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Recap of lecture 2 –  see in lecture 2 

Before going to relativistic action – 
let’s discuss Lorentz group in matrix 
representation –  
an exercise we will repeat quite a few 
times 
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Lorentz Group - Matrix representation 
  Jackson’s Classical Electrodynamics, Section 11.7 [CED] has an excellent discussion of this 
topic. Here, we will review it briefly with some attention to the underlying mathematics. Generic Lorentz 
transformation involves a boost (a transformation from K to K' moving with some velocity   

! 
V ) and an 

arbitrary rotation in 3D space. Matrix representation is well suited to describe 4-vectors transformations. 
The coordinate vector is defined as 

X =

x0

x1

x2

x3

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

;      (B-29) 

and standard scalar product of 4-vectors is defined by (a,b) = ˜ a b , where ˜ a  is the transposed vector. The 
4-scalar product involves the metric tensor (matrix): 

a ⋅ b ≡ ai ⋅ bi = (a, gb) = (ga, b) = ˜ a gb ;    (B-30) 

g = ˜ g = {gik} = {gik} =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.    (B-31) 

Lorentz transformations A (or the group of Lorentz transformations1) are linear transformations that 
preserve the interval, or scalar product (B-30): 

′ X = AX; ′ ˜ X g ′ X = ˜ X ̃  A gAX = ˜ X gX; ⇒ ˜ A gA = g.   (B-33) 

                                                 
1 Group G is defined as a set of elements , with a definition of a product of any two elements of the group; P = A • B ∈G ; 
A,B∈G . The product must satisfy the associative law : A • (B •C) = (A • B)• C;  there is an unit element in the group 
E ∈G;E • A = A • E = A: ∀A ∈G;  and inverse elements: 
∀A∈G;∃B(called A−1) ∈G: A−1A = AA−1 = E.  
Matrices NxN with non-zero determinants are examples of the group. Lorentz transformations are other examples : the product of 
two Lorentz is defined as two consequent Lorentz transformations. Therefore, the product also is a Lorentz transformation whose 
velocity is defined by rules discussed in previous lectures. The associative law is straightforward: unit Lorentz transformation is a 
transformation into the same system. Inverse Lorentz transformation is a transformation with reversed velocity. Add standard 
rotation s, to constitute the Lorentz Group 
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Using standard ratios for matrices  

det( ˜ A gA) = det2 Adet g = detg ⇒ det A = ±1;    (B-34) 
we find that the matrices of Lorentz transformation have det=±1. We will consider only proper Lorentz 
transformations with unit determinants det A = +1.  Improper Lorentz transformations, like space- and 
time-inversions, should be considered as special transformations and added to the proper ones.  
 A 4x4 matrix has 16 elements. Equation (B-33) limited number of independent elements in matrix 
A of Lorentz transformations. Matrices on both sides are symmetric. Thus, there are 10 independent 
conditions on matrix A, leaving six independent elements there. This is unsurprising since rotation in 3D 
space is represented by 3 angles and a boost is represented by 3 components of velocity. Intuitively, then 
there are six independent rotations: (xy), (yz), (zx), (t, x), (t, y), and (t, z). No other combinations of 4D 

coordinates are possible: C4
2 =

4!
2!2!

= 6 . 

1 Group G is defined as a set of elements , with a definition of a product of any two elements of the group; P = A • B ∈G ; 
A,B∈G . The product must satisfy the associative law : A • (B •C) = (A • B)• C;  there is an unit element in the group 
E ∈G;E • A = A • E = A: ∀A ∈G;  and inverse elements: 
∀A∈G;∃B(called A−1) ∈G: A−1A = AA−1 = E.  
Matrices NxN with non-zero determinants are examples of the group. Lorentz transformations are other examples : the product of 
two Lorentz is defined as two consequent Lorentz transformations. Therefore, the product also is a Lorentz transformation whose 
velocity is defined by rules discussed in previous lectures. The associative law is straightforward: unit Lorentz transformation is a 
transformation into the same system. Inverse Lorentz transformation is a transformation with reversed velocity. Add standard 
rotation s, to constitute the Lorentz Group 
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Major leap to matrix functions! 

