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Introduction |I: What is free electron lasers

* A free-electron laser (FEL), is a type of laser whose
lasing medium consists of very-high-speed electrons
moving freely through a magnetic structure, hence
the term free electron.

 The free-electron laser was invented by John Madey
in 1971 at Stanford University.

* Advantages:

v'Wide frequency range
v’ Tunable frequency
v’ May work without a mirror (SASE)

* Disadvantages: large, expensive



Introduction |l: Applications and FEL facilities

* Medical, Biology (small wavelength and short pulse are
required for imaging proteins), Military (~Mwatts)...

* FEL Facilities (~33):

FZR dorf 4-22 operati
FREE ELECTRON LASERS (Ge,,,;';f;')’ © 18280 pm st h’;ﬁ’w
LOCATION NAME WAVELENGTHS TYPE STATUS UCSB FIR-FEL 63 - 340 pm tin
EN o CA (USA) MMFEL  [240pm-25mm |electrostatic u°‘:'fm$hy
SACLAFEL |083-3A Linac operatng 30 p-FEL  [20-63pm
(Japan) user facility -
SLAC-SSRL - ENEA - Frascat 36-2.1mm microtron | OP=T3tg
S LCLSFEL |12-15A Linac ey (taly) user facility
el — ETL - Tsukuba NIJI-IV 228 nm storage ring fing
- T - iment
DESY FLASHFEL [4.1-45nm SC Linac operating | |(Japan) xpenmen
(Germany) user facility 243 - Okazaki UVSOR 238 nm stol riny operating
ELETTRA operating (Japan) 021G | experiment
. 4-100 nm Linac T - -
Trieste, Italy == user facility Dortmund. Univ. . operating
T i (Germany) Eelicta 1 470 nm storage ring expriment
HGHG FEL 123 nm Linac f - LANL AFEL 4.8 pm operating
Brookhaven (USA) expenment | | usa) RAFEL 16 pm finac experiment
Duke Univ. operating .
oK< 183 - 400 nm stol rin, = Darmstadt Univ. operating
NC (USA) R0 Nuser facilty | |Garmany) RFEL  [66-78um SCHinac o perimant
> e i Beiing FEL |5-25 pm fnac operating
LEEL s operating (China) experiment
(Japan) ; gO _zgo":m inac user facility CEA - Bruyeres ELsA 18-24 ym fnac operating
5 50 - 100 pm (France) experiment
N - 1SR - Osaka . operating
soyoiaal ey 17-81pm  [inac operatng | [ rzem e experiment
JAERI 2 SC-i operati
Vanderbilt no longer (Japan) 6 mp: ndu:;; linac experimngnt
TN (USA) MEK-1I 21-28um inac ti
U=A) s Univ. of Tokyo UTFEL  [43pm inac operating
Radboud ELARE 327 -420 pm ting (Japan) experiment
University FELIX1 3.1-35pm Inac operabng ILE - Osaka operating
(Netherdands) FELIX2 25- 250 pm user facility (Japan) 47 pm fnac experiment
Stanford SCA-FEL 3-10ym ’ no longer LASTI LEENA 85-75 K operating
CA (USA) FIREFLY | 15-65 ym SCinac operating (Japan) bm nac experiment
LURE -0 tin KAERI 80 - 170 pm microtron ) operap'ng
(France) =3y CLIo 3-150 pm Inac usel : faci?ity (Korea) 10 mm electrostatic experiment
5 Budker Inst. operating
Jefieson Lab 32-48pm SCHinac operating Novosibirsk, Russia 110-240 ym fnac experiment
VA (USA) 3532 -433nm user facility [Tepr=— .
V. wen X . operatng
Science Univ. - operating (Netheriands) IEUFEL 200-500 pm finzc experiment
o Tokyo (J EEL.SUT 5-16 pm inac facili
okyo (Japan) user facilty FOM Fusion no longer
(Netherdands) FEM operating
Tel Aviv Univ. 2Amm electrostatic operating
(Israsl) experiment
'So far only operating FEL oscillators with wavelength < 10 mm are included.
*user faclity” means a dedicated scientific research faciity open to outside researchers.
€ o “*Order is first by type of faciity and second roughly by wavelength.
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Introduction Ill: Basic Setup

Planar undulator F
B (vy2)=Bysin(kz) [T 1 |=[4 =1 =]} |1 - T |
for x,y << gap size —P""Z_-——""Z-——-—"'Z_—/W |

o 1 /T/W -
— — I
Ay

Helical undulator B, (x,y,2) = B, cos(k,z)

