ZGOUBI USERŚ GUIDE

ZGOUBI ON WEB :

http://sourceforge.net/projects/zgoubi/

François Méot
Brookhaven National Laboratory
Collider-Accelerator Department
Upton, NY, 11973

October 5, 2017

ATLAS \& CMS IRs, LHC

Snake Resonance Crossing in RHIC

Serpentine acceleration in EMMA

Cover figures :

upper left : collision optics at ATLAS and CMS [68],
upper right : evolution of the polarization upon crossing of the $393+Q_{y}$ spin resonance in RHIC [14],
lower left : spin-flipping over an acceleration cycle in the AGS, in presence of the helical snakes [13],
lower right : serpentine acceleration in the prototype linear FFAG EMMA [50, 52].
PART A Description of software contents 7
glossary of keywords, part a 9
OPTICAL ELEMENTS VERSUS KEYWORDS 11
PREFACE TO THE BNL EDITION (2015+) 13
PREFACE TO THE BNL EDITION (2012) 14
INTRODUCTION TO THE 4th EDITION (1997) 15
INTRODUCTION 17
1 NUMERICAL CALCULATION OF MOTION AND FIELDS 19
1.1 zgoubi Frame 19
1.2 Integration of the Lorentz Equation 19
1.2.1 Integration in Magnetic Fields 21
1.2.2 Integration in Electric Fields 21
1.2.3 Integration in Combined Electric and Magnetic Fields 24
1.2.4 Calculation of the Time of Flight 25
1.3 Calculation of \vec{E} and \vec{B} Fields and their Derivatives 25
1.3.1 1-D (Axial) Analytical Field Models and Extrapolation 26
1.3.2 Extrapolation from 1-D axial field map 26
1.3.3 Extrapolation From Median Plane Field Models 26
1.3.4 Extrapolation from Arbitrary 2-D Field Maps 27
1.3.5 Interpolation in 3-D Field Maps 27
1.3.6 2-D Analytical Field Models and Extrapolation 27
1.3.7 3-D Analytical Models of Fields 27
1.4 Calculation of \vec{E} and \vec{B} from Field Maps 28
1.4.1 1-D Axial Map, with Cylindrical Symmetry 28
1.4.2 2-D Median Plane Map, with Median Plane Antisymmetry 29
1.4.3 Arbitrary 2-D Map, no Symmetry 31
1.4.4 3-D Field Map 32
2 SPIN TRACKING 35
2.1 Introduction 35
2.2 Integration in Magnetic Fields 35
2.3 Integration in Electric Fields 36
2.4 Integration in Combined Electric and Magnetic Fields 37
2.5 Radiative polarization 38
2.6 Spin Diffusion 38
3 SYNCHROTRON RADIATION 39
3.1 Energy Loss and Dynamical Effects 39
3.2 Spectral-Angular Radiated Densities 41
3.2.1 Calculation of the Radiated Electric Field 41
3.2.2 Calculation of the Fourier Transform of the Electric Field 43
4 SPACE CHARGE 45
5 DESCRIPTION OF THE AVAILABLE PROCEDURES 47
5.1 Introduction 47
5.2 Definition of an Object 49
5.2.1 MCOBJET : Monte-Carlo generation of a 6-D object 50
5.2.2 OBJET : Generation of an object 53
5.2.3 OBJETA : Object from Monte-Carlo simulation of decay reaction [30] 57
5.3 Declaring Options 58
5.3.1 BINARY : BINARY/FORMATTED data converter 59
5.3.2 END or FIN : End of input data list 60
5.3.3 ERRORS : Injecting errors in optical elements 61
5.3.4 FIT, FIT2 : Fitting procedure 62
5.3.5 GASCAT : Gas scattering 69
5.3.6 GETFITVAL : Get values of variables as saved from former FIT[2] run 70
5.3.7 MCDESINT : Monte-Carlo simulation of in-flight decay[34] 71
5.3.8 OPTICS : Write out optical functions. Log to zgoubi.OPTICS.out 73
5.3.9 OPTIONS : Global or special options 74
5.3.10 ORDRE : Taylor expansions order 75
5.3.11 PARTICUL : Particle characteristics 76
5.3.12 REBELOTE : 'Do it again' 77
5.3.13 RESET : Reset counters and flags 79
5.3.14 SCALING : Power supplies and R.F. function generator 80
5.3.15 SPACECHARG: Space charge 83
5.3.16 SPNTRK : Spin tracking 84
5.3.17 SRLOSS : Synchrotron radiation energy loss [19] 86
5.3.18 SYNRAD : Synchrotron radiation spectral-angular densities 87
5.3.19 SYSTEM : System call 88
5.4 Optical Elements and Related Numerical Procedures 89
From AGSMM, AGSQUAD,... to EBMULT, EL2TUB,... to MAP2D-E, MULTIPOL,... to TOSCA, YMY 89
5.5 Output Procedures 163
5.5.1 FAISCEAU, FAISCNL, FAISTORE : Print/Store particle coordinates 164
5.5.2 FOCALE, IMAGE[S] : Particle coordinates and beam size ; localization and size of horizontal waist 166
5.5.3 FOCALEZ, IMAGE[S]Z : Particle coordinates and beam size ; localization and size of vertical waist 167
5.5.4 HISTO : 1-D histogram 168
5.5.5 IMAGE[S][Z] : Localization and size of vertical waists 169
5.5.6 MATRIX : Calculation of transfer coefficients, periodic parameters 170
5.5.7 PICKUPS : Bunch centroid path; orbit 172
5.5.8 PLOTDATA : Intermediate output for the PLOTDATA graphic software 173
5.5.9 SPNPRNL, SPNSTORE : Print/Store spin coordinates 174
5.5.10 SPNPRT : Print spin coordinates 175
5.5.11 SRPRNT : Print SR loss statistics 176
5.5.12 TWISS : Calculation of periodic optical parameters. Log to zgoubi.TWISS.out 177
5.6 Complements Regarding Various Functionalities 178
5.6.1 Units in zgoubi 178
5.6.2 Reference rigidity 179
5.6.3 Time Varying Fields 179
5.6.4 Backward Ray-Tracing 179
5.6.5 Checking Fields and Trajectories Inside Optical Elements 179
5.6.6 Labeling Keywords 180
5.6.7 Multi-turn Tracking in Circular Machines 181
5.6.8 Positioning, (Mis-)Alignment, of Optical Elements and Field Maps 181
5.6.9 Coded Integration Step 184
5.6.10 Ray-tracing of an Arbitrarily Large Number of Particles 184
5.6.11 Stopped Particles: The IEX Flag 184
5.6.12 Negative Rigidity 184
PART B Keywords and input data formatting 185
GLOSSARY OF KEYWORDS, PART B 187
OPTICAL ELEMENTS VERSUS KEYWORDS 189
INTRODUCTION 191
PART C Examples of input data files and output result files 297
INTRODUCTION 299
1 MONTE CARLO IMAGES IN SPES 2 301
2 TRANSFER MATRICES ALONG A TWO-STAGE SEPARATION KAON BEAM LINE 304
3 IN-FLIGHT DECAY IN SPES 3 307
4 USE OF THE FITTING PROCEDURE 310
5 MULTITURN SPIN TRACKING IN SATURNE 3 GeV SYNCHROTRON 312
6 MICRO-BEAM FOCUSING WITH $\vec{E} \times \vec{B}$ QUADRUPOLES 314
PART D Running zgoubi and its post-processor/graphic interface zpop 319
INTRODUCTION 321
1 GETTING TO RUN zgoubi AND zpop 321
1.1 Making the Executable Files zgoubi and zpop 321
1.1.1 The transportable package zgoubi 321
1.1.2 The post-processor and graphic interface package zpop 321
1.2 Running zgoubi 321
1.3 Running zpop 321
2 STORAGE FILES 321
REFERENCES 324
INDEX 327

PART A

Description of software contents

Glossary of Keywords, Part A

Available keywords and where they are to be found in Part A.

AGSMM AGS main magnet 89
AGSQUAD AGS quadrupole 90
AIMANT Generation of dipole mid-plane 2-D map, polar frame 91
AUTOREF Transport beam into a new reference frame 96
BEAMBEAM Beam-beam lens 97
BEND Bending magnet, Cartesian frame 98
BINARY BINARY/FORMATTED data converter 59
BREVOL 1-D uniform mesh magnetic field map 100
CARTEMES 2-D Cartesian uniform mesh magnetic field map 101
CAVITE Accelerating cavity 103
CHAMBR Long transverse aperture limitation 108
CHANGREF Transformation to a new reference frame 109
CIBLE Generate a secondary beam following target interaction 111
COLLIMA Collimator 112
DECAPOLE Decapole magnet 113
DIPOLE Dipole magnet, polar frame 114
DIPOLE-M Generation of dipole mid-plane 2-D map, polar frame 116
DIPOLES Dipole magnet N-tuple, polar frame 118
DODECAPO Dodecapole magnet 122
DRIFT Field free drift space 123
EBMULT Electro-magnetic multipole 124
EL2TUB Two-tube electrostatic lens 125
ELMIR Electrostatic N-electrode mirror/lens, straight slits 126
ELMIRC Electrostatic N-electrode mirror/lens, circular slits 127
ELMULT Electric multipole 128
ELREVOL $\quad 1-D$ uniform mesh electric field map 130
EMMA 2-D Cartesian or cylindrical mesh field map for EMMA FFAG 131
END End of input data list 60
ERRORS Injecting errors in optical elements 61
ESL Field free drift space 123
FAISCEAU Print particle coordinates 164
FAISCNL Store particle coordinates in file FNAME 164
FAISTORE Store coordinates every IP other pass at labeled elements 164
FFAG FFAG magnet, N-tuple 132
FFAG-SPI \quad Spiral FFAG magnet, N-tuple 134
FIN End of input data list 60
FIT Fitting procedure 62
FOCALE Particle coordinates and horizontal beam size at distance $X L$ 166
FOCALEZ Particle coordinates and vertical beam size at distance XL 167
GASCAT Gas scattering 69
GETFITVAL Get values of variables as saved from former FIT[2] run 70
GOTO Branching statement 136
HISTO 1-D histogram 168
IMAGE Localization and size of horizontal waist 166
IMAGES Localization and size of horizontal waists 166
IMAGESZ Localization and size of vertical waists 167
IMAGEZ Localization and size of vertical waist 167
INCLUDE File include statement 137
MAP2D 2-D Cartesian uniform mesh field map - arbitrary magnetic field 138
MAP2D-E 2-D Cartesian uniform mesh field map - arbitrary electric field 139
MARKER Marker 140
MATRIX Calculation of transfer coefficients, periodic parameters 170
MCDESINT Monte-Carlo simulation of in-flight decay 71
MCOBJET Monte-Carlo generation of a 6-D object 50
MULTIPOL Magnetic multipole 141
OBJET Generation of an object 53
OBJETA Object from Monte-Carlo simulation of decay reaction 57
OCTUPOLE Octupole magnet 142
OPTICS Write out optical functions. Log to zgoubi.OPTICS.out 73
OPTIONS Global or special options 74
ORDRE Taylor expansions order 75
PARTICUL Particle characteristics 76
PICKUPS Bunch centroid path; orbit 172
PLOTDATA Intermediate output for the PLOTDATA graphic software 173
POISSON Read magnetic field data from POISSON output 143
POLARMES 2-D polar mesh magnetic field map 144
PS170 Simulation of a round shape dipole magnet 145
QUADISEX Sharp edge magnetic multipoles 146
QUADRUPO Quadrupole magnet 147
REBELOTE 'Do it again' 77
RESET Reset counters and flags 79
SCALING Power supplies and R.F. function generator 80
SEPARA Wien Filter - analytical simulation 149
SEXQUAD Sharp edge magnetic multipole 146
SEXTUPOL Sextupole magnet 150
SOLENOID Solenoid 151
SPACECHARG Space charge 83
SPINR Spin rotation 152
SPNPRNL Store spin coordinates into file FNAME 174
SPNPRT Print spin coordinates 175
SPNSTORE Store spin coordinates every IP other pass at labeled elements 174
SPNTRK Spin tracking 84
SRLOSS Synchrotron radiation energy loss 86
SRPRNT Print SR loss statistics 176
SYNRAD Synchrotron radiation spectral-angular densities 87
SYSTEM System call 88
TARGET Generate a secondary beam following target interaction 111
TOSCA 2-D and 3-D Cartesian or cylindrical mesh field map 153
TRANSMAT Matrix transfer 156
TRAROT Translation-Rotation of the reference frame 157
TWISS Calculation of periodic optical parameters. Log to zgoubi.TWISS.out 177
UNDULATOR Undulator magnet 158
UNIPOT Unipotential cylindrical electrostatic lens 159
VENUS Simulation of a rectangular shape dipole magnet 160
WIENFILT Wien filter 161
YMY Reverse signs of Y and Z reference axes 162

Optical elements versus keywords

What can be simulated What keyword(s) can be used for that

This glossary gives a list of keywords suitable for the simulation of common optical elements. These are classified in three categories: magnetic, electric and combined electro-magnetic elements.

Field map procedures are also listed; they provide a means for ray-tracing through measured or simulated electric and/or magnetic fields.