 We next consider the properties of A in standard way, representing A through a generator L: 

A = eL ;       (B-35) 
where we use matrix exponent defined as the Taylor expansion: 

� 

eL ↓def ≡
Ln

n!n= 0

∞

∑ ; L0 = I; I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;     (B-36) 

where I is the unit matrix. Using (B-35) and g2 = I  we find how to compose the inverse matrix for A: 
˜ A gA = g ⇒ A−1 = g ˜ A g;     (B-37) 

which, in combination with  

˜ A = transpose(eL) =
˜ L n

n!n =0

∞

∑ = e
˜ L ; egUg =

(gUg)n

n!n= 0

∞

∑ = g
U n

n!n= 0

∞

∑ g;   (B-38) 

gives  

A−1 = g˜ A g = eg ˜ L g .     (B-39) 
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We can show that matrix exponent has similar properties as the regular exponent, i.e. eUe−U = I  by 
explicitly using Taylor expansion to collect the powers of U: 

eUe−U =
Un

n!n=0

∞

∑⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ (−1)k U

k

k!k=0

∞

∑⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = (−1) k U

n+ k

n!k!
=

k =0,n= 0

∞

∑ I + cm
m=1

∞

∑ Um;    (B-40) 

and the well-known expansion of (1-x)m. Our goal is to show that all cm are zero: 

(1 − x)m =
(−1)n m!
n!(m − n)!n= 0

m

∑ xn ⇒ m!cm =
(−1)nm !
n!(m − n)!n= 0

m

∑ = (1 −1)m = 0 .  (B-41) 

Now (B-39) can be rewritten  

  

� 

A−1 = g ˜ A g = eg ˜ L g = e−L ⇒ g ˜ L g = −L;⇒ gL
!

= −gL     (B-42) 
Hence, gL  is an asymmetric matrix and has six independent elements as expected: 

gL =

0 L01 L02 L03
−L01 0 −L12 −L13
−L02 L12 0 −L23
−L03 L13 L23 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;L = g(gL) =

0 L01 L02 L03
L01 0 L12 L13
L02 −L12 0 L23
L03 −L13 −L23 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.   (B-43) 
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 Each independent element represents an irreducible (fundamental) element of the Lorentz group or 
rotations and boosts, as discussed above. The six components of the L can be considered as six 
components of 3-vectors in the form ("-" is a convention): 

  L = −
! 
ω 
! 
S −
! 
ς 
! 

K ;A = e−
! 
ω 
! 
S −
! 
ς 
! 

K ;      (B-44) 
with  

  

� 

! 
S = ˆ e x

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e y

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e z

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;  (B-45) 

  

! 
K = ˆ e x

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e y

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e z

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;    (B-46) 

where   
! 
ω 
! 
S  represents the orthogonal group of rotations in 3D space (O3

+ ), and   
! 
ς 
! 

K  represents the boosts 
caused by transformation into a moving system. It is easy to check that these matrices satisfy commutation 
rules of 

[Si , Sk ] = eiklSl ;[Si ,Kk] = eiklKl ;[Ki ,Kk ] = −eiklSl ; [A,B] ≡ AB − BA;   (B-47) 

where eikl  is the totally asymmetric 3D-tensor. You should be familiar with 3D rotation   e−
! 
ω 
! 
S  by   

! 
ω : the 

direction of   
! 
ω  is the axis of rotation and the value of   

! 
ω  is the angle of rotation.  

For the arbitrary unit vector ˆ e   

  ( ˆ e 
! 
S )3 = − ˆ e 

! 
S ; ( ˆ e 

! 
K )3 = ˆ e 

! 
K .     (B-48) 
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Therefore,   
! 
S  "behaves" as an imaginary "i" and we should expect sin and cos to be generated by exp(..  

! 
S 

.); exp(..  
! 
K .) should generate hyperbolic functions sinh and cosh. It is left for your homework to show, in 

particular, that boost transformation is: 

  A(
! 
β =
! 
V / c) = e−

! 
β 
! 

