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Lecture 14. Applications of parameterization to standard accelerator problems

Complete parameterization developed in previous lecture can be used to solve most (if
not all) of standard problems in accelerator. Incomplete list i1s given below:

Dispersion

Orbit distortions

AC dipole (periodic excitation)

Tune change with quadrupole (magnets) changes
Chromaticity

Beta-beat

Weak coupling

Synchro-betatron coupling
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Beyond Hamiltonian system - weak (slow) damping
10. ....and diffusion
1. ...

We do not plan to go through all these examples while focusing on general methodology
and use selected examples to demonstrate power of the symplectic linear
parameterization. We will use complex form of parameterization since it gives more
transparent frequency content of the oscillations, but one can do similar exercise using
real notations — after all results in real life are in real notations.



Sample 1. Let’s start from simplest problems such as dispersion and closed orbit. We found a
general form of parameterization of linear motion in Hamiltonian system, which is solution of
homogeneous linear equations, where B 1s constant vector:

dX

d—=D(s)-X;X=fJ(s)-B (14-1)
A
A standards problems is a solution of inhomogeneous equations:
‘;—X =D(s)- X + F(s); (14-2)
A

It can be done analytically by varying the constant B:
X =U(s)B(s) = U B =F(s)= B'=U"(s)F(s) > B(s) = B, + | U (OF(dé

A general solution is a specific solution of inhomogeneous equation plus arbitrary solution of the
homogeneous — result you expect in linear ordinary differential equations (in this case with s-
depended coefficients):

X(s)=U(s)A, +ﬁ(s)jﬁ-'(§)1:(§)d§; 0'=18.07 (14-3)



For a periodic force (orbit distortions, dispersion function) F(s+ C)= F(s) one can fine periodic
solution X(s+C)=X(s):

X(s)=0(s) B(s): B(s>=A,,+0(s)jﬁ-'(é)F(é)dé;

X(s)=X(s+C)=0(s)A, +U(s _[U )F(E)dE = U(s+C)A,+TU(s+C) IU )F(E)E
U(s+C)=T(s)U(s fU“‘ g)dgzjfr' F(EME + j U~ (&)F(EME;
i (14-4)
U(s)B(s)=0(s)AB(s)+0(. J‘U (EME
ﬁ”'(s)x{ﬁ(s)B(s)—fJ(s) (s)=U(s AJ. U é)di_f}
<I—A)B(s>=A”fﬁ-'(s)/f«:)d@sfﬁ*(a)néw::ze N [ 0@ ens
X(s)=U(s)B(s) ) jU F(&MéE

It is easy to see that X(s+ C)= X(s) exists if none of the eigen values is not equal 1 — otherwise
matrix (I-A) would have zero determinant and can not be inverted!



Specific examples: Orbit distortions caused by the field errors, transverse dispersion.

When the conditions for the equilibrium particle and the reference trajectory are slightly
violated:

X" ={x,P,y,P,,T.8}F" = {0,5(6& + o5, }0,5[6& -LosE, ]o,o}
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Plugging (14-5) into (14-4) will give one the periodic closed orbit for such a case. For
transverse dispersion the finding reduces to

f]— £ f‘_=i[5B\,+ﬂ5E‘_} . (14-5)
h B 2% o R

2 2 2 2 2 2.2
A=t h L P2 N+ G+ L(xP, - yP)+ o mie +g x8+g.y8
2p() 2 2 ‘ 2p0 po‘- . .

with

OH 22 |”
mc-
F=S2"={0-¢ .0~g 0"t . (14-6)
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First example: orbit distortion

£l8)=— eOB, () . £()= eOB ()
p.c p.c
(o W) fedB () . oY
Sx(s) = zsmmgb = (&) cos((s) —w(E) - u/2)dé
5_)’(8) o w(s) é(’&\(g) W(é)COS(W(S)—l//(é)—H/Z)dg

- 2smul/2 . pe (14-9)

but this is not the end of the story for horizontal motion! What about change of the orbiting time?
Second example: Dispersion

f.(8)=K (s)m, =K ()7 /B,;
x(s)=n,)m =n.5)-7m_/B,;

- 25;:(2),2 Q?Ko(é)W(é)cos(w(s)—w(é)—u /2)dé (14-10)

n.(s)=



Sample II: Beta-beat — 1D case

Let’s consider a case when we are designing a circular accelerator comprised of various

parts and want parameterization parameters (in this case envelope function w) to have a
specific s-dependence. For example, we want it to fit a long periodic arc of an accelerator

or generate a very specific w(s) — consistent with equations of motion - to satisfy a
specific function needed from accelerator: minimize emittance, achromatic lattice. ...