B, (x,y,2)=B, sin(kuz)

for x,y << gap size a) / .
I lo I - elec1 on [\ /




Introduction IV: different types of FEL

Mirror Undulator
FEL Oscillator [%‘ t | 4] 4| t |t Radiation
(Low gain regime) |T|T|T|T|T|T| H
Electron
Beam

Master Laser Undulator
FEL Amplifier e ALALALALALALL easton
(High gain regime) I I Y ”
Electron
Beam
Undulator
SASE FEL AALALALALA LA, Besiion
(High gain regime) AN ERERERE
Electron
Self-Amplified Spontaneous Emittion (SASE) Beam




Unperturbed Electron motion in helical wiggler
(in the absence of radiation field)

B L (x,,2) Bw[cos(kuz))?—sin(kuZ))A’]
F(x,y,2)= —e\7><l§:—evZ2X§=—€VZBW[COS(kuZ))A’+Sin(kuz)ﬂ

d(myv,) dv . d(mj/v ) dv
T = my t =—ev B, Sln(kuz) - my — ev.B COS(k Z)
dt B —
Y = : 2 2 2 | Undul
= — = \/v 24y = . ndulator parameter,
Vi=-vi/c Yoy R VEV, T, | also called a,
dv - . y : B, Ay
myd_ =—iev_B, (cos(kuz) —1 sm(kuz)) = —iev.B, e " | S y—
dv dz dv v . : Electron rotation angle
my—=my—-—=-iev. B e = my — = —ieBWe_l < in undulator:
dt dt dz dz :
~( ) — e — - 95 — K/r)/
vlz) - . . .
= es, fe"kuzl dz, = ﬂe"kuz = Ee‘lkuz *Assume the initial velocity of the electron
C mcy mcyk, % make the integral constant vanishing.
~ cK z
(Z)= — COS(k 7)x— sm k Z y] v, = const. f(z):jﬁ(tl)dtl+fc(z=0)

- Y



Energy change of electrons due to radiation field

Vv, (z)= % cos(kuz)fc — sin(kuz)ff:l

Consider a circularly polarized electromagnetic wave (plane wave is an assumption for 1D
analysis, which is usually valid for near axis analysis) propogating along z direction

—

E, (z,t):E[cos(kz—a)t)fc+sin(kz—a)t)ﬂ E =0

=E[cos(k(z—ct))fc+sin(k(z—ct))ﬂ W = ke

Energy change of an electron is given by

fi_SZﬁ.‘_}:_e‘_}J‘ ’EJ_
e ! ) Pondermotive phase:
d_Z:—eEHSV—cos(t//)z—eEHS cos(y) y =kz+k(z—ct)

To the leading order, electrons move with constant velocity and hence z=v, (t — tO)



Resonant Radiation Wavelength

de =—eE0, cos{[kw +k—k£jz+w0}
dz v,

We define the resonant radiation wavelength such that

k otk —k—=0=A =1 |—-1 zzlwz
VZ VZ yZ

}/‘251—\/Z2/c2=1—(v§+vi)/cz+vi/c2 :7’_2"‘93:?’_2(1"‘[(2)

<

AW(I+K2) K=eBW),W
FEL resonant frequency: 0~ 2 ~ 27mme

2y

At resonant frequency, the rotation of the electron and the radiation field is
synchronized in the x-y plane and hence the energy exchange between them is most

efficient.



Helicity of radiation at synchronization

The synchronization requires opposite helicity of radiation with respect to the electrons’

trajectories.
Electrons’ trajectories

electron l
t trajectory |

t, <t <t,<t,

X

Radiation field observed by
electrons

Electrons move slower than radiation
and hence see the radiation wave
slipping ahead. As a result, the
rotation direction of the radiation
field seen by an electron is the same
as its own rotation direction.



Longitudinal equation of motion

In the presence of the radiation field, the longitudinal equation of motion of an

electron read

d€
— =—¢E0,cos(y) w=kz+k(z—ct)
dz
d 0]
—y =k, +k-
iz’ T
1 1
~k, +k— +(8—50)i—
vz(é'O) dé v,
E-E
~k tk—— +“2’( o)
v, 50) y.ce &
[ dp
d_z =eEb, COS(W) Energy deviation:
=94 o
—y=C+——P Detuning parameter:
dz v.c&,

&, 1s the average energy of the beam.

d 1

d€ v, B me’ Eﬂ_z_ mc> dy dy.