MAGNETIC ELEMENTS

AGS main magnet
Cyclotron magnet or sector
Decapole
Dipole[s], spectrometer dipole
Dodecapole
FFAG magnet
Helical dipole
Multipole
Octupole
Quadrupole
Sextupole
Skew multipoles
Solenoid
Spectrometer dipole
Undulator

AGSMM
DIPOLE[S], DIPOLE-M, FFAG, FFAG-SPI
DECAPOLE, MULTIPOL
AIMANT, BEND, DIPOLE[S][-M], MULTIPOL, QUADISEX
DODECAPO, MULTIPOL
DIPOLES, FFAG, FFAG-SPI, MULTIPOL
HELIX
MULTIPOL, QUADISEX, SEXQUAD
OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD
QUADRUPO, MULTIPOL, SEXQUAD, AGSQUAD
SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD
MULTIPOL
SOLENOID
DIPOLE, DIPOLE-M, DIPOLES
UNDULATOR

Using field maps

1-D, cylindrical symmetry
2-D, mid-plane symmetry
2-D, no symmetry
2-D, polar mesh, mid-plane symmetry
3-D, no symmetry
EMMA FFAG quadrupole doublet
linear composition of field maps
BREVOL
CARTEMES, POISSON, TOSCA
MAP2D
POLARMES
TOSCA
EMMA
TOSCA

ELECTRIC ELEMENTS

2-tube (bipotential) lens EL2TUB
3-tube (unipotential) lens
Decapole
UNIPOT
Dipole
Dodecapole
ELMULT

Multipole
N -electrode mirror/lens, straight slits
N -electrode mirror/lens, circular slits
ELMULT

Octupole
ELMULT
ELMULT
ELMIR
ELMIRC
Quadrupole
ELMULT
ELMULT

R.F. (kick) cavity	CAVITE
Sextupole	ELMULT
Skew multipoles	ELMULT

Using field maps

1-D, cylindrical symmetry	ELREVOL
2-D, no symmetry	MAP2D-E

ELECTRO-MAGNETIC ELEMENTS

Decapole
EBMULT
Dipole
EBMULT
Dodecapole
EBMULT
Multipole
EBMULT
Octupole
EBMULT
Quadrupole
EBMULT
Sextupole
Skew multipoles
Wien filter

EBMULT
EBMULT
SEPARA, WIENFILT

PREFACE TO THE BNL EDITION, 2015+

New functionalities have been introduced :

- GOTO keyword, a conditional goto, useful for RLA simulations,
- INCLUDE keyword, working like the fortran "include", more or less equivalent to "call file" as found in other optics codes, useful for long or repetitive sequences.

A consequence of the latter is the possibility of requesting a "zgoubi.SEQUENCE.Out" output file which contains the whole developed optical sequence in a single file.

PREFACE TO THE BNL EDITION, 2012

The previous release of the Zgoubi Users' Guide as a Lab. report dates from 1997, making the present one the latest in a series of five [1]-[4].
zgoubi has undergone substantial developments since the 4th edition of the Users' Guide, in the frame of a number of projects and of beam dynamics studies, as the Neutrino Factory, lepton and hadron colliders, spin dynamics investigations at SuperB, RHIC, etc. As well the list of optical elements has grown, and so did the "Glossary of Keywords" list, pp. 9 and 187, including new simulation and computing procedures, which range from constraint-matching to overlapping magnetic fields capabilities to spin manipulations and other synchrotron radiation damping recipes.

The ouput files zgoubi.fai (local particle data) and zgoubi.plt (step-by-step-particle data across an optical element) have been reformated in columns, making them readily readable by graphic programs as "gnuplot". Ancillary output files, less voluminous than the latter two and useful for producing plots or for functioning checks, with names of the form "zgoubi.*.out" are available from various keywords, usually by specifying "PRINT" in the keyword's arguments, for instance in the case of "CAVITE" it will produce "zgoubi.CAVITE.Out" containing time dependence of RF parameters as experienced by the particles at traversal of the cavity, whereas "zgoubi.OPTICS.out" can be obtained from "OPTICS" keyword.

This evolution of zgoubi allows embedding "FIT[2]" procedure within "REBELOTE" (zgoubi's DOloop), whereas the latter has been confered the capability of changing values of any numerical data across zgoubi.dat. This allows parameter scans, while possibly using "SYSTEM" to store the outcomes in dedicated external files.

A series of auxiliary computing tools and graphic tools (based on "gnuplot") have been developed, aimed at making the designer's life easier, as, search for closed orbits in periodic machines, computation of optical functions and parameters, tune scans, dynamic aperture scans, spin dynamics data treatment, graphic scripts, etc., and including dedicated ones regarding, e.g., FFAG and cyclotron design, AGS and RHIC studies, synchrotron radiation energy losses and their effects. In addition "python" interfaces are being developed by several users, possibly made available on web by their authors.

The code has been installed on SourceForge with the collaboration of J. S. Berg, in Sept. 2007, there it is fully and freely available [5]. The SourceForge package evolves and is maintained at the pace of on-going projects and design studies. It includes the source files, the post-processor program zpop, as well as many examples with their input data files ("zgoubi.dat") and output result files ("zgoubi.res") and the auxiliary toolbox.

The Users' Guide is intended to describe the contents of the most recent version of zgoubi. The code and its Guide are both far from being "finished products".
J. S. Berg and N. Tsoupas, BNL, have reviewed the final proof of the present document.

INTRODUCTION TO THE 4th EDITION, 1997

The initial version of zgoubi, dedicated to ray-tracing in magnetic fields, was developed by D. Garreta and J.C. Faivre at CEN-Saclay in the early 1970s. It was perfected for the purpose of studying the four spectrometers SPES I, II, III, IV at the Laboratoire National SATURNE (CEA-Saclay, France), and SPEG at GANIL (Caen, France). It is being used since long in several national and foreign laboratories.

The first manual was in French [1]. Accounting for many developments and improvements, and in order to facilitate access to the program an English version of the manual was written at TRIUMF with the assistance of J. Doornbos. P. Stewart prepared the manuscript for publication [2]

An updating of the latter was necessary for accompanying the third version of the code which included developments regarding spin tracking and ray-tracing in combined electric and magnetic fields; this was done with the help of D. Bunel (SATURNE Laboratory, Saclay) for the preparation of the document and lead to the third release [3].

In the mid-1990s, the computation of synchrotron radiation electromagnetic impulse and spectra was introduced for the purpose of studying interference effects at the LEP synchrotron radiation based diagnostic mini-wiggler. In the mean time, several new optical elements were added, such as electro-magnetic and other electrostatic lenses. Used since several years for special studies in periodic machines (e.g., SATURNE at Saclay, COSY at Julich, LEP and LHC at CERN, Neutrino Factory rings), zgoubi has also undergone extensive developments regarding storage ring related features.

These developments of zgoubi have strongly benefited of the environment of the Groupe Théorie, Laboratoire National SATURNE, CEA/DSM-Saclay, in the years 1985-1995.

The graphic interface to zgoubi (addressed in Part D) has also undergone concomitant extensive developments, which make it a performing tool for the post-processing of zgoubi outputs.

The Users' Guide is intended to describe the contents of the most recent version of zgoubi, which is far from being a "finished product".

INTRODUCTION

The computer code zgoubi calculates trajectories of charged particles in magnetic and electric fields. At the origin specially adapted to the definition and adjustment of beam lines and magnetic spectrometers, it has so evolved that it allows the study of systems including complex sequences of optical elements such as dipoles, quadrupoles, arbitrary multipoles, FFAG magnets and other magnetic or electric devices, and is able as well to handle periodic structures. Compared to other codes, it presents several peculiarities, as follows - a non-exhaustive list :

- a numerical method for integrating the Lorentz equation, based on Taylor series, which optimizes computing time and provides high accuracy and strong symplecticity,
- spin tracking, using the same numerical method as for the Lorentz equation,
- account of stochastic photon emission, and its effects on particle dynamics,
- calculation of the synchrotron radiation electric field and spectra in arbitrary magnetic fields, from the ray-tracing outcomes,
- the possibility of using a mesh, which allows ray-tracing from simulated or measured (1-D, 2-D or 3-D) electric and magnetic field maps,
- a number Monte Carlo procedures : unlimited number of trajectories, in-flight decay, stochastic radiation, etc.,
- built-in fitting procedures allowing arbitrary variables and a large variety of constraints, easily expandable,
- multi-turn tracking in circular accelerators including features proper to machine parameter calculation and survey,
- simulation of time-varying power supplies,
- simulation of arbitrary radio-frequency programs.

The initial version of zgoubi was dedicated to ray-tracing in magnetic elements, beam lines, spectrometers. It was perfected for the purpose of studying, and operating, the four spectrometers SPES I, II, III, IV at the Laboratoire National SATURNE (CEA-Saclay, France), and, later, SPEG at GANIL (Caen, France).
Developments regarding spin tracking and ray-tracing in combined electric and magnetic fields were implemented, in the late 1980s and early 1990s respectively.
In the mid-1990s, the computation of synchrotron radiation electromagnetic impulse and spectra was introduced, for the purpose of synchrotron radiation diagnostic R\&D at LEP, and further applied to the design of the SR diagnostics installations at LHC in the early 2000s. In the mean time, several new optical elements were added, such as electro-magnetic and other electrostatic lenses. Used since several years for special studies in periodic machines (e.g., SATURNE at Saclay, COSY at Julich, LEP and LHC at CERN), zgoubi has also undergone extensive developments regarding storage ring related features.
Many developments have been accomplished since the early 2000s in the frame of a number of project design and beam dynamics studies, as the neutrino factory, lepton and hadron colliders, spin studies at AGS and RHIC, etc. As a consequence the list of optical elements and the compendium of numerical methods, so-called "Glossary of Keywords" list, pp. 9 and 187, has stretched with new simulation and computing procedures, ranging from fitting (FIT2 procedure ; additional constraints) to overlapping magnetic field capabilities (DIPOLES, FFAG), spin manipulation (SPINR), optical elements (BEAMBEAM), radiation damping tools (SRLOSS) and many others (FAISTORE, MAP2D-E, OPTICS, PICKUPS, TWISS, etc.).
The graphic interface to zgoubi (zpop, Part D) has undergone extensive developments, making it a convenient companion tool to the use of zgoubi.

1 NUMERICAL CALCULATION OF MOTION AND FIELDS

1.1 zgoubi Frame

The reference frame of zgoubi is presented in Fig. 1. Its origin is in the median plane on a reference curve which generally (but not always) coincides with the optical axis of optical elements.

1.2 Integration of the Lorentz Equation

The Lorentz equation, which governs the motion of a particle of charge q, relativistic mass m and velocity \vec{v} in electric and magnetic fields \vec{e} and \vec{b}, is written

$$
\begin{equation*}
\frac{d(m \vec{v})}{d t}=q(\vec{e}+\vec{v} \times \vec{b}) \tag{1.2.1}
\end{equation*}
$$

Noting ()$^{\prime}=\frac{d()}{d s}$ and taking

$$
\begin{equation*}
\vec{u}=\frac{\vec{v}}{v}, \quad d s=v d t, \quad \vec{u}^{\prime}=\frac{d \vec{u}}{d s}, \quad m \vec{v}=m v \vec{u}=q B \rho \vec{u} \tag{1.2.2}
\end{equation*}
$$

where $B \rho$ is the rigidity of the particle, this equation can be rewritten

$$
\begin{equation*}
(B \rho)^{\prime} \vec{u}+B \rho \vec{u}^{\prime}=\frac{\vec{e}}{v}+\vec{u} \times \vec{b} \tag{1.2.3}
\end{equation*}
$$

From position $\vec{R}\left(M_{0}\right)$ and unit velocity $\vec{u}\left(M_{0}\right)$ at point M_{0}, position $\vec{R}\left(M_{1}\right)$ and unit velocity $\vec{u}\left(M_{1}\right)$ at point M_{1} following a displacement Δs, are obtained from truncated Taylor expansions (Fig. 2)

$$
\begin{align*}
& \vec{R}\left(M_{1}\right) \approx \vec{R}\left(M_{0}\right)+\vec{u}\left(M_{0}\right) \Delta s+\vec{u}^{\prime}\left(M_{0}\right) \frac{\Delta s^{2}}{2!}+\ldots+\vec{u}^{\prime \prime \prime \prime \prime}\left(M_{0}\right) \frac{\Delta s^{6}}{6!} \tag{1.2.4}\\
& \vec{u}\left(M_{1}\right) \approx \vec{u}\left(M_{0}\right)+\vec{u}^{\prime}\left(M_{0}\right) \Delta s+\vec{u}^{\prime \prime}\left(M_{0}\right) \frac{\Delta s^{2}}{2!}+\ldots+\vec{u}^{\prime \prime \prime \prime \prime}\left(M_{0}\right) \frac{\Delta s^{5}}{5!}
\end{align*}
$$

The rigidity at M_{1} is obtained in the same way from

$$
\begin{equation*}
(B \rho)\left(M_{1}\right) \approx(B \rho)\left(M_{0}\right)+(B \rho)^{\prime}\left(M_{0}\right) \Delta s+\ldots+(B \rho)^{\prime \prime \prime \prime \prime}\left(M_{0}\right) \frac{\Delta s^{5}}{5!} \tag{1.2.5}
\end{equation*}
$$

The equation of time of flight is written in a similar manner

$$
\begin{equation*}
T\left(M_{1}\right) \approx T\left(M_{0}\right)+T^{\prime}\left(M_{0}\right) \Delta s+T^{\prime \prime}\left(M_{0}\right) \frac{\Delta s^{2}}{2}+\ldots+T^{\prime \prime \prime \prime \prime}\left(M_{0}\right) \frac{\Delta s^{5}}{5!} \tag{1.2.6}
\end{equation*}
$$

The derivatives $\vec{u}^{(n)}=\frac{d^{n} \vec{u}}{d s^{n}}$ and $(B \rho)^{(n)}=\frac{d^{n}(B \rho)}{d s^{n}}$ involved in these expressions are calculated as described in the next sections. For the sake of computing speed, three distinct software procedures are involved, depending on whether \vec{e} or \vec{b} is zero, or \vec{e} and \vec{b} are both non-zero.