It is simple fact that any solution can be expanded upon the eigen vectors of periodic

system (FODO cell repeated again and again is an example). Let ‘s consider that at
azimuth s=s, initial value of “injected™ eigen vector V being different from the periodic

solution Y. We expand it as

" 150
V(s,)=aY,(s,)+bY, (s,)= ‘,:+L Ve =l b 5 6
v, w, E
1 . 1 " L
=— Y7 (s,)8V(s,) s b=— Y, (s,)SV(s,) (190 L
2i -2
a—l vw —w e Ko By = L vow —w v +i - Yo %o 1 0 ’ :
2‘ e o n,” V“ 2‘ ] W'" v" ’ 0 500 1000 1500
s [m]
d v O % Wis)
d—Y(s)=D(s)~Y(s); Y(5) =Y ()" Y (s+C)=Y(s) A e
A 56 BetaX — Betay ]
It is self-evident that 2l | A
g | \
) o ) . v ' w w ‘ Baal | | r ; ‘ / ‘I
V=DV, V(s)=aY,(s)+bY, =| ;. Tev=¥= r i+, 0 = A p V|
(s)=aL(s) e 8) Wi =9y e W= gl,, 3 .l | V| I !\I ||| "' ,[,‘ \ L& §
v W W !| (| 'i | Ir i £
S R TT | = |v. i) ‘J‘ A
N > 23 . iy “"‘ ‘ (4~ 1 !’., f b
71 +be (ia| +|b|" —2Re(ab’e )) A0 J ] ; ) ] ‘l'ei-.‘ J { | kl' l A\
i.e. beta-function will beat with double of the betatron phase. o



Sample I11: Perturbation theory (ala quantum mechanics)
Small variation of the linear Hamiltonian terms (including coupling)
L2 =(D(s)+€D,(s))- X = (SH(s)+eSH,(s))- X
ds (14-13)

dYk(S) e D(S)};k(s);k == l,..,n-
ds

Assuming that changes are very small we can express the changes in the eigen vectors
using basis of (15):

Y, =Y e +ecy +£2(aLY +b,Y" )+0(£");k=l,...,n

K~
J#k

,*=)7 %% 4 gc’ Y+£‘Z(a ¥ +b“ ,)+0(8)

JEk

~

(14-14)

Lol

d YlA
0

=(D(s)+€D,(s))-Y,, +o(e”);



We need substitute the expansion of the new eigen vectors into the differential equation and to
keep first order term of &

Y, =Y +ec Y, +£Z(%f1 +bk;;)7:)+0(£2)? k=1,..,n
J#k
Y™ +8¢Y e +eclY +ec,V! +£2(a Y. s b X ])+EZ((1MY,’+17 ')

J#k J#k

D| Vo™ +ec ¥, +ey (a,¥,+b,Y ) |+€D,(s)F,e™ +O(e)
, Tk
Y/=DY;Y ' =DY ..
and all terms in red cancel each other leaving us with

SpY,e™ +ecl¥, +e) (alY, +bY" )= €D, (s)Y,e™

J#k

which we can split into individual equations for each component using symplectic orthogonality
of the eigen vectors

~

YkT*S);j = _?ZS?: = 2i6ik; )7AT-SY~J‘ = ?RT*SYJ* =0
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Multiplying by ¥ °S or ¥ S from the left yields:

-280{ = £7,SD,(5)F, — 8=~ ¥, "H()Y,: SD, =-H;

2 ;i 1 i 1 g
—2ic’ =YISD,(s)Y, €™ > ¢’ = 2—iYkTH,(s)Yke'(""‘ ) & 2—iYTkH,Yke"“’*
~ ~ _1 " ilwr, —y +6 _1 " iy, =y, y
2iazj — yz‘bl(s)ykef&ﬁ; — al:j = Eyj THI(S)YAE"% Y +00; ) = EYJ THI(S)Yke(Wu V’)’J *k

1 T ilw, +y  + 1 T i+ .
“2ib{, =¥'D,(s)F,e™ — b] —;Yj'Hl(s)Ykew‘ Vi) EEYJ.’Hl(s)Yke(V‘ v j#k.

with solutions in form of integrals:

op(s)=9,+ g_[ Y, "HY,dE; c(s)=c,+ %JdekTH,Ykei(z"’”w‘ .
0 {

_J-déy TH Y (V’L"‘Wﬂ'&?t)

LJn

1 ( ¥ ily- ,’f&%.
akaakjo—z—ij.d’g')’j THIYke(W y );bkj

T | +00, l . i+
Y'IL(S):},lAe (W“.’MA):YL, +£CLYK e (‘2W‘ wﬁ)[cu-{-?jdgykTHlYke (-WL &A)J_’_
l
0