1 d 1 _1dy.d 1

Z

P=£E-E,

C=k,+k

Vz(go)




Low Gain Regime: Pendulum Equation

dP

— =—eE0, cos(y)

dz |, d’ eE0

d o Fl//+ oy cos(l//)=0
—y=C+——P < V%

dZ ’}/ZCSO

We assume that the change of the amplitude of the radiation field, E, is negligible
and treat it as a constant over the whole interaction.
d2

~2
<

2eEO w
}/12 c&,

A\ D)
[l
|

w+iicos(y)=0 i =

=~

2
Pendulum equation: dAz (w+£)+ﬁsm(y/+£j:0
dz 2 2




Energy deviation

Low Gain Regime: Similarity to Synchrotron Oscillation

FEL I Synchrotron Oscillation
V is the angle between the transverse velocity |
vector and the radiation field vector and hence . 9t pr Ee o LeVer G 1),
d "7 ds C pe

there is no energy kick for y =7 /2 |

Energy deviation

T
2
Pondermotive phase, ¥

dz( +£j+ﬁsin( +£j—0 :
2\ ey )" I

el v =k,z+k(z—ct)
0

Z




Low Gain Regime: Qualitative Observation

Energy deviation
Energy deviation

The average energy of the electrons The average energy of the electrons
is right at resonant energy: is slightly above the resonant energy:
2
A, (1+K) 2,1+ K7) y =7 +Ay
0 = 2 2 d 7/ = )/0 = 21’0 . - - -
Y With positive detuning, there is

net energy loss by electrons.

*Plots are taken from talk slides by Peter Schmuser.




Low Gain Regime: Derivation of FEL Gain

Change in radiation power density (energy gain per seconds per unit area):

Al =ce,(E,, + AE) - ce,EX, =~2ce,E, AE

ext ext ext

Energy deviation at entrance

Average change rate in electrons’ energy per unit beam area:

Pondermotive phase at entrance

All = M *The average, <...>, is over all /
’ e electrons in the beam. (P(z)) = [dP, [dw,f (R, )P(R.yy.2)
Zoo 0

Assuming radiation has the same cross section area as the electron beam, we
obtain the change in electric field amplitude:

ATL +ATT, =0 = | ag < ——20)
2ce ke

ext

ar _ —eE0, cos(y)

1
CCZ; o = (P)=-eEf, < f cosly (2)]d2>
— VY = C+ 5 P 0
dz v.c&,




Low Gain Regime: Derivation of FEL Gain

2

Pw +ucosy =0
Z

y(2)=y(0)+y' (0)2 ~ifdz feosy (3, )z, (1)
0 0

Assuming that all electrons have the same energy and uniformly distributed in the

Pondermotive phase at the entrance of FEL: £, =0 and f(y,)= ZL
JT

The zeroth order solution for phase evolution is given by ignoring the effects from
FEL interaction:

d—Pz—eEQS cos(l//) r ?,U(f)=1/}0 +C2

dZ d o n

d 0 ~ £w=C=>< A C=Cl,
d_zw:C+}/Z2c50P \ Z/J'(O)=C

Inserting the zeroth order solution back into eq. (1) yields the 15t order solution:

w(&)=y, +C2+Ayly,,?) Ap(p,,2)= —A}dél}cos[zpo £ 62l



Low Energy Regime: Derivation of FEL Gain
Ayp(y,,2)=- fa’zlfcos[z//o+sz]g’z2

~ (G5

_ _é{fsm(l/fo + X, )a’x1 C2 sinwo} = (%[cos(wo + 6’2)— cosy, + C2 sinz/;o]

0

1
(P)= —eElWHS< cos[zpo +C2+ Ay Oz)]dZ> <——  Average energy loss of electrons
0

= eEHSZW<}sin[zpo + éé]sin(Aw( 0> 2))d2> -eL6] <}cos[1po + éﬁ]cos(mp( 0> 2))d2>
0

eE0 ]

~ eE6S1W<j'A¢(¢O,2)sin[z/}0 + éé]d2> - jdz ofCQSL/* +TZ ]?/1/10

_eE6l, i P A A
a2 C5 cos|C2 | [sin’y,dy, - sinlC2 ) fcos’ y,d
. sz z{ zcos( z){sm Y, dy, sm( z){cos Y, 1/10}

