Homework 1. PHY 564 August 312015
Due September 9, 2015

Problem 1. 2 points. Lorentz transformations

Show explicitly that two successive Lorentz transformations in the same direction are equivalent to a single Lorentz transformation with $v=\frac{v_{1}+v_{2}}{1+\left(v_{1} v_{2} / c^{2}\right)}$.

Problem 2.2 points. 4-invarints

Show that trace of a tensor is 4-invariant, i.e. $F_{i}^{i} \equiv \sum_{i=0}^{3} F_{i}^{i}=i n v$.

Problem 3. Lorentz group

a) $\mathbf{5}$ points. For the Lorentz boost and rotation matrices \mathbf{K} and \mathbf{S} show that

$$
\begin{aligned}
& (\vec{\varepsilon} \overrightarrow{\mathbf{S}})^{3}=-\vec{\varepsilon} \overrightarrow{\mathbf{S}} ;(\vec{\varepsilon} \vec{K})^{3}=\vec{\varepsilon} \vec{K} ; \forall \vec{\varepsilon}=\vec{\varepsilon}^{*} ;|\vec{\varepsilon}|=1 ; \\
& \text { or }(\vec{a} \overrightarrow{\mathbf{S}})^{3}=-\vec{a} \overrightarrow{\mathbf{S}} \cdot \vec{a}^{2} ;(\vec{a} \overrightarrow{\mathbf{K}})^{3}=\vec{a} \overrightarrow{\mathbf{K}} \cdot \vec{a}^{2} ; \forall \vec{a}=\vec{a} .
\end{aligned}
$$

b) $\mathbf{5}$ points. use this results to show that

$$
\begin{aligned}
& e^{\vec{\omega} \overrightarrow{\mathbf{S}}}=I-\frac{\vec{\omega} \overrightarrow{\mathbf{S}}}{|\vec{\omega}|} \sin |\vec{\omega}|+\frac{(\vec{\omega} \overrightarrow{\mathbf{S}})^{2}}{\vec{\omega}^{2}}(\cos |\vec{\omega}|-1) \\
& e^{\vec{\beta} \vec{\beta}}=I-\frac{\vec{\beta} \overrightarrow{\mathbf{K}}}{|\vec{\beta}|} \sinh |\vec{\beta}|+\frac{(\vec{\beta} \overrightarrow{\mathbf{K}})^{2}}{\vec{\beta}^{2}}(\cosh |\vec{\beta}|-1)
\end{aligned}
$$

Draw connection to Lorentz transformations (e.g. boosts and rotations).

With solutions:

Problem 1. Show explicitly that two successive Lorentz transformations in the same direction are equivalent to a single Lorentz transformation with $v=\frac{v_{1}+v_{2}}{1+\left(v_{1} v_{2} / c^{2}\right)}$.
Solution: Each Lorentz transformations along x -axis corresponds to the blockdiagonal matrix with parameterization of :

$$
L_{i}=\left[\begin{array}{cc}
L_{i} & O \\
O & I
\end{array}\right] ; L_{i}=\gamma_{i}\left[\begin{array}{cc}
1 & \beta_{i} \\
\beta_{i} & 1
\end{array}\right] ; O=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right] ; I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ; \operatorname{det} L_{i}=\gamma_{i}{ }^{2}\left(1-\beta_{i}{ }^{2}\right)=1
$$

and we should find parameters of L by brining it to the same form

$$
L=\left[\begin{array}{ll}
L & O \\
O & I
\end{array}\right]=L_{2} L_{1}=\left[\begin{array}{cc}
L_{2} & O \\
O & I
\end{array}\right]\left[\begin{array}{ll}
L_{1} & O \\
O & I
\end{array}\right]=\left[\begin{array}{cc}
L_{2} L_{1} & O \\
O & I
\end{array}\right] ; L=L_{2} L_{1} .
$$