(

J

£y, ' +0(e?)
j*k Y"’je"i(W1+W,+6¢¢.)( _Idéy TH Y (W&+W)+501)]

\

A s A
Y.e—'(Wk_W'+6¢k) [akjo - 2Lijdéyj*THJYkel(w_w'&&k)] +

kio

J



Now we want to have periodic eigen vectors, e.g.
C
¥ ¥ iy € 3
Y (s +C) =Y, (s)e™; 1y, = 1, +§J‘YA THlYk dc;
0

into periodic functions, we need to choose the initial conditions

i6)=| 4.~ L Jaer @ | g r0)=116),

to make a coefficient looking

e—ig(ﬁc)(d,,"'ﬁj. déf(g)el@(i)j: —i6( b)(d +J.d€f f9(§))

jd&f B ) )(d +

V

o0

| dEf (é)e’”‘f’):

.H—C

(d +Idéf ] 71—)_—1 df(§)e™.

o
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Final expression is:

Yk* -i(2y,+8¢,)  s+C . I
Zi(l—ei(z“kﬂ%)) I dEY"HY "% 4

( i(wj_wk_‘sd’k) s+C | \
— Y,,'e J.( a’éY THY ei(w—wﬁ&)" ) &
. "(,:uk_.uﬁ“&‘t) J 1= k
2i{1-¢" s

ey , +0(”) (14-15)

ek * "’(V‘;'*'Wk*'&pk) s+C

J#k Yj e j deTH Y ei(y/k+|//j+6¢k)

2!(1 _e’.(#ﬁl‘k“"aﬁk)) g 4 3

\ | )

We should note, that while it was easy to keep ou, ,0¢, in the final expression (14-15), it
belongs to the next order correction and generally speaking should be dropped.

Ylke—f(%ﬂ"@ “Y (S) Y +£

iy —p;)

One should be aware of the resonant case e =1, including parametric resonance

e”*™ =1, when one should solve self-consistently the set of (14-14). It is well known case
well described in weak coupling resonance case or in the case of parametric resonance.

13



Sample IV: small variation of the gradient. It can come from errors in quadrupoles or
from a deviation of the energy from the reference value. In 1D case (reduced) it is simple
addition to the Hamiltonian: (including sextupole term!)

2

H, =6K, % z={x.¥};
=plp,—1 (14-16)

T
aB e aB e azB 5
oK, =38 S22 |=f L6722 | km, 7| =22 +o(n
v +{pc x ] z{pc &\'J 'ﬂ'+[pc ox~ }" o(n, )

Plugging our parameterization into the residual Hamiltonian we get:
z=w(s)V21 cos(y(s) + @)
H, =K (s)- w’(s)- I-cos’(y(s)+ @)

The easiest way is to average the Hamiltonian (on the phase of fast betatron oscillation —
our change is small! And does not effect them strongly) to have a well-know fact that the

beta-function is also a Green function (modulo 47) of the tune response on the variation
of the focusing strength.

<5K, (s)- w:(s)>

(14-17)

(5K,(9)- )

(Hl>= 2 'IE
(¢)= ( ) _ (9K, (s; B, (14-18)
A(p*—(ﬁ&((s) B(s)ds: AQ-— ! (j.)(SK(v) B(s)ds;

Direct way will be to put it into the equations (43) and to find just the same, that <[">=0
and the above result. Finally, putting a weak thin lens as a perturbation gives a
classical relation:

5K(v)— d(s—s,)
f (14-19)

Ag _ 1 B.(s)
Q_27r 4 f

14



In general case of change in Hamiltonian of linear motion

H= %XT(H,,+6H,)X; X—{o. 1.} > 68H (9,.1,.5);

o (14-20)
A,Ltk 81 <6H (90/.*]/08» ds.
k o
H|(¢k~1k's):%AT0T6H10A=
n r n
—;-{Z‘JZTL( I(W‘+‘Px)+y* iy +o;) )} 6H| {Z\/sz(Ykeiw“Hm)+Y.kei(w‘+%))}
k=1 gl
& e ey WH) U
<H‘((Pk,lk,8)>(p=5k=l IKRC(Y Tk5H|(S)Yk)’ dS& = a]kl =5RC(Y T/\' 6H'(S)Yk)' (14_22)
or
do, OH, 1(- iy+0) . o ivio ) 4§ oreten)
L0 5 1)

d(p/‘> aH l =T 5
YT SH.(s)F .
<ds <al > il A

with Im(Y;"6H,Y,) =0 since
(v76HY) =(YI 6H,Y")=(r"6H,¥) =(v;'6HY)
Finally, the tune change is just an integral:

AQ, =St _ Ljyﬁs)anl(s)fk(s)ds (14-23)
2r  4my



Just to drive it home: 1D case

: w
AQ, = Az)u& =— Re wow+— 9%, © , 0 |ds=
T " S " +W (14-24)

1 C 3 ~ 1 C
E‘O[w 5Klds—a‘([ﬁ(s)5Kl(s)ds

It worth comparing with a traditional way of doing this: introducing a weak thin lens
(lumped focusing):

8K, — (3K ,1)8(s~ =—5 (s-s,) SK,—>8(K1)S(s-s,)

e \

s,+C

+ 0 Si i
T(s(,)=1cos,u+Jsinu=[ COSH sinit Hing }

—ysinu COS L+ orsin U
, 1 0 COS U + o/ Sin U Bsin i
-6K. 1 | | .. cos i +osin i — BK Isin it

TraceT = TraceT — BK Isiny;
POkl
2

sinp: BK I <<1— y' = pu+du

BSK _ B 5Q_i,
2 T 2f Arf

cos i’ =cosp—

cos(u+d8u)=cosp—dusinu — du =
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Synchro-beatron coupling.

When we were discussing 3D motion and synchrotron oscillations we arrived to the

following Hamiltonian

ﬂ-~(='}{,,+f}(5+6}(r

T+ T2
"%y vB
’}-(B— 5

o mc 3 3 T :
’H o = = +g\”\ +g\,?\ : :C.' :
Po o ‘ 2

(hk,(F+T,0)+9,)
h k ’

n o

—_ T
=T Tadd’ add r’\n\ﬁ np\'xﬁ + n\'ﬂ'.\ np\d r’ SX

dﬂ'r _ 8(5H) Z|E01|Sln( n »(T+Tudd)+¢u>.
ds p.C h k ’

n o

> e Y
+F ; +Nxﬁyﬁ+G%+L(xgﬂ5_\.—)’g7rﬂ.‘);

To make it solvable we superﬁc1ally removed T

add

‘}(J:((.ni] +g\r"+g‘r")nr-+ e EO(S)COS(hk(;T+(p0)
P, 2 pr hk

or in linear case

)

H =([ﬂ] +8:M. + 8, ] ik, = eE"(S)COS(p
P,

17



We identify that such “removal” is valid is RF system is located at dispersion-free place,
n =0. We further simplified the situation and replaces the RF cavity with the energy kick:

E,(s)= VRF5(S - SRF)

i eV hk,
Than we found that stability 0 <un, <2; u=——"—cos@,; cos@, *1
p.C
H, = Siﬂ_l \/unc —-(Lnr—)—-;ﬁr = abs __1_1_(_ S, = ‘Llntl
4 s U, 2sin

or in the case of slow synchrotron oscillations

uss\/ﬁ;ﬁf\A?;aFO;

In this approximation (weak longitudinal focusing) we can estimate effect on the
transverse betatron motion if RF system is installed where n#0 .

2 2

OH :u5(s—s,f)(T _2_1-]=u5(s—sd.)-{r—22“—"‘i—fraddj;

T, =N SX;X= Re(al}’,e"”' +a,Y,e"? ); t—Réw.ae™ iy, = %

18



First, let’s notice that term
<frtldd> = <Re(al)/le"l’| + azyzeiwl )Re wtateiw.\' >

contains only oscillating terms like y,, Ty and averages to zero. While the second term

; an'SY.e" +a,n'SY,e" +cc. )
<T add>= 2 =

2 T 2 2\ . T 2
ol "] el SEL sy 4 s
T 2 T 2
<5’}(>=u5(s—S,j.)5(s—srf)-Illn SY,| ;12|n SY,|"
i B oo,
AU, =%- n(sd.)T SYL_(SO,) e

19



Finally in combination with y * = un_ we can show that betatron tunes shift is indeed

T 2
s 2 ‘I](S.) SY,\,(S.«)‘
B u | T ‘ B us rf rf
Au, =g r’(srf) SY,‘,,(.S,_.,-) =5 i
proportional to 4 * and can be positive or negative depending on the “longitudinal mass”

responsible for

n(s,f)TSYk(s,f):

coupling between betatron and synchrony degrees of motion in many occasions. It is
worth mentioning that it has dimension of length, L:

sign, e.g. the sign of 17.. We will see expression

T i :
n SY k —3 wk.\'nlu' ’wk\’n.r ’n.\' /“)lr.\"

. '72 2 12
dim(n, /w,, —dlm( ) =—=1L,
( ' k) ﬁkv L

which just proves that previous equation is indeed has right dimensionally....