Figure 1: Reference frame and coordinates (Y, T, Z, P) in zgoubi.
$O X$: in the direction of motion,
$O Y$: normal to $O X$,
$O Z$: orthogonal to the (X, Y) plane,
\vec{W} : projection of the velocity, \vec{v}, in the (X, Y) plane,
$T=$ angle between \vec{W} and the X-axis,
$P=$ angle between \vec{W} and \vec{v}.

Figure 2: Position and velocity of a particle in the reference frame.

1.2.1 Integration in Magnetic Fields

Considering $\vec{e}=0$ and given $\vec{B}=\frac{\vec{b}}{B \rho}$, eq. (1.2.3) reduces to

$$
\begin{equation*}
\vec{u}^{\prime}=\vec{u} \times \vec{B} \tag{1.2.7}
\end{equation*}
$$

The successive derivatives $\vec{u}^{(n)}=\frac{d^{n} \vec{u}}{d s^{n}}$ of \vec{u} needed in the Taylor expansions (eqs. 1.2.4) are calculated by differentiating $\vec{u}^{\prime}=\vec{u} \times \vec{B}$

$$
\begin{align*}
\vec{u}^{\prime \prime} & =\vec{u}^{\prime} \times \vec{B}+\vec{u} \times \vec{B}^{\prime} \\
\vec{u}^{\prime \prime \prime} & =\vec{u}^{\prime \prime} \times \vec{B}+2 \vec{u}^{\prime} \times \vec{B}^{\prime}+\vec{u} \times \vec{B}^{\prime \prime} \\
\vec{u}^{\prime \prime \prime \prime} & =\vec{u}^{\prime \prime \prime} \times \vec{B}+3 \vec{u}^{\prime \prime} \times \vec{B}^{\prime}+3 \vec{u}^{\prime} \times \vec{B}^{\prime \prime}+\vec{u} \times \vec{B}^{\prime \prime \prime} \tag{1.2.8}\\
\vec{u}^{\prime \prime \prime \prime \prime} & =\vec{u}^{\prime \prime \prime \prime} \times \vec{B}+4 \vec{u}^{\prime \prime \prime} \times \vec{B}^{\prime}+6 \vec{u}^{\prime \prime} \times \vec{B}^{\prime \prime}+4 \vec{u}^{\prime} \times \vec{B}^{\prime \prime \prime}+\vec{u} \times \vec{B}^{\prime \prime \prime \prime}
\end{align*}
$$

where $\vec{B}^{(n)}=\frac{d^{n} \vec{B}}{d s^{n}}$.
From

$$
\begin{equation*}
d \vec{B}=\frac{\partial \vec{B}}{\partial X} d X+\frac{\partial \vec{B}}{\partial Y} d Y+\frac{\partial \vec{B}}{\partial Z} d Z=\sum_{i=1,3} \frac{\partial \vec{B}}{\partial X_{i}} d X_{i} \tag{1.2.9}
\end{equation*}
$$

and by successive differentiation, we get

$$
\begin{align*}
\vec{B}^{\prime}= & \sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u_{i} \\
\vec{B}^{\prime \prime}= & \sum_{i j} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u_{i} u_{j}+\sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u_{i}^{\prime} \\
\vec{B}^{\prime \prime \prime}= & \sum_{i j k} \frac{\partial^{3} \vec{B}}{\partial X_{i} \partial X_{j} \partial X_{k}} u_{i} u_{j} u_{k}+3 \sum_{i j} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u_{i}^{\prime} u_{j}+\sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u_{i}^{\prime \prime} \tag{1.2.10}\\
\vec{B}^{\prime \prime \prime \prime}= & \sum_{i j k l} \frac{\partial^{4} \vec{B}}{\partial X_{i} \partial X_{j} \partial X_{k} \partial X_{l}} u_{i} u_{j} u_{k} u_{l}+6 \sum_{i j k} \frac{\partial^{3} \vec{B}}{\partial X_{i} \partial X_{j} \partial X_{k}} u_{i}^{\prime} u_{j} u_{k} \\
& +4 \sum_{i j} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u_{i}^{\prime \prime} u_{j}+3 \sum_{i j} \frac{\partial^{2} \vec{B}}{\partial X_{i} \partial X_{j}} u_{i}^{\prime} u_{j}^{\prime}+\sum_{i} \frac{\partial \vec{B}}{\partial X_{i}} u_{i}^{\prime \prime \prime}
\end{align*}
$$

From the knowledge of $\vec{u}\left(M_{0}\right)$ and $\vec{B}\left(M_{0}\right)$ at point M_{0} of the trajectory, we calculate alternately the derivatives of $\vec{u}\left(M_{0}\right)$ and $\vec{B}\left(M_{0}\right)$, by means of eqs. (1.2.8) and (1.2.10), and inject these into eq. (1.2.4) so yielding $\vec{R}\left(M_{1}\right)$ and $\vec{u}\left(M_{1}\right)$.

1.2.2 Integration in Electric Fields [6]

Admitting that $\vec{b}=0$, eq. (1.2.3) reduces to

$$
\begin{equation*}
(B \rho)^{\prime} \vec{u}+B \rho \vec{u}^{\prime}=\frac{\vec{e}}{v} \tag{1.2.11}
\end{equation*}
$$

which, by successive differentiations, gives the recursive relations

$$
\begin{aligned}
& (B \rho)^{\prime} \vec{u}+B \rho \vec{u}^{\prime}=\frac{\vec{e}}{v} \\
& (B \rho)^{\prime \prime} \vec{u}+2(B \rho)^{\prime} \vec{u}^{\prime}+B \rho \vec{u}^{\prime \prime}=\left(\frac{1}{v}\right)^{\prime} \vec{e}+\frac{\vec{e}^{\prime}}{v} \\
& (B \rho)^{\prime \prime \prime} \vec{u}+3(B \rho)^{\prime \prime} \vec{u}^{\prime}+3(B \rho)^{\prime} \vec{u}^{\prime \prime}+B \rho \vec{u}^{\prime \prime \prime}=\left(\frac{1}{v}\right)^{\prime \prime} \vec{e}+2\left(\frac{1}{v}\right)^{\prime} \vec{e}^{\prime}+\left(\frac{1}{v}\right) \vec{e}^{\prime \prime} \\
& (B \rho)^{\prime \prime \prime \prime} \vec{u}+4(B \rho)^{\prime \prime \prime} \vec{u}^{\prime}+6(B \rho)^{\prime \prime} \vec{u}^{\prime \prime}+4(B \rho)^{\prime} \vec{u}^{\prime \prime \prime}+B \rho \vec{u}^{\prime \prime \prime \prime \prime}= \\
& \quad\left(\frac{1}{v}\right)^{\prime \prime \prime} \vec{e}+3\left(\frac{1}{v}\right)^{\prime \prime} \vec{e}^{\prime}+3\left(\frac{1}{v}\right)^{\prime} \vec{e}^{\prime \prime}+\frac{1}{v} \vec{e}^{\prime \prime \prime} \\
& (B \rho)^{\prime \prime \prime \prime \prime} \vec{u}+5(B \rho)^{\prime \prime \prime \prime} \vec{u}^{\prime}+\text { etc. }
\end{aligned}
$$

that provide the derivatives $\frac{d^{n} \vec{u}}{d s^{n}}$ needed in the Taylor expansions (eq. 1.2.4)

$$
\begin{align*}
\vec{u}^{\prime}= & \left(\frac{1}{v}\right) \vec{E}-\frac{(B \rho)^{\prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime}= & \left(\frac{1}{v}\right)^{\prime} \vec{E}+\left.\left(\frac{1}{v}\right) \vec{E}^{\prime}\right|_{B \rho}-2 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime \prime}= & \left(\frac{1}{v}\right)^{\prime \prime} \vec{E}+\left.2\left(\frac{1}{v}\right)^{\prime} \vec{E}^{\prime}\right|_{B \rho}+\left.\frac{1}{v} \vec{E}^{\prime \prime}\right|_{B \rho}-3 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime \prime}-3 \frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime \prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime \prime \prime \prime}= & \left(\frac{1}{v}\right)^{\prime \prime \prime} \vec{E}+\left.3\left(\frac{1}{v}\right)^{\prime \prime} \vec{E}^{\prime}\right|_{B \rho}+\left.3\left(\frac{1}{v}\right)^{\prime} \vec{E}^{\prime \prime}\right|_{B \rho}+\left.\left(\frac{1}{v}\right) \vec{E}^{\prime \prime \prime}\right|_{B \rho} \tag{1.2.13}\\
& -4 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime \prime \prime}-6 \frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u}^{\prime \prime}-4 \frac{(B \rho)^{\prime \prime \prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime \prime \prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime \prime \prime \prime \prime}= & \left(\frac{1}{v}\right)^{\prime \prime \prime \prime} \vec{E}+\left.4\left(\frac{1}{v}\right)^{\prime \prime \prime} \vec{E}^{\prime}\right|_{B \rho}+\left.6\left(\frac{1}{v}\right)^{\prime \prime} \vec{E}^{\prime \prime}\right|_{B \rho}+\left.4\left(\frac{1}{v}\right)^{\prime} \vec{E}^{\prime \prime \prime \prime}\right|_{B \rho}+\left.\left(\frac{1}{v}\right) \vec{E} \vec{E}^{\prime \prime \prime \prime}\right|_{B \rho} \\
& -5 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime \prime \prime \prime}-10 \frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u}^{\prime \prime \prime}-10 \frac{(B \rho)^{\prime \prime \prime}}{B \rho} \vec{u}^{\prime \prime}-5 \frac{(B \rho)^{\prime \prime \prime \prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime \prime \prime \prime \prime}}{B \rho} \vec{u}
\end{align*}
$$

where $\vec{E}=\frac{\vec{e}}{B \rho}$, and $\left.()^{(n)}\right|_{B \rho}$ denotes differentiation at constant $B \rho:\left.\vec{E}^{(n)}\right|_{B \rho}=\frac{1}{B \rho} \frac{d^{n} \vec{e}}{d s^{n}}$. These derivatives of the electric field are obtained from the total derivative

$$
\begin{equation*}
d \vec{E}=\frac{\partial \vec{E}}{\partial X} d X+\frac{\partial \vec{E}}{\partial Y} d Y+\frac{\partial \vec{E}}{\partial Z} d Z \tag{1.2.14}
\end{equation*}
$$

by successive differentiations

$$
\begin{align*}
\vec{E}^{\prime} & =\sum_{i} \frac{\partial \vec{E}}{\partial X_{i}} u_{i} \\
\vec{E}^{\prime \prime} & =\sum_{i j} \frac{\partial^{2} \vec{E}}{\partial X_{i} \partial X_{j}} u_{i} u_{j}+\sum_{i} \frac{\partial \vec{E}}{\partial X_{i}} u_{i}^{\prime} \tag{1.2.15}\\
\vec{E}^{\prime \prime \prime} & =\sum_{i j k} \frac{\partial^{3} \vec{E}}{\partial X_{i} \partial X_{j} \partial X_{k}} u_{i} u_{j} u_{k}+3 \sum_{i j} \frac{\partial^{2} \vec{E}}{\partial X_{i} \partial X_{j}} u_{i}^{\prime} u_{j}+\sum_{i} \frac{\partial \vec{E}}{\partial X_{i}} u_{i}^{\prime \prime}
\end{align*}
$$

etc. as in eq. 1.2.10. The eqs. (1.2.13), as well as the calculation of the rigidity, eq. (1.2.5), involve derivatives $(B \rho)^{(n)}=\frac{d^{n}(B \rho)}{d s^{n}}$, which are obtained in the following way. Considering that

$$
\begin{equation*}
\frac{d p^{2}}{d t}=\frac{d \vec{p}^{2}}{d t} \quad \text { i.e., } \quad \frac{d p}{d t} p=\frac{d \vec{p}}{d t} \vec{p} \tag{1.2.16}
\end{equation*}
$$

with $\frac{d \vec{p}}{d t}=q(\vec{e}+\vec{v} \times \vec{b})$ (eq. 1.2.1), we obtain

$$
\begin{equation*}
\frac{d p}{d t} p=q(\vec{e}+v \times \vec{b}) \cdot \vec{p}=q \vec{e} \cdot \vec{p} \tag{1.2.17}
\end{equation*}
$$

since $(\vec{v} \times \vec{b}) \cdot \vec{p}=0$. Normalizing as previously with $\vec{p}=p \vec{u}=q B \rho \vec{u}$ and $d s=v d t$, and by successive differentiations, eq. (1.2.17) leads to the $(B \rho)^{(n)}$

$$
\begin{align*}
(B \rho)^{\prime} & =\frac{1}{v}(\vec{e} \cdot \vec{u}) \\
(B \rho)^{\prime \prime} & =\left(\frac{1}{v}\right)^{\prime}(\vec{e} \cdot \vec{u})+\frac{1}{v}(\vec{e} \cdot \vec{u})^{\prime} \\
(B \rho)^{\prime \prime \prime} & =\left(\frac{1}{v}\right)^{\prime \prime}(\vec{e} \cdot \vec{u})+2\left(\frac{1}{v}\right)^{\prime}(\vec{e} \cdot \vec{u})^{\prime}+\frac{1}{v}(\vec{e} \cdot \vec{u})^{\prime \prime} \tag{1.2.18}\\
(B \rho)^{\prime \prime \prime \prime} & =\left(\frac{1}{v}\right)^{\prime \prime \prime}(\vec{e} \cdot \vec{u})+3\left(\frac{1}{v}\right)^{\prime \prime}(\vec{e} \cdot \vec{u})^{\prime}+3\left(\frac{1}{v}\right)^{\prime}(\vec{e} \cdot \vec{u})^{\prime \prime}+\frac{1}{v}(\vec{e} \cdot \vec{u})^{\prime \prime \prime} \\
(B \rho)^{\prime \prime \prime \prime \prime} & =\text { etc. }
\end{align*}
$$