<j’cos[1/;0 + éé]sin[wo + é‘é}j§> -0

0

=-eL0l —

. l—gsmC cosC




Low Energy Regime: Derivation of FEL Gain

Growth in the amplitude of radiation field: . lzeEexﬂ w
U=
(P O*wPE. 2 SN A y2cymc’
_ ]0< > Jyoﬁa)lw o l—gsmC—cosC
2ce,E, e crly I, C 2 ;
7o 4sre, me
The gain is defined as the relative growth in radiation power: 4 e
(E_+AE) -E>, 2AE ()
8 = 2 =~ =7 f\C As observed earlier, there is no gain if
E E
ext ext the electrons has resonant energy.
Cubic in FEL length |
e 02 137 o1
- 20w |
- 2 ] Eo.os
C}/z}/ A —
A2 . C . » -
f( )= —~|1-cosC—-—smnC 005
C 2
—_> 0.1
_ d sinz(é/z) - | | | | |
dé éz -15 -10 5 | 0 | 5 10 15

Normalized detuning 6’



High Gain Regime: Concept

1. Energy kick from radiation field + 3. Higher radiation fields leads to more density
dispersion/drift -> electron density bunching through 1 and hence closes the

bunching; positive feedback loop -> FEL instability.

6(rad) 8 (rad)

*The plots are for illustration only. The right plot
actually shows somewhere close to saturation.

2. Electron density bunching makes more
electrons radiates coherently -> higher
radiation field;

B AR WS T .
-1 Q 1 a
(¥ )

At entrance to the undulator Exponential gain regime Saturation(maximum bunching)

4.{ o )47 — Lo
- ! | . " \',_,u "?5' J |E‘ or ’_.'.NTE
S N N A The positive feedback loop
(@) I gt ot INAAY I o« N
/ . - = "-,’f\(r‘ p incoherent =~ *'a between radiation field and

electron density bunching is

‘E‘ « N, the underlying mechanism
of high gain FEL regime.

I o« N’ ene 8

coherent




1-D Model for cold beam without
detuning

=—el E (z)cos (1,0 )

dz

4p- <e—iw a p> —i<e‘i1/’Piz//> ~ <e—z’w 4 P> = —(e™eEf, cos(y)) = —%eQSE



Wave Equation

1-D theory and hence 9/dx =0 and 9/9y =0

W=kz+k(z-ct)

—

_ , 9’4, 1 9’4, -

Wave equation for transverse vector potential: - =—Uj (1)
0z c” ot
, oL 1 ). ks
Transverse current perturbation: JxtY, = —(Vx +1v, )]Z =-0e ). (2)
vZ
We seek the solution for vector potential of the form:
~ iw(z/c- ~ —iwl(z/c-
Ax’y(z,t)= Ax,y(z)e (/=) + Ax’y (z)e (2/e=1) (3)

Inserting eq. (2) and (3) into eq. (1) yields
iw(z/c—l) 2iw 9 ‘Zx 82 Zx

e — |~ |+~

c oz| A 0z Ay

2 7 ik, z —ik,z
a Atot,x MOQS € te ;o\ Likyz
+ 822 - - 2 . ik,z . —ik,z J:€ €

e —1e i
1. Ignoring fast oscillating term~ ¢

—sin(k, z)

} cos(sz) _
+C.C.= —uoé’s( )]Z

w

2. Ignoring second derivative by assuming that the variation of Zx'
is negligible over the optical wave length.

k z



Wave Equation

After neglecting the fast oscillation terms, we get the following relation between the
current perturbation and the vector potential of the radiation field:

J ~ 0 ~ d ~ c ;. _
_Ax=_%<jze—zw> —Ay=ﬂ° S<Jze w>
0z 4iw 0z 4w
In order to relate the vector potential to the electric field, we use the Maxwell
equation: . . _ .
~ 0B = 0A .94\ =
VxE+a—=O=>V>< E+a— =0= E+a_ =V§0=>Exy=— X,y
ot ot ot ’ ot

_ Eeia)(z/c—t) -E_+ iEy — _%[(Zx + i;iy )eia)(z/c—z)]
= E = ia)(Zix + iZiy)

Finally, the relation between the radiation field and the current modulation is obtained:

2
iE=ia)(iAx+iiA )=_M<J’Z€—i¢>=%3




1-D High Gain FEL Equation for Cold Beam and
Zero Detuning

d . W d’
< B(2)=~i—5—D(2) 4 p_iE
Z C}/z 0 dZ
d 1 z =1z is normalized longitudinal location
—D=—-—el0 E :
dz 2 7 along wiggler,
d “nu,6 0w
Lg% p I'= %23 is the 1-D Gain rate parameter
dz 2 cy:vl,
dme,mc’
I, = , is called Alfven current
T _N3 ] |
3 A h=e =7+15 Growing mode
E(2)= ZB,CW P=i= AN
=1 A=e’ = —7“5 Damping mode