The fact that $\operatorname{det} L=\gamma^{2}\left(1-\beta^{2}\right)=1$ for any L is taking care of the rest:
$L=L_{2} L_{1}=\gamma_{1} \gamma_{2}\left[\begin{array}{cc}1 & \beta_{2} \\ \beta_{2} & 1\end{array}\right]\left[\begin{array}{cc}1 & \beta_{1} \\ \beta_{1} & 1\end{array}\right]=\gamma_{1} \gamma_{2}\left[\begin{array}{cc}1+\beta_{1} \beta_{2} & \beta_{1}+\beta_{2} \\ \beta_{1}+\beta_{2} & 1+\beta_{1} \beta_{2}\end{array}\right]=\gamma_{1} \gamma_{2}\left(1+\beta_{1} \beta_{2}\right)\left[\begin{array}{cc}1 & \frac{\beta_{1}+\beta_{2}}{1+\beta_{1} \beta_{2}} \\ \frac{\beta_{1}+\beta_{2}}{1+\beta_{1} \beta_{2}} & 1\end{array}\right]$

Problem 2. Show that trace of a tensor is 4-invariant, i.e. $F^{i}{ }_{i} \equiv \sum_{i} F^{i}{ }_{i}=i n v$.
Solution: $\quad \operatorname{Trace}\left(F^{\prime}\right)={F^{\prime}}^{i}{ }_{i}=\frac{\partial x^{\prime i}}{\partial x^{k}} \frac{\partial x^{j}}{\partial x^{i}} F^{k}{ }_{j}=\frac{\partial x^{j}}{\partial x^{k}} F^{k}{ }_{j}=\delta_{k}^{j} F^{k}{ }_{j}=F^{k}{ }_{k}=\operatorname{Trace}(F) \#$

Problem 3. Lorentz group

c) $\mathbf{5}$ points. For the Lorentz boost and rotation matrices \mathbf{K} and \mathbf{S} show that

$$
\begin{aligned}
& (\vec{\varepsilon} \overrightarrow{\mathbf{S}})^{3}=-\vec{\varepsilon} \overrightarrow{\mathbf{S}} ;(\vec{\varepsilon} \vec{K})^{3}=\vec{\varepsilon} \vec{K} ; \forall \vec{\varepsilon}=\vec{\varepsilon}^{*} ;|\vec{\varepsilon}|=1 ; \\
& \text { or }(\vec{a} \overrightarrow{\mathbf{S}})^{3}=-\vec{a} \overrightarrow{\mathbf{S}} \cdot \vec{a}^{2} ;(\vec{a} \overrightarrow{\mathbf{K}})^{3}=\vec{a} \overrightarrow{\mathbf{K}} \cdot \vec{a}^{2} ; \forall \vec{a}=\vec{a} .
\end{aligned}
$$

d) $\mathbf{5}$ points. use this results to show that

$$
\begin{aligned}
& e^{\bar{\omega} \overrightarrow{\mathbf{S}}}=I-\frac{\vec{\omega} \overrightarrow{\mathbf{S}}}{|\vec{\omega}|} \sin |\vec{\omega}|+\frac{(\vec{\omega} \overrightarrow{\mathbf{S}})^{2}}{\vec{\omega}^{2}}(\cos |\vec{\omega}|-1) \\
& e^{\vec{\beta} \vec{\beta}}=I-\frac{\vec{\beta} \overrightarrow{\mathbf{K}}}{|\vec{\beta}|} \sinh |\vec{\beta}|+\frac{(\vec{\beta} \overrightarrow{\mathbf{K}})^{2}}{\vec{\beta}^{2}}(\cosh |\vec{\beta}|-1)
\end{aligned}
$$