The derivatives $(\vec{e} \cdot \vec{u})^{(n)}=\frac{d^{n}(\vec{e} \cdot \vec{u})}{d s^{n}}$ are obtained by recursive differentiation

$$
\begin{align*}
(\vec{e} \cdot \vec{u})^{\prime} & =\vec{e}^{\prime} \cdot \vec{u}+\vec{e} \cdot \vec{u}^{\prime} \\
(\vec{e} \cdot \vec{u})^{\prime \prime} & =\vec{e}^{\prime \prime} \cdot \vec{u}+2 \vec{e}^{\prime} \cdot \vec{u}^{\prime}+\vec{e} \cdot \vec{u}^{\prime \prime} \tag{1.2.19}
\end{align*}
$$

etc.

Note that they can be related to the derivatives of the kinetic energy W by $d W=\frac{d \vec{p}}{d t} \cdot \vec{v} d t=q \vec{e} \cdot \vec{v} d t$ which leads to

$$
\begin{equation*}
\frac{d^{n+1} W}{d s^{n+1}}=q \frac{d^{n}(\vec{e} \cdot \vec{u})}{d s^{n}} \tag{1.2.20}
\end{equation*}
$$

Finally, the derivatives $\left(\frac{1}{v}\right)^{(n)}=\frac{d^{n}\left(\frac{1}{v}\right)}{d s^{n}}$ involved in eqs. (1.2.13,1.2.18) are obtained from

$$
p=\frac{v}{c} \frac{W+m_{0} c^{2}}{c}
$$

(m_{0} is the rest mass) by successive differentiations, that give the recursive relations

$$
\begin{align*}
\left(\frac{1}{v}\right) & =\frac{1}{c^{2}} \frac{W+m_{0} c^{2}}{q B \rho} \\
\left(\frac{1}{v}\right)^{\prime} & =\frac{1}{c^{2}} \frac{(\vec{e} \cdot \vec{u})}{B \rho}-\frac{1}{v} \frac{(B \rho)^{\prime}}{B \rho} \\
\left(\frac{1}{v}\right)^{\prime \prime} & =\frac{1}{c^{2}} \frac{(\vec{e} \cdot \vec{u})^{\prime}}{B \rho}-2\left(\frac{1}{v}\right)^{\prime} \frac{(B \rho)^{\prime}}{B \rho}-\frac{1}{v} \frac{(B \rho)^{\prime \prime}}{B \rho} \tag{1.2.21}\\
\left(\frac{1}{v}\right)^{\prime \prime \prime} & =\frac{1}{c^{2}} \frac{(\vec{e} \cdot \vec{u})^{\prime \prime}}{B \rho}-3\left(\frac{1}{v}\right)^{\prime \prime} \frac{(B \rho)^{\prime}}{B \rho}-3\left(\frac{1}{v}\right)^{\prime} \frac{(B \rho)^{\prime \prime}}{B \rho}-\frac{1}{v} \frac{(B \rho)^{\prime \prime \prime}}{B \rho} \\
\left(\frac{1}{v}\right)^{\prime \prime \prime \prime} & =\text { etc. }
\end{align*}
$$

1.2.3 Integration in Combined Electric and Magnetic Fields

When both \vec{e} and \vec{b} are non-zero, the complete eq. (1.2.3) must be considered. Recursive differentiations give the following relations

$$
\begin{aligned}
& (B \rho)^{\prime} \vec{u}+B \rho \vec{u}^{\prime}=\frac{\vec{e}}{v}+\vec{u} \times \vec{b} \\
& (B \rho)^{\prime \prime} \vec{u}+2(B \rho)^{\prime} \vec{u}^{\prime}+B \rho \vec{u}^{\prime \prime}=\left(\frac{1}{v}\right)^{\prime} \vec{e}+\left(\frac{1}{v}\right) \vec{e}^{\prime}+(\vec{u} \times \vec{b})^{\prime} \\
& (B \rho)^{\prime \prime \prime} \vec{u}+3(B \rho)^{\prime \prime} \vec{u}^{\prime}+3(B \rho)^{\prime} \vec{u}^{\prime \prime}+B \rho \vec{u}^{\prime \prime \prime}=\left(\frac{1}{v}\right)^{\prime \prime} \vec{e}+2\left(\frac{1}{v}\right)^{\prime} \vec{e}^{\prime}+\left(\frac{1}{v}\right) \vec{e}^{\prime \prime}+(\vec{u} \times \vec{b})^{\prime \prime} \\
& (B \rho)^{\prime \prime \prime \prime} \vec{u}+4(B \rho)^{\prime \prime \prime} \vec{u}^{\prime}+6(B \rho)^{\prime \prime} \vec{u}^{\prime \prime}+4(B \rho)^{\prime} \vec{u}^{\prime \prime \prime}+B \rho \vec{u}^{\prime \prime \prime \prime}= \\
& \quad\left(\frac{1}{v}\right)^{\prime \prime \prime} \vec{e}+3\left(\frac{1}{v}\right)^{\prime \prime} \vec{e}^{\prime}+3\left(\frac{1}{v}\right)^{\prime} \vec{e}^{\prime \prime}+\frac{1}{v} \vec{e}^{\prime \prime \prime}+(\vec{u} \times \vec{b})^{\prime \prime \prime}
\end{aligned}
$$

that provide the derivatives $\frac{d^{n} \vec{u}}{d s^{n}}$ needed in the Taylor expansions (1.2.4)

$$
\begin{aligned}
\vec{u}^{\prime}= & \left(\frac{1}{v}\right) \vec{E}+(\vec{u} \times \vec{B})-\frac{(B \rho)^{\prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime}= & \left(\frac{1}{v}\right)^{\prime} \vec{E}+\left.\left(\frac{1}{v}\right) \vec{E}^{\prime}\right|_{B \rho}+\left.(\vec{u} \times \vec{B})^{\prime}\right|_{B \rho}-2 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime \prime}= & \left(\frac{1}{v}\right)^{\prime \prime} \vec{E}+\left.2\left(\frac{1}{v}\right)^{\prime} \vec{E}^{\prime}\right|_{B \rho}+\left.\frac{1}{v} \vec{E}^{\prime \prime}\right|_{B \rho}+\left.(\vec{u} \times \vec{B})^{\prime \prime}\right|_{B \rho}-3 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime \prime}-3 \frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime \prime}}{B \rho} \vec{u} \\
\vec{u}^{\prime \prime \prime \prime \prime}= & \left(\frac{1}{v}\right)^{\prime \prime \prime} \vec{E}+\left.3\left(\frac{1}{v}\right)^{\prime \prime} \vec{E}^{\prime}\right|_{B \rho}+\left.3\left(\frac{1}{v}\right)^{\prime} \vec{E}^{\prime \prime}\right|_{B \rho}+\left.\left(\frac{1}{v}\right) \vec{E}^{\prime \prime \prime \prime}\right|_{B \rho} \\
& +\left.(\vec{u} \times \vec{B})^{\prime \prime \prime}\right|_{B \rho}-4 \frac{(B \rho)^{\prime}}{B \rho} \vec{u}^{\prime \prime \prime}-6 \frac{(B \rho)^{\prime \prime}}{B \rho} \vec{u}^{\prime \prime}-4 \frac{(B \rho)^{\prime \prime \prime}}{B \rho} \vec{u}^{\prime}-\frac{(B \rho)^{\prime \prime \prime \prime}}{B \rho} \vec{u}
\end{aligned}
$$

where $\vec{E}=\frac{\vec{e}}{B \rho}, \vec{B}=\frac{\vec{b}}{B \rho}$, and $\left.{ }^{(n)}\right|_{B \rho}$ denotes differentiation at constant $B \rho$

$$
\begin{equation*}
\left.\vec{E}^{(n)}\right|_{B \rho}=\frac{1}{B \rho} \frac{d^{n} \vec{e}}{d s^{n}} \quad \text { and }\left.\quad(\vec{u} \times \vec{B})^{(n)}\right|_{B \rho}=\frac{1}{B \rho}(\vec{u} \times \vec{b})^{(n)} \tag{1.2.24}
\end{equation*}
$$

These derivatives $\vec{E}^{(n)}$ and $\vec{B}^{(n)}$ of the electric and magnetic fields are calculated from the vector fields $\vec{E}(X, Y, Z), \vec{B}(X, Y, Z)$ and their derivatives $\frac{\partial^{i+j+k} \vec{E}}{\partial X^{i} \partial Y^{j} \partial Z^{k}}$ and $\frac{\partial^{i+j+k} \vec{B}}{\partial X^{i} \partial Y^{j} \partial Z^{k}}$, following eqs. (1.2.14, 1.2.15) and eqs. (1.2.9, 1.2.10), respectively.

1.2.4 Calculation of the Time of Flight

The time of flight eq. (1.2.6) involves the derivatives $d T / d s=1 / v, d^{2} T / d s^{2}=d(1 / v) / d s$, etc. that are obtained from eq. (1.2.21). In the absence of electric field, however, eq. (1.2.6) reduces to the simple form

$$
\begin{equation*}
T\left(M_{1}\right)=T\left(M_{0}\right)+\Delta s / v \tag{1.2.25}
\end{equation*}
$$

1.3 Calculation of \vec{E} and \vec{B} Fields and their Derivatives

In this section, unless otherwise stated, $\vec{B}=\left(B_{X}(X, Y, Z), B_{Y}(X, Y, Z), B_{Z}(X, Y, Z)\right)$ stands indifferently for electric field \vec{E} or magnetic field \vec{B}.
$\vec{B}(X, Y, Z)$ and derivatives are calculated in various ways, depending whether field maps or analytic representations of optical elements are used. The basic means are the following.

1.3.1 1-D (Axial) Analytical Field Models and Extrapolation

This procedure assumes cylindrical symmetry with respect to the X-axis. The longitudinal field component B_{X} or $E_{X}(X, r=0)\left(r=\left(Y^{2}+Z^{2}\right)^{1 / 2}\right)$, along that axis is derived by differentiation of an appropriate model of the potential $V(X)$ (e.g., magnetic in SOLENOID, electrostatic in EL2TUB, UNIPOT). The longitudinal and radial field components $B_{X}(X, r), B_{r}(X, r)$ and their derivatives off-axis $\frac{\partial^{i+j} B_{X}}{\partial X^{i} \partial r^{j}}$ and $\frac{\partial^{i+j} B_{r}}{\partial X^{i} \partial r^{j}}$ are obtained by Taylor expansions to the second to fifth order in r (depending on the optical element) assuming cylindrical symmetry (eq. (1.3.1)), and then transformed to the (X, Y, Z) Cartesian frame of zgoubi in order to provide the derivatives $\frac{\partial^{i+j+k} \vec{B}}{\partial X^{i} \partial Y^{j} \partial Z^{k}}$ needed in eq. (1.2.15).