20



Sample V: Going beyond Hamiltonian system — taking dissipation into account
Let’s consider that an additional linear term is no longer a Hamiltonian

B (D(s5)+£d(s))- X;: D =SH;Trace[D]= 0:Trace[d] % 0 (14-25)

ds

e.g. the overall motion is no longer symplectic

X(s)=R(s)X,— o (D+ed)R — @iLlS.s_)l =Trace|d(s)]
s \ 4 (14-26)
del[R(s)] = EI Tmce[d(?j)]dé‘:

Such contributions can come form natural dissipative (or anti-dissipative) processes such as
radiation reaction (synchrotron radiation damping), ionization cooling or from special accelerator
systems, such as electron or stochastic cooling. Here we are not specifying what is the source of
the non-Hamiltonian force and only assume that it is linear.

Similarly to regular parameterization, we can assume that motion can be expanded as a set of
eigen modes

X(s)= V(s))((s)'b‘ — 2\7‘ ('s)e“"bk;dct Vis)=1; det(V(O)x(O)) =]

A=l

V(s)x(s)=R(s)V(0)x(0); det x(s)= I'[e“-" = exp( Z 2.(5) ];
k=1 =1

d ~ d ~ d ~ : d
Edel(V(s)x(s)) - E(detV(s)det x(5))= Edet(k(.s)V(O)x(O)) E E(det R(s))=1rD;

;—:dctz(s) =Y 1. (s)=Tr((D(s)+ed(s))) = eTr[d(s)].
d ki1

than (14-26) became

di.z'h (s)=¢eTrace|d(s))
fia (14-27)

2n

Z,X&(S)=Eijc€[d(§)]d§:

which is commonly know as a the sum of decrements theorem: sum of the decrements (or
increments!) of all eigen modes is equal to the integral of the trace of the dissipative matrix. This
is to a degree the most trivial and well known relation for ordinary differential equation.

21



What 1s more interesting 1s to find decrements (increments) of the amplitudes of individual
modes. Rewriting already established expansion (14-1)

X(s)= —U(s) A(s)=Re zy (s5)e’ Vs (o0 (s);ﬁﬁ(s) =D(s)- U(s)
= (14-28)

RczY(s) R ‘—ed ReZY g Witaly,

n
m=|

Using symplectic orthogonality of the eigen vectors we get equations of the evolution for
individual amplitudes:

ds 2i

Hence, the perturbation can slightly change the eigen modes (as we discussed above in ala
quantum perturbation) and phase of oscillations — the right side is not necessarily a real number.

4, _ € gitvom (2 YSQ)Y, ¥ a + Y Sd)Y e W9 } (14-29)

m=1

But the main effect of-interest is in change of the amplitude of the oscillations, which comes
from a simple averaging of (14-29). Since

Ay, =y, (s+C)-y,(s)=p,
Ay, 2y, )=ptp, ’
the only non-oscillating term in (14-29) is ¥, /(Sd)Y, and averaging yields
<‘%‘> 2—)’ . (9)(Sd($))Y (s)(a,);
| (14-30)
<ak>(s)=<ak>(,exp[—2%[r’; <§>-S-d(é)-n<§>d€}



At no surprise, we arrived to an equation nearly identical to (14-23) with only exception that we
did not assumed that motion is Hamiltonian. Indeed, if

if ed(s)=SoH,

(a,)(s)=(a;) exp[ jY mé)éﬂﬁ,,(é)d&}

Ap= EIY*T"' (5)5H1Yk(€)d‘§

It should not be surprising — we are solving more or less the same problem using more or less the
same method of varying constants.

The most useful form of (14-30) is calculation of dumping (or anti-damping) coefficients

E oo
_ 5§
~ C

c (14-31)
3 =_§jhn(y"7k (5)(Sd(s))Y, (s))ds

Naturally, the sum of the decrements 1s determined by the trace of the matrix. What is non-trivial

1s that we can re-distribute some (if not all) decrements between various modes of oscillations
using coupling between them.

As indicated above, we combine the real and imaginary parts:

i {’A“‘éi)

aet=a,,- e

) (14-32)
iAL—&, = EI(Y*T‘ (5)(SA(5))Y, (5))ds;

We will use this expression now and again.



Again 1D case

It gives us know fact that damping of the amplitude of the oscillation is 2 of the
dissipative term in x” =& x"+ K (s)x=0 :

0 0
ed:[ 0 =& J

- 0 -

5 | ;o 0 1 0 0 . s 5.3 : Sa
S, =—=Im| w w—— ¢ Py ==Im| -w+— w . ===
2 w -1 0 0 -¢, W= 2 w W+ — 2

W

By the way, the real part of the expression gives

’ l ’ én
=—ww =2
q’x 2 XX 2

while being interesting academically, it does not play too much role in the accelerators.
We will return to damping when considering synchrotron radiation effects in accelerators.

il

How radiation cools beam in a storage ring: vertical motion: Particle radiate in the
direction of the motion and RF cavity restores only longitudinal part of the momentum.
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Sample VI: Going beyond Hamiltonian system — random Kicks

Particle in accelerators frequently experience a sudden events, which change their
momenta essentially in instance. Naturally, there are no sudden changes of position — it
would require not infinite force, but also a finite time to change position.

