Home Work PHY 554 \#10. Handed October 10, Due October 17, 2018

HW 1 (2 points): Calculate relations between three dimensionless infinitesimal parameters:

$$
\frac{d E}{E} \equiv \frac{d \gamma}{\gamma} ; \frac{d p}{p} \equiv \frac{d(\beta \gamma)}{\beta \gamma} ; \frac{d \mathrm{v}}{\mathrm{v}} \equiv \frac{d \beta}{\beta}
$$

where E is energy, p is momentum and v is velocity of a particle. Hint: use relativistic relations between β and γ.

HW 2 (5 points): In class we introduced the map of longitudinal motion in a storage ring

$$
\begin{gather*}
\delta_{n+1}=\delta_{n}+\frac{e V_{r f}}{\beta^{2} E_{o}}\left(\sin \phi_{n}-\sin \phi_{s}\right) ; \tag{1}\\
\phi_{n+1}=\phi_{n}+2 \pi h \eta \cdot \delta_{n+1},
\end{gather*}
$$

1. For small oscillation variations of the RF phase about the synchronous phase

$$
\varphi=\phi-\phi_{s} ;|\varphi| \ll 1
$$

linearize the map (1) by keeping only first order on φ and find one turn transport matrix M for longitudinal motion:

$$
\binom{\delta}{\varphi}_{n+1}=M\binom{\delta}{\varphi}_{n}
$$

2. Using Courant-Snyder parametrization we used for transverse motion find value of $\cos \mu_{s}, \beta_{s}, \alpha_{s} \quad$ in parametric form (e.g. using $\sin \mu_{s}=\sqrt{1-\cos ^{2} \mu_{s}}$, $\left.\mu_{s}=2 \pi Q_{s}=\cos ^{-1}\left(\cos \mu_{s}\right)\right)$.
3. Assuming that $\mu_{s} \ll 1$, find analytical expression for synchrotron tune and compare it with that we found in Lecture 12.

HW 3 ($\mathbf{3}$ points): (4 points) For our example in lecture 12, find the synchrotron tunes for 100 GeV and 15 GeV protons in a storage ring for the following parameters (similar to RHIC collider at BNL):
RF voltage, $\quad \mathrm{V}=500 \mathrm{kV}$
Depending on the sing of the slip facor the synonymous phase is zero or 180 degrees,

$$
\phi_{s}=0, \pi
$$

Harmonic number,

$$
\mathrm{h}=360
$$

Compaction factor,

$$
\alpha_{c}=0.002
$$