K tanh −1 β .     (B-49) 
Finally, all fully relativistic phenomena naturally have six independent parameters. For example, 
electromagnetic fields are described by two 3D vectors: the vector of the electric field and that of the 
magnetic field, or in equivalent form of an asymmetric 4-tensor of an electromagnetic field with six 
components. Furthermore, electric fields give charged particles energy boosts, while magnetic field rotates 
them without changing the energy….  
Not surprisingly, the EM fields reflect the structure of the 4D space and its transformations. 
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Back to the relativistic mechanics… 

 Let’s use Principle of Least Action for a relativistic particle. To determine the action integral for a 
free particle (which does not interact with the rest of the world), we must ensure that the action integral 
does not depend on our choice of the inertial system. Otherwise, the laws of the particle motion also will 
depend on the choice of the reference system, which contradicts the first principle of relativity. Therefore, 
the action must be invariant of Lorentz transformations and rotation in 3D space; i.e., it must depend on a 
4D scalar. So far, from Appendix A, we know of one 4D scalar for a free particle: the interval. We can 
employ it as trial function for the action integral, and, by comparing the result with classical mechanics 
find a constant α  connecting the action with the integral of the interval: 

  

� 

ds2 = dx idxi ≡ dx idxi
i=1

4

∑ = cdt( )2 − d
! 
r ( )2  

  

� 

S = −α ds
A

B

∫ = −α cdt( )2 − d! r 2
A

B

∫ .      (16) 

The minus sign before the integral reflects a natural phenomenon: the law of inertia requires a resting free 
particle to stay at rest in inertial system. The interval ds = cdt  has a maximum possible value (

  cdt ≥ cdt( )2 − d! r 2 ) and requires for the action to be minimal, that the sign is set to be "-". 
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 The integral (16) is taken along the world line of the particle. The initial point A  (event) 
determines the particle’s start time and position, while the final point B  (event) determines its final time 
and position. The action integral (16) can be represented as integral with respect to the time: 

  
S = −α cdt( )2 − d! r 2

A

B

∫ = −αc dt 1− ! v 2 / c2
A

B

∫ = Ldt
A

B

∫ ; 
  
L = −αc 1−

! v 2

c2
; ! v = d! r 

dt
;  

where L  signifies the Lagrangian function of the mechanical system. It is important to note that while the 
action is an invariant of the Lorentz transformation, the Lagrangian is not. It must depend on the reference 
system because time depends on it. To find coefficient α , we compare the relativistic form with the 
known classical form by expanding L  by   

! v 2 / c2 : 

  
L = −αc 1−

! v 2

c2
≈ −αc + α

! v 2

2c
;  

  
L classical = m

! v 2

2
;  

which confirms that α  is positive and 

� 

α = mc , where m  is the mass of the particle. Thus, we found the 
action and the Lagrangian for a relativistic particle: 

S = −mc ds
A

B

∫ ;        (17) 

  
L = −mc2 1 −

! v 2

c2
;        (18) 

The energy and momentum of the particles are defined by the standard relations eqs. (4) and (5): 

  

! p = ∂L
∂
! v 
=

m! v 

1 −
! v 2

c2

= γm! v ;        (19) 

  

� 

E =
! p ! v − L = γmc 2; γ = 1/ 1− ! v 2 /c 2       (20) 

with ratio between them of 

  E
2 =
! p 2c2 + mc2( )2.        (21) 
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Four-momentum, conservation laws. The least-action principle gives us the equations of motion and an 
expression for the momentum of a system. Let us consider the total variation of an action for a single 
particle: 

δS = −mcδ ds
A

B

∫ = −mcδ dxidxi =
A

B

∫ − mc{ dδxidxi + dxidδxi} =
A

B

∫

−mc{ dδxidxi
2 dxidxi

+ dxidδxi
2 dxidxi

}=
A

B

∫ −mc dxidδxi
ds

=
A

B

∫ −mc uidδxi
A

B

∫ ;
 

where 

� 

ui ≡ dx i /ds is 4-velocity. Integrating by parts,  

δS = −mcuiδxi A
B +mc δxi

A

B

∫
dui

ds
ds;      (22) 

we obtain the expression that can be used for all purposes. First, using the least-action principle with fixed 
A and B δxi(A) = δxi(B) = 0 , to derive the conservation of 4-velocity for a free particle: 
dui

ds
= 0; ui = const  or the inertia law.  