Examples of such processes include: radiation of a photon (so called quantum fluctuation
of radiation), scattering on residual gas or on other particles inside the beam. The later is
called intra-beam scattering and is one of limiting factors in attaining small beam
emittances.

Again, let’s just add an additional term in our equation of motion (14-1):

c;—XzD(s)-X+DP(s);DP(s)=Z5Pa-5(s—sa) (14-33)
s a

which has similar appearance as (14-2) but has very different nature — it represents a
random process, not a regular continuous force. Nevertheless, we can find directly the
change of the oscillation amplitude and phase at each random kick:

i eViy (s, )5(czkei"’)su =0P, > E(ake""’)xu = e—""’*““)—z]—i)’z‘zs“ )SOP,;

k=1

(14-34)
4, ()" =a,+ XYL, )S6F,
4

AP
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Naturally, the exact result depends of a realization of the random process. But statistically

we can write the average change 1f the actions:

)

((1k+6ak) e | :2(1,\,5(1,\.'*'(501;)2

2
:ak

‘]k 7—)5sz

Now we need to look on the average picture again:
oy = 1q),6~ o —ts,) l YI( : SSP
A, =q,€",00,=¢€ 9k 5, )90F,
a | & % “ ~ o ~ i |2 N
Sla|” —(a, +50k)(ak +5ak)—akak =|6a,| +2Rea,6a,

4 oot 1
a,0a,=ae e ""‘““);YRSU)S5P‘,
i

(14-35)

(14-34)

Since the kicks occur at random locations and the phase of the oscillation is randomized.
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Hence,

<&:5&k> =<a e PVl _ = Y, (s,)SOP, >= (14-35)
i
and
(67,)= <5;“> <|5a‘ e |yfzs )SSP (14-36)

Now we need to introduce probability of the random kick dPat azimuth s to write an
statistical average growth of the oscillation amplitude:

ds

This growth is called diffusion (or random walk). It has interesting characteristic that
amplitude of oscillations growth proportionally to the square root of time — e.g. the action
grows linearly.

<ﬂ>=%<|y,fts)sap|2 -¢(s,5P)>= D,(s) (14-37)

Again, we will discuss values for specific processes later. What is interesting now is to
combine damping and diffusion. To do this we need to tone that without diffusion

dl, 1da, _da, :
e A
and adding diffusion we get to
dili‘) =—2& (5)(J, )+ D,(s);
\ ; (14-39)
—2j§‘t,:)d: s —’I"‘(u)du
<Jk(s)>= J e ° +je : D, (z)dz;

0
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In storage rings it is frequently that the processes are very slow and you can average the
damping and the diffusion over the circumference

<Dk> = (Dk(5)>c ;<‘§k> = <§k(s)>(‘

(J . (s)> = ¢ s [J at < D, >J' s dz] _ J”‘e_z':‘f* s 4

1}

CATAE O

and stationary action at large s (many turns) being

(Jk(s)>—>2<—é% (14-41)

This formula is very useful for both calculating and estimating the beam emittances in
presence of diffusion and dimpling.

Note, that an anti-damping <§k><0will cause exponential growth of the oscillating

amplitude and is almost is bad and instability of periodic Hamiltonian motion. Hence,
this is important for accelerators where damping plays significant role in the beam
dynamics, e.g. damping (anti-damping) time is much smaller or compatible with the
beam life-time in the accelerator.

Remarkably, I know about one storage ring (VEPP-4 in Novosibirsk), which was initially
built for proton-antiproton collisions but then will turned into electron-position collider.
Since protons do not radiate any significant part of radiation, synchrotron radiation
decrements were not important and neglected during design. When the switch to
electrons and positrons, which have damping times of millisecond, did occurred, it turned
out that synchrotron radiation will damp one degree of freedom and anti-damp the

other... It was required to add an additional radiation device into the lattice (a strong
wiggler) to solve this important problem.