Draw connection to Lorentz transformations (e.g. boosts and rotations).
Solution: it is possible to do it by multiplying three matrices and getting confirmation. Otherwise, we can test that:

$$
\left.\begin{array}{c}
(\vec{a} \vec{K})^{3}=(\vec{a} \vec{K})^{2} \cdot \vec{a} \vec{K} ; \\
K_{\alpha} K_{\beta}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \delta_{\alpha \beta}+\left[\begin{array}{cc}
0 & 0 \\
0 & u_{\chi \varepsilon}
\end{array}\right] \delta_{\chi \alpha} \delta_{\varepsilon \beta} ; u=\left[\left.\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1
\end{array} \right\rvert\, ;\right. \\
1
\end{array} 111\right] ; ~ ; ~\left[\begin{array}{ll}
1 & 1
\end{array}\right]
$$

and use it to calculate square of the matrix:

$$
\begin{gathered}
(\vec{a} \vec{K})^{2} \equiv \sum_{\alpha, \beta=1,2,3} a_{\alpha} a_{\beta} K_{\alpha} K_{\beta}=\left[\begin{array}{cc}
\vec{a}^{2} & 0 \\
0 & 0
\end{array}\right]+\sum_{\alpha, \beta=1,2,3}\left[\begin{array}{cc}
0 & 0 \\
0 & a_{\alpha} a_{\beta} u_{\chi \varepsilon}
\end{array}\right] \delta_{\chi \alpha} \delta_{\varepsilon \beta}=\vec{a}^{2} I+X \\
X=\left(\sum_{\alpha, \beta=1,2,3}\left[\begin{array}{cc}
0 & 0 \\
0 & a_{\alpha} a_{\beta} u_{\chi \varepsilon}
\end{array}\right] \delta_{\chi \alpha} \delta_{\varepsilon \beta}-\vec{a}^{2}\left[\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right]\right) .
\end{gathered}
$$

First term gives us desirable answer if product of matrix X and $\vec{a} \vec{K}$ is zero. It is easy to show:

$$
\begin{aligned}
& \vec{a} \vec{K}=\left[\begin{array}{cc}
0 & \vec{a} \\
\tilde{\vec{a}} & 0_{3 \times 3}
\end{array}\right] ;-\vec{a}^{2}\left[\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & \vec{a} \\
\tilde{\vec{a}} & 0_{3 \times 3}
\end{array}\right]=-\vec{a}^{2}\left[\begin{array}{cc}
0 & 0 \\
\tilde{\vec{a}} & 0_{3 \times 3}
\end{array}\right] ; \\
& \sum_{\alpha, \beta=1,2,3} a_{\alpha} a_{\beta} \delta_{\chi \alpha} \delta_{\varepsilon \beta}\left[\begin{array}{ll}
0 & 0 \\
0 & u_{\chi \varepsilon}
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & \vec{a} \\
\tilde{\vec{a}} & 0_{3 \times 3}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
\tilde{\vec{b}} & 0_{3 \times 3}
\end{array}\right] \\
& b_{\chi}=\sum_{\alpha, \beta, \varepsilon=1,2,3} a_{\alpha} a_{\beta} \delta_{\chi \alpha} \delta_{\varepsilon \beta} a_{\varepsilon}=a_{\chi} \sum_{\alpha, \beta, \varepsilon=1,2,3} a_{\beta} \delta_{\varepsilon \beta} a_{\varepsilon}=a_{\chi} \cdot \vec{a}^{2} \Rightarrow \vec{b}=\vec{a} \cdot \vec{a}^{2}
\end{aligned}
$$

For \mathbf{S} it is even easier, noting that it is already block-diagonal matrix:

$$
S_{\alpha}=e_{\alpha \beta \gamma}\left[\begin{array}{cc}
0 & 0 \\
0 & u_{\beta \gamma}
\end{array}\right]
$$

and further we can drop all time components operating with 3×3 matrix:

$$
\begin{gathered}
{\left[S_{\alpha}\right]_{\beta \gamma}=e_{\alpha \beta \gamma} ;[\vec{a} \vec{S}]_{\beta \gamma}=a_{\alpha} e_{\alpha \beta \gamma} ;} \\
(\vec{a} \vec{S})^{2}{ }_{\beta \eta}=\left[a_{\alpha} a_{\varepsilon} S_{\alpha} S_{\varepsilon}\right]=a_{\alpha} a_{\varepsilon} e_{\alpha \beta \gamma} e_{\varepsilon \eta} ; e_{\alpha \beta \gamma} e_{\varepsilon \eta \eta}=-e_{\alpha \beta \gamma} e_{\varepsilon \eta \gamma}=-\delta_{\alpha \varepsilon} \delta_{\beta \eta}+\delta_{\alpha \eta} \delta_{\beta \varepsilon} ; \\
\delta_{\alpha \varepsilon} a_{\alpha} a_{\varepsilon}=\vec{a}^{2} ; a_{\alpha} a_{\varepsilon} \delta_{\alpha \eta} \delta_{\beta \varepsilon}=a_{\eta} a_{\beta} ;(\vec{a} \vec{S})_{\beta \eta}^{2}=I \vec{a}^{2}+a_{\beta} a_{\eta} ; a_{\beta} a_{\eta} a_{\mu} e_{\mu \eta \theta} \equiv 0!
\end{gathered}
$$

which is equivalent to

$$
(\vec{a} \vec{S})^{2}(\vec{a} \vec{S})=-\vec{a}^{2}(\vec{a} \vec{S}) \# \mathrm{~S}
$$

b) is trivial for any matrix

$$
M^{3}=(-1)^{n} x^{2} M ; n=0,1
$$

which also means that

$$
M^{4}=(-1)^{n} x^{2} M^{2} ;
$$

Separating serie into zero order, odd and even terms:

$$
e^{M}=\sum_{k=0}^{\infty} \frac{M^{k}}{k!}=I+\sum_{k=0}^{\infty} \frac{M^{2 k+1}}{(2 k+1)!}+\sum_{k=1}^{\infty} \frac{M^{2 k}}{(2 k)!}
$$

and then use induction principle to remove all powers higher then two:

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{M^{2 k+1}}{(2 k+1)!}=\sum_{k=0}^{\infty} \frac{\left(M^{2}\right)^{k}}{(2 k+1)!} M=M \sum_{k=0}^{\infty} \frac{\left\{(-1)^{n} x^{2}\right\}^{k}}{(2 k+1)!} \\
& \sum_{k=1}^{\infty} \frac{M^{2 k}}{(2 k)!}=\sum_{k=1}^{\infty} \frac{\left(M^{2}\right)^{k}}{(2 k)!}=M^{2} \sum_{k=1}^{\infty} \frac{\left\{(-1)^{n} x^{2}\right\}^{k}}{(2 k)!}
\end{aligned}
$$

brining the rest of the problem to known exponents:

$$
\begin{aligned}
& i^{n} x \sum_{k=0}^{\infty} \frac{\left\{(-1)^{n} x^{2}\right\}^{k}}{(2 k+1)!}=\frac{1}{2}\left\{e^{i^{n} x}-e^{-i^{n} x}\right\} ; \\
& 1+(-1)^{n} x^{2} \sum_{k=1}^{\infty} \frac{\left\{(-1)^{n} x^{2}\right\}^{k}}{(2 k)!}=\frac{1}{2}\left\{e^{i^{n} x}+e^{-i^{n} x}\right\}
\end{aligned}
$$

Therefore, both cases are identical with exception of the split between regular \sin / \cos and their hyperbolic twins.
In addition:

$$
\begin{aligned}
& M=\vec{a} \vec{S} \Rightarrow x=|\vec{a}| ; \Rightarrow \frac{M}{x}=\frac{\vec{a} \vec{S}}{|\vec{a}|}=\hat{e} \vec{S} ; \\
& M=\vec{a} \vec{K} \Rightarrow x=|\vec{a}| ; \Rightarrow \frac{M}{x}=\frac{\vec{a} \vec{K}}{|\vec{a}|}=\hat{e} \vec{K} ; \# \# \\
& \hat{e} \rightarrow \vec{\beta} ;|\vec{a}| \rightarrow \zeta
\end{aligned}
$$

What is left? Question about general expression for

$$
e^{\vec{a} \vec{S}+\vec{b} \vec{K}}=\sum_{n=0} \frac{(\vec{a} \vec{S}+\vec{b} \vec{K})^{n}}{n!}
$$