Along a real trajectory mc δxi
A

B

∫
dui

ds
ds = 0  the action is a function of the limits A and B (see eq. (12): 

  δSreal traj = (−Eδt +
! 
P δ! r ) A

B , i.e.,   dSreal traj = −Edt +
! 
P d! r  is the full differential of t and   

! r  with energy 
and momentum as the parameters. We note that this form of the action already is a Lorentz invariant: 

  δSreal traj = (−Eδt +
! 
P δ! r ) A

B = (−Piδxi) A
B;  

i.e. classical Hamiltonian mechanics always encompassed a relativistic form and a metric: a scalar 
δS  is a 4-product of Pi  and δxi  with the metric (1,-1,-1,-1). Probably one of most remarkable things 
in physics is that its classic approach detected the metric of 4-D space and time at least a century 
before Einstein and Poincaré. 
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To get 4-momentum, we consider a real trajectory mc δxi
A

B

∫
dui

ds
ds = 0  and set δxi(B) = δxi : 

  
pi = −

∂S
∂xi

= −∂ iS = mcui = γmc,γm! v ( ) = E / c, ! p ( )     (23) 

with an obvious scalar product (uiui =1 , see Appendix A. eq. (A.42)) 

  p
ipi = E2 / c2 − ! p 2 = m2c2uiui = m 2c2 .     (24) 

Equivalent forms of presentation are   

  
pi = (E / c, ! p ) ≡ mγ v (c,

! v ) ≡ (mc,m! v )
1− v2 / c2

     (25) 

and, Lorentz transformation ( Pi is a 4-vector, K' moves with   
! 

V = ˆ e xV ): 

E = γ V ( ′ E + cβV ′ p x );px = γV ( ′ p x + βV ′ E / c);py ,z = ′ p y, z ;γ V =1 / 1− βV
2 ;βV = V / c;   (26) 

where subscripts are used for γ ,β  to define the velocity to which they are related. .  
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 Equation (24) expresses energy, velocity, and the like  in terms of momenta and allows us to 
calculate all differentials: 

  
E = c ! p 2 + m2c2 ;dE = cd ! p 2 + m 2c2 =

d! p ⋅ c! p 
! p 2 + m2c2

=
c2 ! p ⋅ d! p 

E
=
! v ⋅ d! p ;     (27) 

 

!v = c!p
!p2 +m2c2

; !adt = d!v = d c!p
!p2 +m2c2

=

c d!p( !p2 +m2c2 )− !p( !pd!p)( )
!p2 +m2c2( )3

= c
d!p ⋅m2c2 + !p × d!p × !p[ ]⎡⎣ ⎤⎦

!p2 +m2c2( )3
;

   

(28) 

Coefficients   γ = E /mc2;
! 
β =
! v / c  differ from the above by constants, and satisfy similar relations. 

 The conservation laws reflect the homogeneity of space and time (see Mechanics): these natural 
laws do not change even if the origin of the coordinate system is shifted by δx . Then, 
δxi(A) = δxi(B) = δxi . We can consider a closed system of particles (without continuous interaction, i.e., 
for most of the time they are free). Their action is sum of the individual actions, and 

δSa
a
∑ = −( mac

a
∑ uia )δxi A

B = −( mac
a
∑ uia )δxi A

B={ pia(A)
a
∑ − pia(B)

a
∑ }δxi = 0    (29) 

  
pi

a(A)
a
∑ = pi

a (B)
a
∑ = Ea / c

a
∑ , ! 

p 
a
∑⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ = const .    (30) 
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1.2 Particles in the 4-potential of the EM field.  
The EM field propagates with the speed of light, i.e., it is a natural product of relativistic 4-D space-time; 
hence, the 4-potential is not an odd notion!  
 
In contrast with the natural use of the interval for deriving the motion of the free relativistic particle, there 
is no clear guideline on what type of term should be added into action integral to describe a field. It is 
possible to consider some type of scalar function A(xi )ds∫  to describe electromagnetic fields, but this 
would result in wrong equations of motion. Nevertheless, the next guess is to use a product of 4-vectors 
Aidxi , and surprisingly it does work, even though we do not know why? Hence, the fact that 

electromagnetic fields are fully described by the 4-vector of potential   

� 

Ai = (A0,
! 
A )  must be 

considered as an experimental fact! 
 Nevertheless, it looks natural that the interaction of a charge with electromagnetic field is 
represented by the scalar product of two 4-vectors with the −e / c  coefficient chosen by convention: 

Sint = −
e
c

Ai

A

B

∫ dxi ;   A
i ≡ (Ao,

! 
A ) ≡ (ϕ,

! 
A )      (31) 

where the integral is taken along the particle’s world line. A charge e  and speed of the light c are moved 
outside the integral because they are constant; hence, we use the conservation of the charge e  and 
constancy of the speed of the light ! 
IT IS ESSENTIAL THAT FIELD IS GIVEN, SINCE WE ARE CONSIDERING A PARTICLE INTERACTING WITH A 
GIVEN FIELD. 

