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Comparing (89) with (88) finally give us relations between eigen vectors and Σ matrix and our 
parameterization: 

Σ = ΘT( )−1ΞΘ−1 =OΞOT →

O = ΘT( )−1 = −SΘS;
    (90) 

Hence, we closed the circle: Any arbitrary Σ matrix can be brough to diagonal form 

Σ =OΞOT ; Ξ =

... 0 0 0
0 ε i 0
0 0 ε i 0
0 0 0 ...
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with real symplectic matrix O  which can be used as definition of eigen vectors for any beam 
distribution. At the same time, Gaussian distribution in a storage ring (or a periodic system) 
using parameterization (in real notations) 

f X( ) = 1
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will generate Σ matrix in eq. (90). Hence, we established one to one correspodnece between 
various defintions of emittance.  Definition that we estanlish here  
As the final note – we found thre out of 15 possible inependent invariant of motion. We will 
dicuss the others during next class. 
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What we learned today 
•  We studies some of best known kinematic invariants of motion in linear 

Hamiltonian systems – eigen “RMS” emittances 
•  We define classes of invariants, including those coming from quadratic form (Σ-

matrix) of phase space particles positions 
•  We eigen “RMS” emittances them by transforming the quadratic form (Σ-matrix) 

using a symplectic transformation    of coordinates to positively defined double-
degenerated diagonal matrix 

•  The diagonal terms are nothing else that eigen emittances which are invariants of 
motion 

•  We than compared our finding with parameterization we used for the describing 
particles motion – using a Gaussian distribution we got for a storage ring with 
synchrotron radiation -  and found relation between the parameterization and  the 
symplectic matrix     : 

•  This provided us with additional way of determining parameterization of particle’s 
motion in any piece of accelerator, not only in period systems.   
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O = ...ReYk , ImY ...[ ] = ΘT( )−1 == −SΘS
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