Lecture 15. Perturbation method During last lecture we discuss a number of way how both the
parameterization of the motion in linear Hamiltonian system can be used to solve variety of

standard problems arising in accelerator physics. Some of them were exact solutions (like orbit
distortions or dispersion function), but some of them were clearly perturbative and relied on

averaging over fast oscillations. The later, while intuitively understandable, requires some more
discussions — and this is what we start doing today. Let’s consider an additional (not necessarily
a simple, constant or linea, but definitely a weak) term in our equations of motion

IX
2 —D(s) X +eF(X,s): (15-1)
ds
Using our already well established parameterization, we can always write:
l - c iy, ($)4@(5)) a‘eup.-
X==U(s)A(s)= Rezak(s)Yk(s)e e A (5)= U
. k=1 aje ™
(15-2)
Ij(s)iA = EF(fJ(s)A(s),s) = iake"”* =€ e Y;.I(‘S)SF(G(S)A(S),S)
ds ds i
[f one likes real form of the equations, it can be written as
g
:—Sc:kce""‘ =(al +ipla,)e™ =¢ < —Y . 'SF;
W
ia,‘.e"“"" = (az —ipla, )e—"p" _— e—.YISF;
ds I (15'3)

ﬂ_ W+odyviQr |. %__ i+ )vIiQr |
ds—elm[e YISF |iq, = =¢Re| Y WYISF |,



In analytical mechanics, these equations for constant of motion in linear system are called

“reduced” or “slow” equations when € is so small that it significantly affect the motion only
when right side of equation has constant terms, e.g. either the phase or amplitude of oscillations
can grow in time, not just simply oscillate.

As an example, let’s consider a 1D motion with write side having a power of x:

F=| (v+9)
- . |l:x=awcos
£(s)x -
dd . . F e m d m _m— l m+| (15-4)
d—s—sfa w” sin(y¥ + ) cos (l//+(p) —gfw (v +0):

The equations (15-4) are non-linear and do not have explicit analytical solution in general case
(we know that it can be parameterized for n=1). Let’s now consider a periodical system:

w(s)+ =y (s)= 2()+ 5

)((S-l—C):X(S)W(S-l--C)zW(S);f(?-l—C)Zf( )‘!/I(s+C);

d—a-—-gf mwmbln(‘u—'f'x"}’(p) COS"'(Z(S)+&+¢) _(i_(e_ fwm m—1 c Lm+|(.u +Z+(P)
ds . C ds
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Considering that slow variable are nearly constant, we have on the right side terms oscillating
with phase advancing as (ku J_r27rj)% = 27r%(in- j);i—m<k<m;j—integer . Only when

kQ+ j= 0 (or close to zero — see next) we have a stationary growth. Otherwise, the oscillating
terms will average.

One can intuitively expand the variation of constants a power of the infinitesimal &

Koive k
a= ao +Zak8 ’(0 - (pu +2¢1\8
k=1 k=1

j_a — gamwm Sin(w_'_(a)_cosm(w_'_(p);cjl_(pzgwmam—l COSnH-l (W+(/))s
< A

(15-5)

and explore it further. But this will bring us to a method developed by Bogolyubov and
Metropolsky (N. Bogolubov N. (1961). Asymptotic Methods in the Theory of Non-Linear
Oscillations. Paris: Gordon & Breach. ISBN 978-0-677-20050-7.) in analytical mechanics. You
can find a straightforward, but rather long derivation in the book — here we will only discuss the
results.
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Let’s start from an equation of motion with a small (infinitesimally) perturbation for a linear
system with deduced equation of

dA =eF(X,s), (15-6)
ds

than the first order perturbation can be written as

A=&(s)+eF (&, s) —&(s)=(F (&)
s+§ (15-7)
<F(A s)) =— j <F(A = const, s)>ds F= j F (F})

What is quite remarkable, that they also derived a second order perturbation:

-

T s , OF
A=E(s)+eF(&,5)+ {( —J } F(S,5));

%ﬁ(s)= e(F.s)+eF)= 8<(1 +€[ 85]]F(§ é)>

These equations were used and still used to derive a number of analytical expressions for
nonlinear
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Let’s consider a case we already studies during last class: small variation of the quadrupole
gradient. It can come from errors in quadrupoles or from a deviation of the energy from the
reference value. In 1D case (reduced) it is simple addition to the Hamiltonian: (including
sextupole term!)

2
X

6H = 8K, (s)7-=1-6K,(5)B(s)cos” (v (5) +¢)
ap _ JdOH = 0K Bcos’ (v +¢)=5K 3 L+c0s2 +¢); (15-9)
ds 0l
dl  JdoH :
= =1-6K,(s)B(s)sin2(y +9):
Using first order approximation we get:

M_l] ﬁ(s)l_+0052(w+¢)=

ds S -
K, ( oK, (s 2
(6 2 < )B(s );"S (v+9.)) (15-10)

) _ | (5K, (s)B(s)sin2(y +0,))

ds
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We already got the first term average term

<5K,(s)ﬁ(s)>

2

= 21Cj51<,(s)ﬁ(s) (15-10)

while the amplitude does not have obvious non-oscillating term. Oscillating terms are also of
some interest - let’s explore them:

dp ., OK,(5)B(S) i i S il

—=Re e € 20 —Re e ¢ e

ds 2 kgm .