Relativism -> E&M 
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Turning our attention back to the Least-Action Principle and Hamiltonian Mechanics 
The standard presentation of 4-potential is  

  A
i ≡ (A0 ,

! 
A ) ≡ (ϕ,

! 
A ) ;       (32) 

where ϕ  is called the scalar potential and   
! 
A  is termed the vector potential of electromagnetic field. 

Gauge Invariance. As we discussed earlier the action integral is not uniquely defined; we can add to it an 
arbitrary function of coordinates and time without changing the motion: 

� 

′ S = S + f (xi) . This corresponds 
to adding the full differential of f in the integral  (31)  

� 

′ S = −mcds −
e
c

Aidxi + dxi∂
i f

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

A

B

∫ .  

This signifies that the 4-potential is defined with sufficient flexibility to allow the addition of any 4-

gradient to it (let us choose 

� 

f (xi) =
e
c
g(xi)) 

� 

′ A i = Ai −∂ ig(xi) = Ai −
∂g
∂xi

;       (33) 

without affecting the motion of the charge, a fact called THE GAUGE INVARIANCE .  

WE SHOULD BE AWARE THAT THE EVOLUTION OF THE SYSTEM DOES NOT CHANGE BUT APPEARANCE OF 
THE EQUATION OF THE MOTION FOR THE SYSTEM COULD CHANGE. FOR EXAMPLE, AS FOLLOWS FROM  (33), 
THE CANONICAL MOMENTA WILL CHANGE: 

′ P i = Pi − ∂ i f . 
Nevertheless, only the appearance of the system is altered, not its evolution. Measurable values (such as 
fields, mechanical momentum) do not depend upon it. One might consider Gauge invariance as an 
inconvenience, but, in practice, it provides a great opportunity to find a gauge in which the problem 
becomes more comprehensible and solvable. 
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The action is an additive function: therefore, the action of a charge in electromagnetic field is simply the 
direct sum of a free particle’s action and action of interaction: (remember 
ds = ds2 / ds = dx idxi / ds = u

idxi ) 

S = −mcds −
e
c
Aidxi

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

A

B

∫ = −mcui −
e
c
Ai⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

A

B

∫ dxi      (34) 

Then the total variation of the action is 

� 

δS = δ −mcds −
e
c
Aidxi

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

A

B

∫ = −mc
dxidδxi
ds

−
e
c
Aidδxi −

e
c
δAidxi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ =

− mcui +
e
c
Ai⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ δxi

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
A

B

+ mc
dui

ds
δxids+

e
c
δxidA

i −
e
c
δAidxi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ = 0.
  (35) 

That gives us a 4-momentum 

  
Pi = −

δS
δxi

= mcui +
e
c

Ai⎛ 
⎝ 

⎞ 
⎠ = H / c,

! 
P ( )= pi +

e
c

Ai ;      (36) 

with  

  

H = E = c(mcu0 + e
c

A0 ) = γmc 2 + eϕ = c m2c2 + ! p 2 + eϕ ;

! 
P = γm

! 
v + e

c

! 
A =
! 
p + e

c

! 
A ;⇒

! 
p =
! 
P − e

c

! 
A .    (37) 
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The Hamiltonian must be expressed in terms of generalized 3-D momentum, 
  

� 

! 
P = ! p + e

c
! 
A  and it is 

  

� 

H(! r ,
! 
P ,t) = c m2c 2 +

! 
P −

e
c
! 
A 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

+ eϕ;    (38) 

with Hamiltonian equation following from it: 

  

� 

! v =
d! r 
dt

=
∂H
∂
! 
P 

=
! 
P c − e

! 
A 

m2c 2 +
! 
P −

e
c
! 
A 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2  

  