1.3.2 Extrapolation from 1-D axial field map [7]

A cylindrically symmetric field (e.g., using BREVOL, ELREVOL) can be described by an axial 1-D field map of its longitudinal component $B_{X}(X, r=0)\left(r=\left(Y^{2}+Z^{2}\right)^{1 / 2}\right)$, while the radial component on axis $B_{r}(X, r=0)$ is assumed to be zero. $B_{X}(X, r=0)$ is obtained at any point along the X-axis by a polynomial interpolation from the map mesh (see section 1.4.1). Then the field components $B_{X}(X, r)$, $B_{r}(X, r)$ at the position of the particle, (X, r) are obtained from Taylor expansions truncated at the fifth order in r (hence, up to the fifth order derivative $\frac{\partial^{5} B_{X}}{\partial X^{5}}(X, 0)$), assuming cylindrical symmetry

$$
\begin{align*}
B_{X}(X, r) & =B_{X}(X, 0)-\frac{r^{2}}{4} \frac{\partial^{2} B_{X}}{\partial X^{2}}(X, 0)+\frac{r^{4}}{64} \frac{\partial^{4} B_{X}}{\partial X^{4}}(X, 0) \\
B_{r}(X, r) & =-\frac{r}{2} \frac{\partial B_{X}}{\partial X}(X, 0)+\frac{r^{3}}{16} \frac{\partial^{3} B_{X}}{\partial X^{3}}(X, 0)-\frac{r^{5}}{384} \frac{\partial^{5} B_{X}}{\partial X^{5}}(X, 0) \tag{1.3.1}
\end{align*}
$$

Then, by differentiation with respect to X and r, up to the second order, these expressions provide the derivatives of $\vec{B}(X, r)$. Finally a conversion from the (X, r) coordinates to the (X, Y, Z) Cartesian coordinates of zgoubi is performed, thus providing the expressions $\frac{\partial^{i+j+k} \vec{B}}{\partial X^{i} \partial Y^{j} \partial Z^{k}}$ needed in the eq. (1.2.10).

1.3.3 Extrapolation From Median Plane Field Models

In the median plane, $B_{Z}(X, Y, 0)$ and its derivatives with respect to X or Y may be derived from analytical models (e.g., in Venus magnet - VENUS, and sharp edge multipoles SEXQUAD and QUADISEX) or numerically by polynomial interpolation from 2-D field maps (e.g., CARTEMES, TOSCA). Median plane antisymmetry is assumed, which results in

$$
\begin{align*}
B_{X}(X, Y, 0) & =0 \\
B_{Y}(X, Y, 0) & =0 \\
B_{X}(X, Y, Z) & =-B_{X}(X, Y,-Z) \tag{1.3.2}\\
B_{Y}(X, Y, Z) & =-B_{Y}(X, Y,-Z) \\
B_{Z}(X, Y, Z) & =B_{Z}(X, Y,-Z)
\end{align*}
$$

Accommodated with Maxwell's equations, this results in Taylor expansions below, for the three components of \vec{B} (here, B stands for $B_{Z}(X, Y, 0)$)

$$
\begin{align*}
B_{X}(X, Y, Z) & =Z \frac{\partial B}{\partial X}-\frac{Z^{3}}{6}\left(\frac{\partial^{3} B}{\partial X^{3}}+\frac{\partial^{3} B}{\partial X \partial Y^{2}}\right) \\
B_{Y}(X, Y, Z) & =Z \frac{\partial B}{\partial Y}-\frac{Z^{3}}{6}\left(\frac{\partial^{3} B}{\partial X^{2} \partial Y}+\frac{\partial^{3} B}{\partial Y^{3}}\right) \tag{1.3.3}\\
B_{Z}(X, Y, Z) & =B-\frac{Z^{2}}{2}\left(\frac{\partial^{2} B}{\partial X^{2}}+\frac{\partial^{2} B}{\partial Y^{2}}\right)+\frac{Z^{4}}{24}\left(\frac{\partial^{4} B}{\partial X^{4}}+2 \frac{\partial^{4} B}{\partial X^{2} \partial Y^{2}}+\frac{\partial^{4} B}{\partial Y^{4}}\right)
\end{align*}
$$

which are then differentiated one by one with respect to X, Y, or Z, up to second or fourth order (depending on optical element or IORDRE option, see section 1.4.2) so as to get the expressions involved in eq. (1.2.10).

1.3.4 Extrapolation from Arbitrary 2-D Field Maps

2-D field maps that give the three components $B_{X}\left(X, Y, Z_{0}\right), B_{Y}\left(X, Y, Z_{0}\right)$ and $B_{Z}\left(X, Y, Z_{0}\right)$ at each node (X, Y) of a $Z_{0} Z$-elevation map may be used. \vec{B} and its derivatives at any point (X, Y, Z) are calculated by polynomial interpolation followed by Taylor expansions in Z, without any hypothesis of symmetries (see section 1.4.3 and keywords MAP2D, MAP2D-E).

1.3.5 Interpolation in 3-D Field Maps [8]

In 3-D field maps \vec{B} and its derivatives up to the second order with respect to X, Y or Z are calculated by means of a second order polynomial interpolation, from 3-D $3 \times 3 \times 3$-point grid (see section 1.4.4).

1.3.6 2-D Analytical Field Models and Extrapolation

Several optical elements such as BEND, WIENFILT (that uses the BEND procedures), QUADISEX, VENUS, etc., are defined from the expression of the field and derivatives in the median plane. 3-D extrapolation of these off the median plane is drawn from Taylor expansions and Maxwell's equations.

1.3.7 3-D Analytical Models of Fields

In many optical elements such as QUADRUPO, SEXTUPOL, MULTIPOL, EBMULT, etc., the three components of \vec{B} and their derivatives with respect to X, Y or Z are obtained at any step along trajectories from analytical expression drawn from the scalar potential $V(X, Y, Z)$, namely

$$
\begin{equation*}
B_{X}=\frac{\partial V}{\partial X}, \quad B_{Y}=\frac{\partial V}{\partial Y}, \quad B_{Z}=\frac{\partial V}{\partial Z}, \quad \frac{\partial B_{X}}{\partial X}=\frac{\partial^{2} V}{\partial X^{2}}, \quad \frac{\partial B_{X}}{\partial Y}=\frac{\partial^{2} V}{\partial X \partial Y}, \quad \text { etc. } \tag{1.3.4}
\end{equation*}
$$

and similarly for \vec{E} with opposite sign for the gradients.

Multipoles

The scalar potential used for the calculation of $\frac{\partial^{i+j+k} \vec{B}_{n}(X, Y, Z)}{\partial X^{i} \partial Y^{i} \partial Z^{k}}(i+j+k=0$ to 4$)$ in the case of magnetic and electro-magnetic multipoles with $2 n$ poles (namely, QUADRUPO $(n=2)$ to DODECAPO ($n=6$), MULTIPOL ($n=1$ to 10), EBMULT ($n=1$ to 10)) is [9]

$$
\begin{equation*}
V_{n}(X, Y, Z)=(n!)^{2}\left(\sum_{q=0}^{\infty}(-1)^{q} \frac{G^{(2 q)}(X)\left(Y^{2}+Z^{2}\right)^{q}}{4^{q} q!(n+q)!}\right)\left(\sum_{m=0}^{n} \frac{\sin \left(m \frac{\pi}{2}\right) Y^{n-m} Z^{m}}{m!(n-m)!}\right) \tag{1.3.5}
\end{equation*}
$$

where $G(X)$ is a longitudinal form factor, defined at the entrance or exit of the optical element by

$$
\begin{equation*}
G(s)=\frac{G_{0}}{1+\exp (P(s))}, \quad G_{0}=\frac{B_{0}}{R_{0}^{n-1}} \tag{1.3.6}
\end{equation*}
$$

wherein B_{0} is the field at pole tip radius R_{0}, and

$$
P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+C_{3}\left(\frac{s}{\lambda}\right)^{3}+C_{4}\left(\frac{s}{\lambda}\right)^{4}+C_{5}\left(\frac{s}{\lambda}\right)^{5}
$$

and s is the distance to the EFB.

Skew Multipoles

A multipole component with arbitrary order n can be tilted independently of the others by an arbitrary angle A_{n} around the X-axis. If so, the calculation of the field and derivatives in the rotated axis $\left(X, Y_{R}, Z_{R}\right)$ is done in two steps. First, they are calculated at the rotated position $\left(X, Y_{R}, Z_{R}\right)$, in the (X, Y, Z) frame, using the expression (1.3.5) above. Second, \vec{B} and its derivatives at $\left(X, Y_{R}, Z_{R}\right)$ in the (X, Y, Z) frame are transformed into the new, $\left(X, Y_{R}, Z_{R}\right)$ frame, by a rotation with angle A_{n}.

In particular a skew $2 n$-pole component is created by taking $A_{n}=\pi / 2 n$.

A Note on Electrostatic Multipoles

A right electric multipole has the same field equations as the like-order skew magnetic multipole. Therefore, calculation of right or skew electric or electro-magnetic multipoles (ELMULT, EBMULT, ELMULT) uses the same eq. (1.3.5) together with the rotation process as described in section 1.3.7. The same method is used for arbitrary rotation of any multipole component around the X-axis.

1.4 Calculation of \vec{E} and \vec{B} from Field Maps

In this section, unless otherwise stated, $\vec{B}=\left(B_{X}(X, Y, Z), B_{Y}(X, Y, Z), B_{Z}(X, Y, Z)\right)$ stands indifferently for electric field \vec{E} or magnetic field \vec{B}.

1.4.1 1-D Axial Map, with Cylindrical Symmetry

Let B_{i} be the value of the longitudinal component $B_{X}(X, r=0)$ of the field \vec{B}, at node i of a uniform mesh that defines a 1-D field map along the symmetry X-axis, while $B_{r}(X, r=0)$ is assumed to be zero $\left(r=\left(Y^{2}+Z^{2}\right)^{1 / 2}\right)$. The field component $B_{X}(X, r=0)$ is calculated by a polynomial interpolation of the fifth degree in X, using a 5 points grid centered at the node of the 1-D map which is closest to the actual coordinate X of the particle.
The interpolation polynomial is

$$
\begin{equation*}
B(X, 0)=A_{0}+A_{1} X+A_{2} X^{2}+A_{3} X^{3}+A_{4} X^{4}+A_{5} X^{5} \tag{1.4.1}
\end{equation*}
$$

and the coefficients A_{i} are calculated by expressions that minimize the quadratic sum

$$
\begin{equation*}
S=\sum_{i}\left(B(X, 0)-B_{i}\right)^{2} \tag{1.4.2}
\end{equation*}
$$

Namely, the source code contains the explicit analytical expressions of the coefficients A_{i} solutions of the normal equations $\partial S / \partial A_{i}=0$.

The derivatives $\frac{\partial^{n} B}{\partial X^{n}}(X, 0)$ at the actual position X, as involved in eqs. (1.3.1), are then obtained by differentiation of the polynomial (1.4.1), giving

$$
\begin{align*}
& \frac{\partial B}{\partial X}(X, 0)=A_{1}+2 A_{2} X+3 A_{3} X^{2}+4 A_{4} X^{3}+5 A_{5} X^{4} \\
& \frac{\partial^{2} B}{\partial X^{2}}(X, 0)=2 A_{2}+6 A_{3} X+12 A_{4} X^{2}+20 A_{5} X^{3} \tag{1.4.3}\\
& \cdots \\
& \frac{\partial^{5} B}{\partial X^{5}}(X, 0)=120 A_{5}
\end{align*}
$$

1.4.2 2-D Median Plane Map, with Median Plane Antisymmetry

Let $B_{i j}$ be the value of $B_{Z}(X, Y, 0)$ at the nodes of a mesh which defines a 2-D field map in the (X, Y) plane while $B_{X}(X, Y, 0)$ and $B_{Y}(X, Y, 0)$ are assumed to be zero. Such a map may have been built or measured in either Cartesian or polar coordinates. Whenever polar coordinates are used, a change to Cartesian coordinates (described below) provides the expression of \vec{B} and its derivatives as involved in eq. (1.2.10).

Figure 3: Mesh in the (X, Y) plane. The grid is centered on the node which is closest to the actual position of the particle.
A : Cartesian mesh, 9-point interpolation grid.
B : Cartesian mesh, 25 -point interpolation grid.
C : Polar mesh and moving Cartesian frame.
zgoubi provides three types of polynomial interpolation from the mesh (option IORDRE) ; namely, a second order interpolation, with either a 9 - or a 25 -point grid, or a fourth order interpolation with a 25 -point grid (Fig. 3).

If the 2-D field map is built up from computer simulation, the grid in principle simply aims at interpolating the field and derivatives at a given point from its 9 or 25 neighbors. On the other hand if the map results from field measurements, the grid also has the virtue of smoothing field fluctuations.
The mesh may be defined in Cartesian coordinates, (Figs. 3A and 3B) or in polar coordinates (Fig. 3C).
The interpolation grid is centered on the node which is closest to the projection in the (X, Y) plane of the actual point of the trajectory.
The interpolation polynomial is

$$
\begin{equation*}
B(X, Y, 0)=A_{00}+A_{10} X+A_{01} Y+A_{20} X^{2}+A_{11} X Y+A_{02} Y^{2} \tag{1.4.4}
\end{equation*}
$$

to the second order, or

$$
\begin{align*}
B(X, Y, 0)= & A_{00}+A_{10} X+A_{01} Y+A_{20} X^{2}+A_{11} X Y+A_{02} Y^{2} \\
& +A_{30} X^{3}+A_{21} X^{2} Y+A_{12} X Y^{2}+A_{03} Y^{3} \tag{1.4.5}\\
& +A_{40} X^{4}+A_{31} X^{3} Y+A_{22} X^{2} Y^{2}+A_{13} X Y^{3}+A_{04} Y^{4}
\end{align*}
$$

to the fourth order. The coefficients $A_{i j}$ are calculated by expressions that minimize, with respect to $A_{i j}$, the quadratic sum

$$
\begin{equation*}
S=\sum_{i j}\left(B(X, Y, 0)-B_{i j}\right)^{2} \tag{1.4.6}
\end{equation*}
$$

The source code contains the explicit analytical expressions of the coefficients $A_{i j}$ solutions of the normal equations $\partial S / \partial A_{i j}=0$.
The $A_{i j}$ may then be identified with the derivatives of $B(X, Y, 0)$ at the central node of the grid

$$
\begin{equation*}
A_{i j}=\frac{1}{i!j!} \frac{\partial^{i+j} B}{\partial X^{i} \partial Y^{j}}(0,0,0) \tag{1.4.7}
\end{equation*}
$$

The derivatives of $B(X, Y, 0)$ with respect to X and Y, at the actual point $(X, Y, 0)$ are obtained by differentiation of the interpolation polynomial, which gives (e.g., from (1.4.4) in the case of second order interpolation)

$$
\begin{gather*}
\frac{\partial B}{\partial X}(X, Y, 0)=A_{10}+2 A_{20} X+A_{11} Y \\
\frac{\partial B}{\partial Y}(X, Y, 0)=A_{01}+A_{11} X+2 A_{02} Y \tag{1.4.8}\\
\text { etc. }
\end{gather*}
$$

This allows stepping to the calculation of $\vec{B}(X, Y, Z)$ and its derivatives as described in subsection 1.3.3 (eq. 1.3.3).