7 14”Qs i-zQ—+k.v )
ﬂ:]n-hn6K'(s)ﬁ(S)e”‘“’e C W] Ich* ¢ e (15-11)

k==

( )ﬁ( ) = ZCA

k=—00

where we simply expanded periodic complex function into a Fourier series.
(15-11) is easy to integrate

o 2
C CA 2mi Q+As

N=——0I : o c plig, =R V’*(D), +C)=
Q= mkmmﬂ ¢ ed(s)e’ d(s+C)=6(s)
o ~ i | (15-12)
J=-1 —ReY —k ¢ € % =] .Rev(s)e*™***); v(s+C)=v(s)
2 = 20+k

Unless the accelerator is “sitting” at a parametric resonance 2Q = *k, there oscillating term
simply oscillating with double betatron frequency. Otherwise, at the parametric resonance
2Q =+k both the amplitude and the phase can grow — e.g. it is an instability we have to stay

away from. Parametric resonance is one you are using to increase amplitude of oscillation of a
swing by periodically changing the “oscillation frequency” with your legs and body.



One more example: Octupole term in horizontal motion

- th : ; .
Let’s consider a 4 order term (non-linear) in our 1D Hamiltonian:

2 9 4

H="’7—:+1<l(s)%+o(s)"I (15-13)

with transformation to action angle variables
v= 2T w(s) <os{y (5)+0)s p. =
{x,p_‘ } — {go,l}.

which removes the linear part of the Hamiltonian leaving only nonlinear term, which we need to
express using action-angle variables:

H (p.,s)= o(s)w4(s)lzcos4(!//(s)+(p);

(15-14)

2c0s’ 0 =1+ c0s20; 2(1+c0s260)" = 3+ 4c0s26 + cos 40, (15-15)
H, - 3+<:os(21//+2go)+ cos{dyy+4q) ;
214 4
with equations of motion being
@ = 98 _ lo(s)w* (s)(3+ cos(2y +2¢)+ cos 4y +40) ];
dl 4 4
i | (15-16)
P aH'l - zzo(s)w4(s)[sin(z.,/+z<p)+ S‘“(‘“‘;*““’));
%



Staying away from the parametric (second order) and 4" order resonances 40 # +k we can first
average (15.16) noting that oscillating term yelled zero in this approximation

(IY=0—T = const; @ _%1—(0( Jw (s)) = :1’( (5)B°(5)):
2 (15-16)
o=0, + ?)IIJ_C "+%(L-; @i:éjo(s)ﬁx(s)ds

e.g. while amplitude of oscillations remain constant, phase advance per turn (e.g. oscillation
frequency) start depends on the square of amplitude of oscillations

1 dua’

=0, +———.
0=0, 2r dl 2

Hence, octupole term in the Hamiltonian makes oscillations inharmonic. We always add

oscillating terms

(15-17)

I=1+1; o=0+@;

1(5)=T" Jo(&)w (é)(sm(zw(é)ﬂw) M"W(é)wﬁ)}!@ (15-18)

2
=T fole)u (9] costaw (9)+29) =20 g

which can be evaluated and expressed in terms oscillating with double and quadruple betatron
frequency. Since we are considering quadrupole term being a perturbation, away from the
resonance these oscillations are small. Naturally, one can go one extra step and write second
order perturbation terms, which will be proportional to second order of quadrupole strength and
higher order of action and harmonics of betatron frequencies. While it is possible, expression
become rather long and are not very “educational.
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It 1s not all... But already, not too shabby for a
single parameterization

X(s)——U(s) A(s) = ReZY(s)e’“”k(“*%)ak(s)

difj(s) D(s)-U(s);U=|..Y.e" Ve ™ .. Jik=1,.n

U’SU =2iS.

Next step — solving nonlinear problems and
finding solutions for particle distributions
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What we learned today

Using parameterization and — to a less degree action-angle variables — we wrote
solutions for most common accelerator problems in most general form

We avoided necessity to write a specific set of equations, finding way of solving
it and than, finally, expressing it though lattice parameters

We also confirmed that slow synchrotron oscillations indeed barely (e.g. in
second order) change frequencies of betatron oscillations

We did not go beyond linearized motion — this 1s the topic for next class

But we went beyond traditional Hamiltonian system and also found damping
decrements for each oscillation mode caused by weak dissipative force, including
so called “sum of decrements™ theorem

We also calculated diffusion coefficients for each eigen mode (oscillator) caused
by random kicks

38