� 

d
! 
P 

dt
=

d! p 
dt

+
e
c

d
! 
A 

dt
= −

∂H
∂! r 

= −e
! 
∇ ϕ − e

{(
! 
P −

e
c
! 
A )⋅
! 
∇ }
! 
A 

m2c 2 +
! 
P −

e
c
! 
A 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

= −e
! 
∇ ϕ −

e
c
(! v ⋅
! 
∇ )
! 
A ; 
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From this equation we can derive (without any elegance!) the equation for mechanical momentum 
  

� 

! p = γm! v . We will not do it here, but rather we will use easier way to obtain the 4D equation of motion via 
the least-action principle. We fix A and B to get from equation (35) 

δS = mcuiδxids +
e
c
δxidA

i −
e
c
δAkdxk

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

A

B

∫ = mc
dui

ds
δxids +

e
c
∂Ai

∂xk
δxidxk −

e
c
∂Ak

∂xi
δxidxk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ =

dpi

ds
+ e
c

∂Ai

∂xk
− ∂Ak

∂xi

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
uk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ δxids = 0.
 (39) 

As usual, the expression inside the round brackets must be set at zero to satisfy (39); i.e., we have the 
equations of charge motion in an electromagnetic field: 

� 

mc du
i

ds
≡
dpi

ds
=
e
c
F ikuk;       (40) 

wherein we introduce an anti-symmetric electromagnetic field tensor 

� 

F ik =
∂Ak

∂xi
−
∂Ai

∂xk
.      (41) 
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Electromagnetic field tensor: The Gauge Invariance can be verified very easily: 

� 

′ F ik =
∂ ′ A k

∂xi

−
∂ ′ A i

∂xk

= F ik −
∂ 2g

∂xi∂xk

+
∂ 2g

∂xk∂xi

= F ik; 

which means that the equation of motion (40) is not affected by the choice of the gauge, and the 
electromagnetic field tensor is defined uniquely! Using the Landau convention, we can represent the 
asymmetric tensor by two 3-vectors (see Appendix A):  

  

� 

F ik = (−
! 
E ,
! 
B );Fik = (

! 
E ,
! 
B );  

� 

F ik =

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.         (42) 

  

� 

! 
E  is the so-called vector of the electric field and   

� 

! 
B  is the vector of the magnetic field. Note the 

occurrence of the Lorentz group generator (see Appendix B) in (42). The 3D expressions of the field 
vectors can be obtained readily:  

  
Eα = Fα 0 =

∂A0

∂xα
−
∂Aα

∂x0
− = −

∂ϕ
∂rα

−
1
c
∂Aα

∂ t
; α = 1, 2,3;

! 
E = −

1
c
∂
! 
A 
∂ t

− gradϕ;    (43) 

  

� 

Bα = − 1
2

eακλF κλ = eακλ ∂Aλ

∂xκ

− ∂Aκ

∂xλ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;
! 
B = curl

! 
A ; F κλ = eλκαHα .   (44) 
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 A 3D asymmetric tensor 

� 

eακλ  and the curl  definition are used to derive last equation and use Greek 
symbols for the spatial 3D components. The electric and magnetic fields are also Gauge invariant being 
components of Gauge invariant tensor. 
We have the first pair of Maxwell's equations without further calculation using the fact that differentiation 
is symmetric operator (∂ i∂ k ≡ ∂ k∂ i ): 

� 

eiklm∂
kF lm = eiklm∂

k ∂ l Am −∂mAl( ) = 2eiklm (∂
k∂ l )Am = 0 ;   (45) 

or explicitly: 

� 

∂ kF lm +∂ lF mk +∂mF kl = 0 .     (46) 
A simple exercise gives the 3D form of the first pair of Maxwell equations. They also can be attained using 
(43) and (44) and known 3D equivalencies:  div(curl

! 
A ) ≡ 0 ;curl(gradϕ) ≡ 0 : 

  

� 

! 
E = −gradϕ − 1

c
∂
! 
A 
∂t
;

! 
B = curl

! 
A ;

  

  

� 

curl
! 
E = −curl(gradϕ) − 1

c
curl∂

! 
A 
∂t

= − 1
c
∂
! 
B 
∂t
;

div
! 
B = div(curl

! 
A ) ≡ 0;

   (47) 

I note that (47) is the exact 3D equivalent of invariant 4D Maxwell equations (45) that you may wish to 
verify yourself. There are 4 equations in (45): i=0,1,2,3. The div is one equation and curl gives three 
(vector components) equations. Even the 3D form looks very familiar; the beauty and relativistic 
invariance of the 4D form makes it easy to remember and to use. 