A=e ?=-i Oscillating mode



1D Gain Length

* At high gain limit, the radiation field is given by

E(é)zBle}"‘é = B, exp gl“z exp[i%l“z]
and the radiation power IS A: cross section of the radiation field

P(2)= goc‘E(é)z‘A = £,¢/B| exp(\/gl“z)= goc‘Bl‘erxp(Li)
G

and the 1-D power gain length is

Pierce Parameter

A y:Te T

1
L, = = =
V30 4x3p w 2k,

1-D amplitude gain length is  L;, =2L; = \ér = M%p




Solution for Cold Beam with Nonzero Detuning

For non-vanishing detuning, the differential equation becomes

d’ ) .Adz A ~y d N o[ A
gE(z)+21C@E(Z)—CZEE(Z)=ZE(Z)

The general solution of the ODE reads:
3
E(2)= Z B
=

3 LAY A : L . . N [
A« +2lC/l —CAy:l -4 -2 0 2 B

Reduced detune

Real part of eigenvalues

Applying initial condition to get the coefficients

E0)y (1 1 1\B By (1 1 1\'(E(0)
E'(O) = A] )l'z A's Bz e Bz = A1 /12 )'3 E'(O)
E"0)) \x & Z)\B B,) \A & &) (£"0)

For E(0)=E,_ and E'(0)=E"(0)=0, the solution can be explicitly written as

: Aodye™ Ae™ e
E\z)=FE
L] R 7 M AR gy M Y Fev




Low Gain Limit of High Gain Solution

Can we reproduce the previously obtained low gain solution by taking the proper limit of
the high gain solution?

( ) - T= - [—W=2F3lv3v
E_+AE) -E> 2AE . ss oA () 2 A cy:v 1y
= e ext =7 217°] f =——|1-cosC,——sinC R
& EZ, g, 7 )-2rsie) 4 ¢’ 2 ¢ =ci,
n 2
¢ (C )= E*-E%, | A A A A A el | 1 The normalization factor for
R PRV PREPS M PR FREVS M PRV PRy high gain is different from
o (é) i ZIr that of low gain:
S A ¢ =ciT=Cl /i =C/l
N A A 2 A A (2
. Ad, Aol Al
fh( 1)= 1A3 Ao + Ahe + Ake ‘ -1 A3+2ig/12— & A=i
2 || - 202 - 4) " (-2 NA-4) " (2 -2 ) - 4,) A
C).n(C
fh( l) fl( 1) The high gain solution indeed give identical .
] =002 TN solution when the undulator is shorter than — 5(G)
ool [\ the gain length. But it also tell us what
o \ happens if the undulator is long and hence it is =2
005 f \  more general than the low gain solution.
~t “-f5‘ - J i e TN N —
~00§ - =15 "1/ S >~"10 15
—o.ﬁ'o;
\ / A -0/10 -
v | fz(Cz)/
-015*+



Bandwidth at High Gain Limit |

It is sometimes hard to extract insights from the exact
solution of the 3" order polynomial equation for the
eigenvalue. Therefore, it is useful to get the approximate
solution which is simpler but gives accurate results for
the region that we are interested in.

Growth rate

R +2iCX2 -C’A=i  A=a,+aC+a,C

2

~

f(é) = (ao +azl(A?+azC2 )3 +2ié(az0 +alé+azéz)

f(é)=fo(aosalsaz)+f1(aosalaa2)é+f2(aosalaaz)éz =0

(Homework) B
Zeroth order equation: f(O) =0= a, = 7+i§
' i if(CA') =0=
First order equation: 1C ., a = =i~
2
Second order equation: dA f(C) =0= g, = _1 ﬁ_il
dc? o 9l 2 2

0.8

0.6

0.4

— Exact
—— Approx.

Re(4)

Exp[10xRe(s,)]

-C? (a0+alé+azéz)—i=0

— Exact
—— Approximate

z=10




Bandwidth at High Gain Limit Il

After taking the approximate eigenvalue, the radiation field in frequency domain is

A

) o % 1
E(C): exp[aoz+a1Cz+a2sz]: exp —20&2 :Ué=\/_2Re(a2)2

V3 |1 @
Re(a)=-Y"  o.=3 .1, o e, @
() 18 ¢ J3lz C‘r(kw 2cy§J '07/22(:

1D FEL bandwidth for radiation field: o, = FZC}/Z2 = 6cy’ / \/—k
z

1D FEL bandwidth for radiation power: o, = 9y _
2

Pierce Parameter

£
|
< b&‘

yle

)

I[):




Coherent Length

Coherent length is the width of the radiation wave-packet generated by a delta-like excitation.