The Special Case of Polar Maps

In some optical elements (e.g., POLARMES, DIPOLE[S]) the field is given in polar coordinates. It is thus necessary to transform the field and derivatives from the polar frame of the map, (R, α, Z) to the Cartesian moving frame (X, Y, Z), Fig. 3C. This is done as follows.
In second order calculations the correspondence is (we note $B \equiv B_{Z}(Z=0)$)

$$
\begin{array}{ll}
\frac{\partial B}{\partial X} & =\frac{1}{R} \frac{\partial B}{\partial \alpha} \\
\frac{\partial B}{\partial Y} & =\frac{\partial B}{\partial R} \\
\frac{\partial^{2} B}{\partial X^{2}} & =\frac{1}{R^{2}} \frac{\partial^{2} B}{\partial \alpha^{2}}+\frac{1}{R} \frac{\partial B}{\partial R} \\
\frac{\partial^{2} B}{\partial X \partial Y} & =\frac{1}{R} \frac{\partial^{2} B}{\partial \alpha \partial R}-\frac{1}{R^{2}} \frac{\partial B}{\partial \alpha} \\
\frac{\partial^{2} B}{\partial Y^{2}} & =\frac{\partial^{2} B}{\partial R^{2}} \tag{1.4.9}\\
\frac{\partial^{3} B}{\partial X^{3}} & =\frac{3}{R^{2}} \frac{\partial^{2} B}{\partial \alpha \partial R}-\frac{2}{R^{3}} \frac{\partial B}{\partial \alpha} \\
\frac{\partial^{3} B}{\partial X^{2} \partial Y} & =\frac{-2}{R^{3}} \frac{\partial^{2} B}{\partial \alpha^{2}}-\frac{1}{R^{2}} \frac{\partial B}{\partial R}+\frac{1}{R} \frac{\partial^{2} B}{\partial R^{2}} \\
\frac{\partial^{3} B}{\partial X \partial Y^{2}} & =\frac{2}{R^{3}} \frac{\partial B}{\partial \alpha}-\frac{2}{R^{2}} \frac{\partial^{2} B}{\partial \alpha \partial R} \\
\frac{\partial^{3} B}{\partial Y^{3}} & =0
\end{array}
$$

In fourth order calculations the relations above are pushed to fourth order in X, Y whereas

$$
\begin{array}{ll}
\frac{\partial^{3} B}{\partial X^{3}} & =\frac{1}{R^{3}} \frac{\partial^{3} B}{\partial \alpha^{3}}+\frac{3}{R^{2}} \frac{\partial^{2} B}{\partial \alpha \partial R}-\frac{2}{R^{3}} \frac{\partial B}{\partial \alpha} \\
\frac{\partial^{3} B}{\partial X^{2} \partial Y} & =\frac{1}{R^{2}} \frac{\partial^{3} B}{\partial \alpha^{2} \partial R}-\frac{2}{R^{3}} \frac{\partial^{2} B}{\partial \alpha^{2}}-\frac{1}{R^{2}} \frac{\partial B}{\partial R}+\frac{1}{R} \frac{\partial^{2} B}{\partial R^{2}} \\
\frac{\partial^{3} B}{\partial X \partial Y^{2}} & =\frac{1}{R} \frac{\partial^{3} B}{\partial \alpha \partial R^{2}}+\frac{2}{R^{3}} \frac{\partial B}{\partial \alpha}-\frac{2}{R^{2}} \frac{\partial^{2} B}{\partial \alpha \partial R} \\
\frac{\partial^{3} B}{\partial Y^{3}} & =\frac{\partial^{3} B}{\partial R^{3}} \\
\frac{\partial^{4} B}{\partial X^{4}} & =\frac{1}{R^{4}} \frac{\partial^{4} B}{\partial \alpha^{4}}-\frac{8}{R^{4}} \frac{\partial^{2} B}{\partial \alpha^{2}}+\frac{6}{R^{3}} \frac{\partial^{3} B}{\partial \alpha^{2} \partial R}+\frac{3}{R^{2}} \frac{\partial^{2} B}{\partial R^{2}}-\frac{3}{R^{3}} \frac{\partial B}{\partial R} \tag{1.4.10}\\
\frac{\partial^{4} B}{\partial X^{3} \partial Y} & =\frac{1}{R^{3}} \frac{\partial^{4} B}{\partial \alpha^{3} \partial R}-\frac{3}{R^{4}} \frac{\partial^{3} B}{\partial \alpha^{3}}+\frac{3}{R^{2}} \frac{\partial^{3} B}{\partial \alpha \partial R^{2}}-\frac{8}{R^{3}} \frac{\partial^{2} B}{\partial \alpha \partial R}+\frac{6}{R^{4}} \frac{\partial B}{\partial \alpha} \\
\frac{\partial^{4} B}{\partial X^{2} 2 Y^{2}} & =\frac{1}{R^{4}} \frac{\partial^{2} B}{\partial \alpha^{2}}-\frac{4}{R^{3}} \frac{\partial^{3} B}{\partial \alpha^{2} \partial R}-\frac{2}{R^{2}} \frac{\partial^{2} B}{\partial R^{2}}+\frac{2}{R^{3}} \frac{\partial B}{\partial R}+\frac{1}{R^{2}} \frac{\partial^{4} B}{\partial \alpha^{2} \partial R^{2}}+\frac{1}{R} \frac{\partial^{3} B}{\partial R^{3}} \\
\frac{\partial^{4} B}{\partial X \partial Y^{3}} & =\frac{1}{R} \frac{\partial^{4} B}{\partial \alpha \partial R^{3}}-\frac{3}{R^{2}} \frac{\partial^{3} B}{\partial \alpha \partial R^{2}}+\frac{6}{R^{3}} \frac{\partial^{2} B}{\partial \alpha \partial R}-\frac{6}{R^{4}} \frac{\partial^{4} B}{\partial \alpha^{4}} \\
\frac{\partial^{4} B}{\partial Y^{4}} & =\frac{\partial^{4} B}{\partial R^{4}}
\end{array}
$$

NOTE : In case a particle goes beyond the limits of the field map, the field and its derivatives are extrapolated using a grid at the border of the map, which is the closest to the actual position of the particle. The flag IEX attached to the particle (section 5.6.11, p. 184) is then given the value -1 .

1.4.3 Arbitrary 2-D Map, no Symmetry

The map is assumed to describe the field $\vec{B}\left(B_{X}, B_{Y}, B_{Z}\right)$ in the (X, Y) plane at elevation Z_{0}. It provides the components $B_{X, i j}, B_{Y, i j}, B_{Z, i j}$ at each node (i, j) of a 2-D mesh.
The value of \vec{B} and its derivatives at the projection $\left(X, Y, Z_{0}\right)$ of the actual position (X, Y, Z) of a particle is obtained by means of (parameter IORDRE in keyword data list - see for instance MAP2D, MAP2D-E) either a second degree polynomial interpolation from a 3×3 points grid (IORDRE $=2$), or a fourth degree polynomial interpolation from a 5×5 points grid (IORDRE=4), centered at the node (i, j) closest to the position (X, Y).

To second order for instance

$$
\begin{equation*}
B_{\ell}\left(X, Y, Z_{0}\right)=A_{00}+A_{10} X+A_{01} Y+A_{20} X^{2}+A_{11} X Y+A_{02} Y^{2} \tag{1.4.11}
\end{equation*}
$$

where B_{ℓ} stands for any of the three components B_{X}, B_{Y} or B_{Z}. Differentiating then gives the derivatives

$$
\begin{align*}
\frac{\partial B_{\ell}}{\partial X}\left(X, Y, Z_{0}\right) & =A_{10}+2 A_{20} X+A_{11} Y \\
\frac{\partial^{2} B_{\ell}}{\partial X \partial Y}\left(X, Y, Z_{0}\right) & =A_{11} \tag{1.4.12}
\end{align*}
$$

Then follows a procedure of extrapolation from $\left(X, Y, Z_{0}\right)$ to the actual position (X, Y, Z), based on Taylor series development.
No special symmetry is assumed, which allows the treatment of arbitrary field distribution (e.g., solenoid, helical snake).

Figure 4: A 3-D 27-point grid is used for interpolation of magnetic or electric fields and derivatives up to second order. The central node of the grid $(i=j=k=0)$ is the closest to the actual position of the particle.

1.4.4 3-D Field Map

When using a 3-D field map, the vector field $\vec{B}(X, Y, Z)$ and its derivatives necessary for the calculation of position and velocity of the particle are obtained via second degree polynomial interpolation,
$B_{\ell}(X, Y, Z)=A_{000}+A_{100} X+A_{010} Y+A_{001} Z+A_{200} X^{2}+A_{020} Y^{2}+A_{002} Z^{2}+A_{110} X Y+A_{101} X Z+A_{011} Y Z$
B_{ℓ} stands for any of the three components, B_{X}, B_{Y} or B_{Z}. By differentiation of B_{ℓ} one gets

$$
\begin{align*}
\frac{\partial B_{\ell}}{\partial X} & =A_{100}+2 A_{200} X+A_{110} Y+A_{101} Z \tag{1.4.14}\\
\frac{\partial^{2} B_{\ell}}{\partial X^{2}} & =2 A_{200}
\end{align*}
$$

and so on up to second order derivatives with respect to X, Y or Z.
The interpolation involves a $3 \times 3 \times 3$-point parallelepipedic grid (Fig. 4), the origin of which is positioned at the node of the 3-D field map which is closest to the actual position of the particle.
Let $B_{i j k}^{\ell}$ be the value of the - measured or computed - magnetic field at each one of the 27 nodes of the 3-D grid (B^{ℓ} stands for B_{X}, B_{Y} or B_{Z}), and $B_{\ell}(X, Y, Z)$ be the value at a position (X, Y, Z) with respect to the central node of the 3-D grid. Thus, any coefficient A_{i} of the polynomial expansion of B_{ℓ} is obtained by means of expressions that minimize, with respect to A_{i}, the sum

$$
\begin{equation*}
S=\sum_{i j k}\left(B_{\ell}(X, Y, Z)-B_{i j k}^{\ell}\right)^{2} \tag{1.4.15}
\end{equation*}
$$

where the indices i, j and k take the values $-1,0$ or +1 so as to sweep the 3-D grid. The source code contains the explicit analytical expressions of the coefficients $A_{i j k}$ solutions of the normal equations $\partial S / \partial A_{i j k}=0$.

2 SPIN TRACKING

Spin motion tracking was implemented in zgoubi in the SATURNE years [10], it has been since used in a number of studies, including the transport of polarized muons in the Neutrino Factory [11], polarization survival in the superB project [12], studies on proton polarization with helical snakes at AGS [13] and RHIC [14], and in the magic-energy electrostatic ring of the proton-EDM project [15].

