the rms emittance defined above is invariant under a coordinate rotation

$$
X=x \cos \theta+x^{\prime} \sin \theta \quad X^{\prime}=-x \sin \theta+x^{\prime} \cos \theta
$$

and show that the correlation coefficient r is 0 if we choose the rotation angle to be

$$
\tan 2 \theta=\frac{2 \sigma_{x} \sigma_{x^{\prime}} r}{{\sigma_{x}{ }^{2}-\sigma_{x \prime}{ }^{2}}^{2}}
$$

show that σ_{X} and σ_{X}, reach extrema at this rotation angle.
c) In accelerators, particles are distributed in Courant-Snyder ellipse

$$
I\left(x, x^{\prime}\right)=\gamma x^{\prime 2}+2 \alpha x x^{\prime}+\beta x^{2}
$$

where $1+\alpha^{2}=\beta \gamma$. Apply the coordinate rotation you did above to this invariant to show that
and

$$
\varepsilon_{r m s}=\frac{\sigma_{x}{ }^{2}}{\beta}=\frac{\sigma_{x \prime}{ }^{2}}{\gamma}
$$

$$
r=-\frac{\alpha}{\sqrt{\beta \gamma}}
$$

or $\quad\left(\begin{array}{cc}\sigma_{x}{ }^{2} & \sigma_{x x \prime} \\ \sigma_{x x \prime} & \sigma_{x \prime}{ }^{2}\end{array}\right)=\varepsilon_{r m s}\left(\begin{array}{cc}\beta & -\alpha \\ -\alpha & \gamma\end{array}\right)$
show that

$$
\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{\sigma} \boldsymbol{x}=\frac{\mathbf{1}}{\varepsilon_{r m s}}\left(\gamma x^{\prime 2}+2 \alpha x x^{\prime}+\beta x^{2}\right)
$$

where $\boldsymbol{x}=\binom{x}{x^{\prime}}$ thus it's invariant.
d) For a linear Hamiltonian, particle motion in accelerator obeys Hamiltonian dynamics

$$
\frac{d x^{\prime}}{d s}=-\frac{\partial H}{\partial x}=-K x
$$

where $\mathrm{K}(\mathrm{s})$ is focusing function. Show that the rms emittance is conserved (hint: write what is $\frac{d \varepsilon_{r m s^{2}}{ }^{2}}{d s}$ in terms of $\frac{d x^{\prime}}{d s}$ and $\frac{\partial H}{\partial x}$)