First pair of Maxwell equations – free of charge 



21 

EM Fields transformation, Invariants of the EM field. The 4-potential was defined as 4-vector and it 
transforms as 4-vector. The electric and magnetic fields, as components of the asymmetric tensor, follow 
its transformation rules (See Appendix A). 

ϕ = γ ( ′ϕ + β ′Ax ); Ax = γ ( ′Ax + β ′ϕ );
Ey = γ ( ′Ey + β ′Bz ); Ez = γ ( ′Ez − β ′By );
By = γ ( ′By − β ′Ez ); Bz = γ ( ′Bz + β ′Ey ).

     (48) 

and the rest is unchanged. An important repercussion from these transformations is that the separation of 
the electromagnetic field in two components is an artificial one. They translate into each other when the 
system of observation changes and MUST be measured in the same units (Gaussian). The rationalized 
international system of units (SI) system measures them in V/m, Oe, A/m and T. Why not use also a horse 
power per square mile an hour, the old British thermal units as well? This makes about the same sense as 
using Tesla or A/m. 
While the values and directions of 3D field components are frame-dependent, two 4-scalars can be build 
from the EM 4-tensor   

� 

F ik = (−
! 
E ,
! 
B )    

   

� 

F ikFik = inv;    eiklmFikFlm = inv;      (49) 
which in the 3D-form appear as  

    

� 

! 
B 2 −

! 
E 2 = inv; (

! 
E ⋅
! 
B ) = inv.      (50) 

This conveys a good sense what can and cannot be done with the 3D components of electromagnetic 
fields. Any reference frame can be chosen and both fields transferred in a minimal number of components 
limited by (50). For example; 1) if   

� 

! 
E >

! 
B  in one system it is true in all systems and vice versa; and (2) if 

fields are perpendicular in one frame,   

� 

(
! 
E ⋅
! 
B ) = 0 , this is true in all frames. When   

� 

(
! 
E ⋅
! 
B ) = 0  a frame can 

always be found where 

� 

E  or 

� 

B are equal to zero (locally!). 
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Lorentz form of equation of a charged particle’s motion. 

The equations of motion (40) can rewritten in the form: 

  

� 

dE
dt

= c
dp0

dt
= eF 0kvk = e

! 
E ⋅ ! v ; vk =

dxk

dt
= (c,−! v )

d! p 
dt

= e ˆ e αFαk vk

c
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

e
c

ˆ e α ⋅ cFα 0 − ˆ e α ⋅ Fακvk( ) = e
! 
E + ˆ e αeακλ Bλ

vk

c
= e
! 
E +

e
c
! v ×
! 
B [ ].

   (51) 

So, we have expressions for the generalized momentum and energy of the particle in an electromagnetic 
field. Generalized momentum is equal to the particle’s mechanical momentum plus the vector potential 
scaled by e/c. The total energy of the charged particle is its mechanical energy, 

� 

γmc 2 , plus its potential 
energy ,

� 

eϕ  , in an electromagnetic field. The Standard Lorentz (not Hamiltonian!) equations of motion for 

  

� 

! p = γm! v  are 

  

� 

d! p 
dt

= e
! 
E +

e
c
! v ×
! 
B [ ].      (52) 

with the force caused by the electromagnetic field (Lorentz force) comprised of two terms: the electric 
force, which does not depend on particle’s motion, and, the magnetic force that is proportional to the 
vector product of particle velocity and the magnetic field, i.e., it is perpendicular to the velocity. 
Accordingly, the magnetic field does not change the particle’s energy. We derived it in Eq. (51):  

  

� 

mc 2 dγ
dt

= e
! 
E ⋅ ! v ;      (53) 

Eqs. (52) and (53) are generalized equations. Using directly standard Lorentz equations of motion in a 3D 
form is a poor option. The 4D form is much better (see below) and, from all points of view, the 
Hamiltonian method is much more powerful! 
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Prelude of things to come 

X =

x1
x2
....
xn−1
xn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

; dX
dt

= D ⋅X; D
d11 ... ... dn1
... ... ... ...
... ... ... ...
d1n ... ... dnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