2

2
w

E(a)) exp | - t

=>E(t): exp |-

‘az‘ -k z 2k z
i ,ORe a2 3kc pf \fa

207

20" t

w




FEL Gain for warm Beam with Lorentzian Energy
Distribution

—q-02 F(f’):—ih

—
I

q=2 1

Energy distribution, F(P)
o
!
\
|
~o»
[
1
(=)
i
Real part of eigenvalues

‘ Pierce Parameter

OJ ﬂ \§ y;FC

-4 -2

Relative energy deviation / Rho

3
If there is no initial modulation in d E(f) + 2(1-6' + é)
the electron beam: ds>

E(2)+(iC+4) E(2)=iE(2)

The eigenvalues are determined by : /'t(ﬂ. +q+ l(’:’)2 =]

* FEL gain reduced substantially when the relative energy spread
become comparable or larger than the Pierce parameter.




FEL Saturation |

Like any other amplification mechanism, the exponential growth of FEL radiation can not
continue forever. One of the criteria to determine the onset of saturation is when there is

no electrons to be bunched further, i.e.0n/n, ~1, which happens to be the point where
nonlinear effects starts to take over.

=n,+0
n(z/J) o n(w) For FEL process starts from shot
noise, i.e. SASE, the maximal gain
B) can be derived as

>

57!/710 ~ 1 |:> gmax S

N,=L, /4, is the ratio between
coherent length and the radiation
wavelength.

. M is the number of electrons in

undulator distance a radiation wavelength.

Log(radiation power)




FEL Saturation Il

There are other criteria which give similar results for the maximal Gain in SASE:

Ea
7
R |

power A

F\ - F
o i Il L i L i A 1 3 -
0 z
{wiggler length]
“—=20Lg- -‘
4 R Saturation Length ~ 20 L g
¢ d ( +£j+ﬁsin( +£)—0
dz’ Ty LA
s o Vi _ eEQw _ 1 _ fr
Pl y2cE, L,

E
— 24— e .0
A: cross section of the beam (and the radiation field) P =€l A=x"p B 1,

Hence the Pierce parameter is also

2 . anumerical factor in the order of one. (homework) Callod efficiency parameter



FEL Saturation Il

* If we use the result that FEL typically saturates at 20
power gain length, the FEL bandwidth at saturation is
given by

2p0 1 A,

_2p
o, =30 ~ 3w, L. = =
’ 0 \/gszsat \/\/_k 20L ¢ \/gr 4777\/5,0

FEL bandwidth for radiation amplitude at saturation:

o 20
2 = 3w =~ 0+1.8
Wy 0 \/gszsat g

FEL bandwidth for radiation power at saturation:

OA ,sat a) ,sat \/_
N 90 =~ p




3D Effects: Diffraction

2
The radius of the radiation at a given distance is given by w(z) = W, /1+ (i)
ZR

The Rayleigh length or Rayleigh range is the distance along the propagation direction of a
beam from the waist to the place where the area of the cross section is doubled.
2
TTW
For a Gaussian radiation beam: Zp = p -
opt
The size of the electron beam and the seeding radiation field optics have to be properly
chosen so that the interaction efficiency between radiation fields and electrons can be
optimized.




Three Dimensional Effects: 3D Gain

* Inreality, the gain length will be longer than the 1D gain length due to diffraction,
electron emittance, and electron beam energy spread. It is difficult to obtain a general
analytical expression for the gain length with all these effects taken into account.

* The analytical approach typically involves expansion over a series of transverse modes.

* For the dominant transverse mode, there is a fitting formula derived by Ming Xie, which
is typically of the accuracy of 10% compared with simulation results.

Ming Xie's fitting formula for 3D gain length LLD — Lm (1 — A)

A=045n" 40550 4307 + 0350202 + 51,70 +0.62n7n.!

i

= o=~ 076 23 17 21..29 28 - 043
+3.3n, ., +120n n 0, +3.7n,7 0,0,
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FIG. 9. (Color) Evolution of the LCLS transverse profiles at different z locations (courtesy of Sven Reiche, UCLA).