2.1 Introduction

The precession of the spin \vec{S} of a charged particle in electric and magnetic fields is governed by the ThomasBMT first order differential equation [16]

$$
\begin{equation*}
\frac{d \vec{S}}{d t}=\frac{q}{m} \vec{S} \times \vec{\omega} \tag{2.1.1}
\end{equation*}
$$

with, in the laboratory frame,

$$
\begin{equation*}
\vec{\omega}=(1+\gamma G) \vec{b}+G(1-\gamma) \vec{b} / /+\gamma\left(G+\frac{1}{1+\gamma}\right) \frac{\vec{e} \times \vec{v}}{c^{2}} \tag{2.1.2}
\end{equation*}
$$

t, q, m, c, γ and G are respectively the time, charge, relativistic mass, speed of light, Lorentz relativistic factor and anomalous magnetic moment of the particle, \vec{b} and \vec{e} are the fields in the laboratory, $\vec{b}_{/ /}$is the component of \vec{b} parallel to the velocity \vec{v} of the particle.
Equation (2.1.1) is normalized by introducing the same notation as for the Lorentz equation, page 19, namely $b=\|\vec{b}\|, v=\|\vec{v}\|, \vec{v}=v \vec{u}, d s=v d t$ the differential path, $\frac{\gamma m v}{q}=B \rho$ the rigidity of the particle, whereas $\vec{S}^{\prime}=\frac{d \vec{S}}{d s}=\frac{1}{v} \frac{d \vec{S}}{d t}$ is the derivative of the spin with respect to the path. This yields

$$
\begin{equation*}
(B \rho) \vec{S}^{\prime}=\vec{S} \times \vec{\omega} \quad \text { or } \quad \vec{S}^{\prime}=\vec{S} \times \vec{\Omega} \tag{2.1.3}
\end{equation*}
$$

where, noting $\vec{B}=\vec{b} / B \rho, \vec{E}=\vec{e} / B \rho$,

$$
\begin{equation*}
\vec{\Omega}=\frac{\vec{\omega}}{B \rho}=(1+\gamma G) \vec{B}+G(1-\gamma) \vec{B}_{/ /}+\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right) \vec{E} \times \vec{u} \tag{2.1.4}
\end{equation*}
$$

This equation is solved in the same way as the reduced Lorentz equation (1.2.3). From the values of the precession factor $\vec{\omega}\left(M_{0}\right)$ and spin $\vec{S}\left(M_{0}\right)$ of the particle at position M_{0}, the spin $\vec{S}\left(M_{1}\right)$ at position M_{1}, following a displacement Δs (fig. 2), is obtained from truncated Taylor expansion

$$
\begin{equation*}
\vec{S}\left(M_{1}\right) \approx \vec{S}\left(M_{0}\right)+\frac{d \vec{S}}{d s}\left(M_{0}\right) \Delta s+\frac{d^{2} \vec{S}}{d s^{2}}\left(M_{0}\right) \frac{\Delta s^{2}}{2}+\frac{d^{3} \vec{S}}{d s^{3}}\left(M_{0}\right) \frac{\Delta s^{3}}{3!}+\frac{d^{4} \vec{S}}{d s^{4}}\left(M_{0}\right) \frac{\Delta s^{4}}{4!}+\frac{d^{5} \vec{S}}{d s^{5}}\left(M_{0}\right) \frac{\Delta s^{5}}{5!} \tag{2.1.5}
\end{equation*}
$$

2.2 Integration in Magnetic Fields

In purely magnetic fields $\vec{e}=0$ thus eq. (2.1.4) reduces to

$$
\begin{equation*}
\vec{\Omega}_{b}=(1+\gamma G) \vec{B}+G(1-\gamma) \vec{B}_{/ /} \tag{2.2.1}
\end{equation*}
$$

\vec{S} and its derivatives $\vec{S}^{(n)}=d^{n} \vec{S} / d s^{n}$ satisfy the recursive differentiation relations

$$
\begin{align*}
& \vec{S}^{\prime}=\vec{S} \times \vec{\Omega}_{b} \\
& \vec{S}^{\prime \prime}=\vec{S}^{\prime} \times \vec{\Omega}_{b}+\vec{S} \times \vec{\Omega}_{b}^{\prime} \tag{2.2.2}\\
& \vec{S}^{\prime \prime \prime}=\vec{S}^{\prime \prime} \times \vec{\Omega}_{b}+2 \vec{S}^{\prime} \times \vec{\Omega}_{b}^{\prime}+\vec{S} \times \vec{\Omega}_{b}^{\prime \prime} \\
& \quad \text { etc. }
\end{align*}
$$

with the derivatives $d^{n} \vec{\Omega}_{b} / d s^{n}$ obtained by differentiation of eq. (2.2.1). This requires $\vec{B}_{/ /}$and derivatives, obtained in the following way,

$$
\begin{aligned}
& \vec{B}_{/ /}=(\vec{B} \cdot \vec{u}) \vec{u} \\
& \vec{B}_{/ /}^{\prime}=\left(\vec{B}^{\prime} \cdot \vec{u}+\vec{B} \cdot \vec{u}^{\prime}\right) \vec{u}+(\vec{B} \cdot \vec{u}) \vec{u}^{\prime} \\
& \vec{B}_{/ / \prime}^{\prime \prime}=\left(\vec{B}^{\prime \prime} \cdot \vec{u}+2 \vec{B}^{\prime} \cdot \vec{u}^{\prime}+\vec{B} \cdot \vec{u}^{\prime \prime}\right) \vec{u}+2\left(\vec{B}^{\prime} \cdot \vec{u}+\vec{B} \cdot \vec{u}^{\prime}\right) \vec{u}^{\prime}+(\vec{B} \cdot \vec{u}) \vec{u}^{\prime \prime}
\end{aligned}
$$

etc.
The quantities \vec{u}, \vec{B} and their derivatives as involved in these equations are known, being sub-products of the integration of the motion of the particle, eqs. (1.2.8, 1.2.10) p. 21.

2.3 Integration in Electric Fields

In purely electric fields $\vec{b}=0$, thus eq. (2.1.2) reduces to

$$
\begin{equation*}
\omega_{e}=\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right) \vec{e} \times \vec{u} \tag{2.3.1}
\end{equation*}
$$

\vec{S} and its derivatives $\vec{S}^{(n)}=d^{n} \vec{S} / d s^{n}$ satisfy the recursive differentiation relations

$$
\begin{array}{ll}
B \rho \vec{S}^{\prime} & =\vec{S} \times \vec{\omega}_{e} \\
(B \rho)^{\prime} \vec{S}^{\prime}+B \rho \vec{S}^{\prime \prime} & =\vec{S}^{\prime} \times \vec{\omega}_{e}+\vec{S} \times \vec{\omega}_{e}^{\prime} \\
(B \rho)^{\prime \prime} \vec{S}^{\prime}+2(B \rho)^{\prime} \vec{S}^{\prime \prime}+B \rho \vec{S}^{\prime \prime \prime \prime} & =\vec{S}^{\prime \prime} \times \vec{\omega}_{e}+2 \vec{S}^{\prime} \times \vec{\omega}_{e}^{\prime}+\vec{S}^{\prime} \times \vec{\omega}_{e}^{\prime \prime} \\
\text { etc. } &
\end{array}
$$

that provide the derivatives $d^{n} \vec{S} / d s^{n}$ needed in the Taylor expansion (eq. 2.1.5). The derivatives $(B \rho)^{(n)}=$ $d^{n}(B \rho) / d s^{n}$ above are a sub-product of the integration of the force law (eq. 1.2.18). The derivatives of ω_{e} (eq. 2.3.1) are obtained by recursive differentiation,

$$
\begin{align*}
& \vec{\omega}_{e}^{\prime}=\left(\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right)\right)^{\prime} \vec{e} \times \vec{u}+\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right)(\vec{e} \times \vec{u})^{\prime} \\
& \vec{\omega}_{e}^{\prime \prime}=\left(\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right)\right)^{\prime \prime} \vec{e} \times \vec{u}+2\left(\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right)\right)^{\prime}(\vec{e} \times \vec{u})^{\prime}+\frac{\beta \gamma}{c}\left(G+\frac{1}{1+\gamma}\right)(\vec{e} \times \vec{u})^{\prime \prime} \tag{2.3.3}
\end{align*}
$$

etc.

The quantities $\left(\frac{1}{1+\gamma}\right)^{(n)}$ in the $\left(\omega_{e}\right)^{(n)}$ above are obtained as follows.

From $\gamma^{2}=1 /\left(1-\beta^{2}\right)$ it comes $(\gamma+1)(\gamma-1) \beta^{2} /\left(1-\beta^{2}\right)$ and then

$$
\frac{1}{1+\gamma}=\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\beta}+1\right)(\gamma-1)
$$

which is easily differentiated, recursively,

$$
\begin{align*}
&\left(\frac{1}{1+\gamma}\right)^{\prime}=\left(\frac{1}{\beta}\right)^{\prime}\left(\frac{1}{\beta}+1\right)(\gamma-1)+\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\beta}\right)^{\prime}(\gamma-1)+\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\beta}+1\right) \gamma^{\prime} \\
&\left(\frac{1}{1+\gamma}\right)^{\prime \prime}=\left(\frac{1}{\beta}\right)^{\prime \prime}\left(\frac{1}{\beta}+1\right)(\gamma-1)+\left(\frac{1}{\beta}-1\right)^{\prime}\left(\frac{1}{\beta}\right)^{\prime \prime}(\gamma-1)+\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\beta}+1\right) \gamma^{\prime \prime}+ \\
& 2\left(\frac{1}{\beta}\right)^{\prime}\left(\frac{1}{\beta}\right)(\gamma-1)+2\left(\frac{1}{\beta}\right)^{\prime}\left(\frac{1}{\beta}\right)^{\prime}(\gamma-1)+2\left(\frac{1}{\beta}-1\right)\left(\frac{1}{\beta}\right)^{\prime} \gamma^{\prime} \\
& \text { etc. } \tag{2.3.4}
\end{align*}
$$

The interest of that formulation is that the $\left(\frac{1}{\beta}\right)^{(n)}$ are already known from the particle dynamics, eq. (1.2.21), as well as the derivatives

$$
\frac{d^{n+1} \gamma}{d s^{n+1}}=\frac{q}{m} \frac{d^{n}(\vec{e} \cdot \vec{u})}{d s^{n}}
$$

following eq. (1.2.20), whereas the $d^{n}(\vec{e} \cdot \vec{u}) / d s^{n}$ are given by eq. (1.2.19).

2.4 Integration in Combined Electric and Magnetic Fields

When both \vec{e} and \vec{b} are non-zero, the complete eqs. (2.1.3, 2.1.4) must be considered.
The precession vector (eq. 2.1.4) and its derivatives can be split into independent, magnetic and electric components, namely

$$
\vec{\omega}=\vec{\omega}_{b}+\vec{\omega}_{e}, \quad \vec{\omega}^{\prime}=\vec{\omega}_{b}^{\prime}+\vec{\omega}_{e}^{\prime}, \quad \text { etc. }
$$

As a consequence, the spin vector $\vec{S}(s)$ and its derivatives at location M_{0} prior to a Δs push to location M_{1} (fig. 2) can be obtained by linear superposition of the separate solutions for the magnetic case (eq. 2.2.2) and for the electric case (eq. 2.3.2), namely

$$
\begin{array}{ll}
\begin{array}{ll}
B \rho \vec{S}^{\prime}= \\
\vec{S} \times \vec{\omega}_{b}
\end{array} & +\vec{S} \times \vec{\omega}_{e} \\
\begin{array}{ll}
B \rho \vec{S}^{\prime \prime}= & \vec{S}^{\prime} \times \vec{\omega}_{b}+\vec{S} \times \vec{\omega}_{b}^{\prime}
\end{array} & +\vec{S}^{\prime} \times \vec{\omega}_{e}+\vec{S} \times \vec{\omega}_{e}^{\prime}-(B \rho)^{\prime} \vec{S}^{\prime} \\
\begin{array}{ll}
B \rho \vec{S}^{\prime \prime \prime}= \\
\vec{S}^{\prime \prime} \times \vec{\omega}_{b}+2 \vec{S}^{\prime} \times \vec{\omega}_{b}^{\prime}+\vec{S} \times \vec{\omega}_{b}^{\prime \prime} \\
\text { etc. }
\end{array} & \underbrace{+\vec{S}^{\prime \prime} \times \vec{\omega}_{e}+2 \vec{S}^{\prime} \times \vec{\omega}_{e}^{\prime}+\vec{S} \times \vec{\omega}_{e}^{\prime \prime}-\left((B \rho)^{\prime \prime} \vec{S}^{\prime}+2(B \rho)^{\prime} \vec{S}^{\prime \prime}\right)}_{\text {Electric field component, eq. (2.3.2) }}
\end{array}
$$

The process is then completed by applying the Δs push, eq. (2.1.5).

2.5 Radiative polarization

Radiative spin transition is accounted for in a classical manner with an additional term in the Thomas-BMT differential equation for the motion of the polarization vector [17], namely, see Eqs. 2.1.1, 2.1 .2 (in the absence of electric fields),

$$
\begin{equation*}
\left.\frac{d \vec{S}}{d t}=\frac{q}{m}(\vec{S} \times \overrightarrow{(} 1+a \gamma) \vec{b}+a(1-\gamma) \vec{b} / /\right)-\frac{1}{\tau_{S T}}\left(\vec{S}-\frac{2}{9}(\vec{S} \cdot \vec{u}) \vec{u}+\frac{8}{5 \sqrt{3}} \frac{\vec{u} \times \dot{\vec{u}}}{|\dot{\vec{u}}|}\right) \tag{2.5.1}
\end{equation*}
$$

where the electron notation for the magnetic anomaly, a, replaces hadron's G (and $q=-e$ with e the elementary charge, for electrons), \vec{u} is the unit velocity vector of the particle and $\vec{u}=d \vec{u} / d t=v \vec{u}^{\prime}$ (eq. 1.2.2). The Sokolov-Ternov polarization equilibrium time constant has been introduced,

$$
\begin{equation*}
\tau_{S T}=\frac{4}{5 \sqrt{3}} \frac{E}{\hbar \omega_{c}} \tau_{0} \tag{2.5.2}
\end{equation*}
$$

with $E=\gamma m_{0}$ the particle energy and $\hbar \omega_{c}=h \times 3 \gamma^{3} c / 2 \rho$ the critical photon energy.
This radiative term is only added if the particle does radiate [18], that event being determined by the Monte Carlo photon emission simulation process described in Sec. 3.1. It has the effect of slightly changing the electron polarization, under the effect of radiation induced spin transition.