;

X t( ) = eD⋅t ⋅ X 0( ) ≡ M ⋅ X 0( );
dM
dt

= D ⋅M ; M (t) = eD⋅t ; M (t1 t2 ) = e
D⋅ t2−t1( )
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Unusual twist. 
It is worth noting that the 4D form of the charge motion (40) and its matrix form is the most compact one,  

� 

ui = dx i

ds
; mc du

i

ds
= e
c
F i

kuk;⇒ d
ds

x[ ] = I[ ]⋅ u[ ]; d
ds

u[ ] = e
mc 2

F[ ]⋅ u[ ]
  

(54) 

and, in many cases, it is very useful. We treat the x, u as a vectors, and [F] as the 4x4 matrix. [I] is just 
the unit 4x4 matrix It has interesting formal solution in the matrix form: 

u[ ] = e
e

mc 2
F[ ]ds∫ u0[ ]; x[ ] = xo[ ]+ ds∫ e

e
mc 2

F[ ]ds∫⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ u0[ ]

    
(55) 

Its resolution is well defined when applied to the motion of a charged particle in uniform, constant EM 
field: 

� 

u[ ] = e
e

mc 2
F[ ](s−s0 )

u0[ ]; x[ ] = xo[ ] + e
e

mc 2
F[ ](s−s0 )

ds∫ e
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ u0[ ]    (56) 

The Lorentz group of theoretical physics (see Appendix B) is fascinating, and the fact that EM field 
tensor has the same structure as the generator of Lorentz group is no coincidence – rather, it is indication 
that physicists have probably come very close to the roots of nature in this specific direction. This 
statement is far from truth for other fundamental forces and interactions. 
To conclude this subsection, we will take one step further from (54) and write a totally linear evolution 
equation for a combination of 4D vectors 

� 

d
ds

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = Λ[ ]⋅

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ; Λ[ ] =

0 I
0 e

mc 2
F

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
     (57)

 

where [Λ] is an 8x8 degenerated matrix. Similarly to (55) and (56)  

� 

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = e

Λ[ ]ds∫ ⋅
x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 
o

;
x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = e Λ[ ](s−soI ⋅

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 
o

for Λ[ ] = const ;
   (58) 
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First pair of Maxwell's equations (a little more of juice) 

 We will derive full set of Maxwell equations using the least action principle. Nevertheless, you 
can consider the Maxwell equation as given - in any case they were derived originally from numerous 
experimental laws! 

 First pair of Maxwell's equations is the consequence of definitions of electric and magnetic field 
through the 4-potential: 

  

! 
E = −gradϕ − 1

c
∂
! 
A 
∂t
;

! 
H = curl

! 
A ;

 it is equivalent to  

  

curl
! 
E = − curl(gradϕ ) − 1

c
curl ∂

! 
A 
∂t

= 1
c
∂
! 
H 
∂t
;

div
! 
H = div(curl

! 
A ) ≡ 0;

 

 (59) 

Nevertheless, it is very important to remember that they are actually originated from experiment. First 
Maxwell equation is the Faraday law and the second is nothing else that absence of magnetic charge! You 

should remember all time that inclusion of the term Sint = −
e
c

Ai

A

B

∫ dxi  into action integral is consequence 

of experiment! Thus, the first pair of Maxwell equations governing the electromagnetic fields is: 

  
curl
! 
E = −

1
c
∂
! 
H 
∂t
;       (60) 

  div
! 
H = 0;       (61) 

with well known integral ratios following it: 

Gauss' theorem:     
  

! 
H ∫ d
! 
a = div

! 
H ∫ dV = 0;      (62) 

Stokes' theorem:     
  

! 
E ∫ d
! 
l = curl

! 
E ∫ d
! 
a = −

1
c
∂
∂t

! 
H ∫ d
! 
a ;   

 (63) 

where   d
! 
a  is vector of the element of the surface and   d

! 
l  is a vector of a contour length. Integral equations 

read: the  

1) Flux of the of the magnetic field though the surface covering any volume V is equal zero; 

2) The circulation of electric field around the contour (electromotive force) is equal to the derivative 
of the magnetic flux though the contour scaled down by "-c" - the Faraday law.  

 