This radiative correction process is under installation in zgoubi. Its benchmarking includes comparison with statistical averages of quantum spin physics.

As to solving the differential eq. 2.5.3, the methods follows the zgoubi method, namely, introducing derivatives with respect to the path variable s, and fields normalized to $B \rho$,

$$
\begin{equation*}
\left.\frac{d \vec{S}}{d s}=(\vec{S} \times \overrightarrow{(1}+a \gamma) \vec{B}+a(1-\gamma) \vec{B}_{/ /}\right)-\frac{1}{\tau_{S T}}\left(\vec{S}-\frac{2}{9}(\vec{S} \cdot \vec{\beta}) \vec{\beta}+\frac{8}{5 \sqrt{3}} \frac{\vec{\beta} \times \dot{\vec{\beta}}}{|\dot{\vec{\beta}}|}\right) \tag{2.5.3}
\end{equation*}
$$

The derivatives of the unit velocity vector \vec{u} are outcomes of the solution of particle motion as detailed in Sec. 1.2. The derivatives of the polarization vector are computed as detailed in ec. 2.1.

2.6 Spin Diffusion

To be documented.

3 SYNCHROTRON RADIATION

zgoubi provides the simulation of two distinct types of synchrotron radiation (SR) manifestations namely, on the one hand energy loss by stochastic emission of photons and the ensuing perturbation on particle dynamics and, on the other hand the radiated electro-magnetic field impulse and its spectral-angular energy density as observed in the laboratory.

SR loss simulation was first installed in zgoubi in view of beam dynamics studies in the beam delivery system of the Next Linear Collider [19], based on a method developed in the frame of the ELFE project ("EU Lab. For Electrons") [20, 21, 22]. It was next used for including damping effects in beam studies regarding various electron-ring and recirculator projects [12, 23].

SR electromagneitc impulse and spectrum computation was first installed in zgoubi for the study of interference effects at the LEP beam diagnostics miniwiggler [25]. These simulation tools were next used to design the LHC SR beam diagnostics systems, located in the IR4 RF section [26].

3.1 Energy Loss and Dynamical Effects

Most of the contents of the present section are drawn from Ref. [19].
Given a particle wandering in the magnetic field of an arbitrary optical element or field map, zgoubi computes the energy loss undergone, and its effect on the particle motion. The energy loss is calculated in a classical manner, by invoking two random processes that accompany the emission of a photon namely,

- the probability of emission,
- the energy of the photon.

The effects on the dynamics of the emitting particle either account for the sole alteration of its energy, or, if requested, include the angle kick. Particle position is supposed not to change upon emission of a photon. These calculations and ensuing dynamics corrections are performed at each integration step. In a practical manner, this requires centimeters to tens of centimeters steps in smoothly varying magnetic fields (a quantity to be determined before any simulation, from convergence trials).

Main aspects of the method are developed in the following.

Probability of Emission of a Photon

Given that the number of photons emitted within a step Δs can be very small (units or fractions of a unit) ${ }^{1}$ a Poisson probability law

$$
\begin{equation*}
p(k)=\frac{\lambda^{k}}{k!} \exp (-\lambda) \tag{3.1.1}
\end{equation*}
$$

is considered. k is the number of photons emitted over a $\Delta \theta$ (circular) arc of trajectory such that, the average number of photons per radian expresses as ${ }^{2}$

[^0]\[

$$
\begin{equation*}
\lambda=\frac{20 e r_{0}}{8 \hbar \sqrt{3}} \beta^{2} B \rho \frac{\Delta s}{\rho} \tag{3.1.2}
\end{equation*}
$$

\]

where $r_{0}=e^{2} / 4 \pi \epsilon_{0} m_{0} c^{2}$ is the classical radius of the particle of rest-mass m_{0}, e is the elementary charge, $\hbar=h / 2 \pi, h$ is the Planck constant, $\beta=v / c, B \rho$ is the particle stiffness. λ is evaluated at each integration step from the current values $\beta, B \rho$ and Δs, then a value of k is drawn by a rejection method.

Energy of the Photons

These k photons are assigned energies $\epsilon=h \nu$ at random, in the following way. The cumulative distribution of the energy probability law $p\left(\epsilon / \epsilon_{c}\right) d \epsilon / \epsilon_{c}$ (i.e., the probability of emission of a photon with energy in $[0, \epsilon]$) writes ${ }^{3}$

$$
\begin{equation*}
\mathcal{P}\left(\epsilon / \epsilon_{c}\right)=\frac{3}{5 \pi} \int_{0}^{\epsilon / \epsilon_{c}} \frac{d \epsilon}{\epsilon_{c}} \int_{\epsilon / \epsilon_{c}}^{\infty} K_{5 / 3}(x) d x \tag{3.1.3}
\end{equation*}
$$

where $K_{5} / 3$ is a modified Bessel function and, $\epsilon_{c}=$ $\hbar \omega_{c}, \omega_{c}=2 \pi \times 3 \gamma^{3} c / 2 \rho$ being the critical frequency in the presence of bending radius $\rho ; \omega_{c}$ is evaluated at each integration step from the current values γ and ρ, in other words, this energy loss calculation assumes constant magnetic field over the trajectory $\operatorname{arc} \Delta s$. In the low frequency region $\left(\epsilon / \epsilon_{c} \ll 1\right)$ it can be approximated by

$$
\begin{equation*}
\mathcal{P}\left(\epsilon / \epsilon_{c}\right)=\frac{12 \sqrt{3}}{2^{1 / 3} 5 \Gamma\left(\frac{1}{3}\right)}\left(\frac{\epsilon}{\epsilon_{c}}\right)^{1 / 3} \tag{3.1.4}
\end{equation*}
$$

Cumulative energy distribution $\mathcal{P}\left(\epsilon / \epsilon_{c}\right)$.

About 40 values of $\mathcal{P}\left(\epsilon / \epsilon_{c}\right)$ computed from eq. 3.1.3 [24], honestly spread over a range $\epsilon / \epsilon_{c} \leq 10$ are tabulated in zgoubi source file (see figure). In order to get ϵ / ϵ_{c}, first a random value $0<\mathcal{P}<1$ is generated uniformly, then ϵ / ϵ_{c} is drawn either by simple inverse linear interpolation of the tabulated values if $\mathcal{P}>0.26$ (corresponding to $\epsilon / \epsilon_{c}>10^{-2}$), or, if $\mathcal{P}<0.26$ from eq. 3.1.4 that gives $\epsilon / \epsilon_{c}=\left(\frac{52^{1 / 3} \Gamma\left(\frac{1}{3}\right)}{12 \sqrt{3} \mathcal{P}}\right)^{3}$ with precision no less than 1% at $\mathcal{P} \rightarrow 0.26$.

When SR loss tracking is requested, several optical elements that contain a dipole magnetic field component (e.g., MULTIPOL, BEND) provide a printout of various quantities related to SR emission, as drawn from classical theoretical expressions, such as for instance,

- energy loss per particle $\Delta E(e V)=\frac{2}{3} r_{0} c \gamma^{3} B(T) \Delta \theta$, with B the dipole field exclusive of any other multipole component in the magnet, $\Delta \theta$ the total deviation as calculated from B, from the magnet length, and from the reference rigidity BORO (as defined with, e.g., [MC]OBJET)
- critical energy $\epsilon_{c}(e V)=\frac{3 \gamma^{3} c}{2 \rho} \frac{\hbar}{e}$, with $\rho=B O R O / B$
- average energy of the photons radiated $\langle\epsilon\rangle=\frac{8}{15 \sqrt{3}} \epsilon_{c}$,
- rms energy of radiated photons $\epsilon_{r m s}=0.5591 \epsilon_{c}$,
- number of radiated photons per particle $N=\Delta E /\langle\epsilon\rangle$.

This is done in order to facilitate verifications, since on the other hand statistics regarding those values are drawn from the tracking and may be printed using the dedicated keyword SRPRNT.

[^1]Finally, upon user's request as well, SR loss can be limited to particular classes of optical elements, for instance dipole magnets alone, or dipole + quadrupole magnets, etc. This option is made available in order to allow further inspection, or easier comparison with other codes, for instance.

3.2 Spectral-Angular Radiated Densities

Most of the content in the present section is drawn from Refs. [25, 26, 27].
The ray-tracing procedures provide the ingredients necessary for the determination of the electric field radiated by the particle subject to acceleration, as shown in Fig. 5, this is developed in section 3.2.1. These ingredients further allow calculating the spectral-angular density of the radiation ${ }^{4}$, this is developed in section 3.2.2.

Figure 5: A scheme of the reference frame in zgoubi together with the vectors entering in the definition of the electric field radiated by the accelerated particle :
(x, y) : horizontal plane ; $z:$ vertical axis.
$\vec{R}(t)=$ particle position in the fixed frame (O, x, y, z);
$\vec{X}($ time-independent $)=$ position of the observer in the (O, x, y, z) frame ;
$\vec{r}(t)=\vec{X}-\vec{R}(t)=$ position of the particle with respect to the observer ;
$\vec{n}(t)=$ (normalized) direction of observation $=\vec{r}(t) /|\vec{r}(t)|$;
$\vec{\beta}=$ normalized velocity vector of the particle $\vec{v} / c=(1 / c) d \vec{R} / d t$.

3.2.1 Calculation of the Radiated Electric Field

The expression for the radiated electric field $\overrightarrow{\mathcal{E}}(\vec{n}, \tau)$ as seen by the observer in the long distance approximation is [28]

$$
\begin{equation*}
\overrightarrow{\mathcal{E}}(\vec{n}, \tau)=\frac{q}{4 \pi \varepsilon_{0} c} \frac{\vec{n}(t) \times[(\vec{n}(t)-\vec{\beta}(t)) \times d \vec{\beta} / d t]}{r(t)(1-\vec{n}(t) \cdot \vec{\beta}(t))^{3}} \tag{3.2.1}
\end{equation*}
$$

where t is the time in which the particle motion is described and τ is the observer time. Namely, when at position $\vec{r}(t)$ with respect to the observer (or as well at position $\vec{R}(t)=\vec{X}-\vec{r}(t)$ in the (O, x, y, z) frame) the particle emits a signal which reaches the observer at time τ, such that $\tau=t+r(t) / c$ where $r(t) / c$ is the delay necessary for the signal to travel from the emission point to the observer, which also leads by differentiation to the well-known relation

[^2]

Figure 6: Left : typical shapes of the $\mathcal{E}_{\sigma}(t)$ and $\mathcal{E}_{\pi}(t)$ components of the electric field impulse (eq. 3.2.1) emitted by a 2.5 GeV electron on a $\rho=53.6 \mathrm{~m}$ circular trajectory in a $l=20 \mathrm{~cm}$-long dipole, as observed in the direction of the centre of the dipole, $\phi=0, \gamma \psi=5$ (observation distance $r=10 \mathrm{~m}$). Right : the related spectral angular densities $\partial^{3} W_{\sigma, \pi} / \partial \phi \partial \psi \partial \omega$ (eq. 3.2.10). After Ref. [27].

$$
\begin{equation*}
\frac{d \tau}{d t}=1-\vec{n}(t) \cdot \vec{\beta}(t) \tag{3.2.2}
\end{equation*}
$$

The vectors $\vec{R}(t)$ and $\vec{\beta}(t)=\frac{v}{c} \vec{u}$ (eq. 1.2.2) that describe the motion are obtained from the ray-tracing (eqs. 1.2.4). The acceleration is calculated from (a form of eq. 1.2 .1 with $\vec{e}=0$)

$$
\begin{equation*}
\frac{d \vec{\beta}}{d t}=\frac{q}{m} \vec{\beta}(t) \times \vec{b}(t) \tag{3.2.3}
\end{equation*}
$$

Then, given the observer position \vec{X} in the fixed frame, it is possible to calculate

$$
\begin{equation*}
\vec{r}(t)=\vec{X}-\vec{R}(t) \quad \text { and } \quad \vec{n}(t)=\frac{\vec{r}(t)}{|\vec{r}(t)|} \tag{3.2.4}
\end{equation*}
$$

As an illustration, Fig. 6 has been produced using zpop, it shows the typical shape of the electric field impulse at the observer, with central peak width [27]

$$
2 \tau_{c}=2 \frac{2 \rho}{3 \gamma^{3} c}\left(1+\gamma^{2} \psi^{2}\right)^{3 / 2}
$$

Computation of $\vec{n}-\vec{\beta}$ and $1-\vec{n} \cdot \vec{\beta}$
Owing to computer precision the crude computation of $\vec{n}-\vec{\beta}$ and $1-\vec{n} \cdot \vec{\beta}$ may lead to

$$
\vec{n}-\vec{\beta}=0 \text { and } 1-\vec{n} \cdot \vec{\beta}=0
$$

since the preferred direction of observation is generally almost parallel to $\vec{\beta}$ (in that case, parallel in the sense of computer precision), while $\beta \approx 1$ as soon as particle energies of a few hundred times the rest mass are concerned.
It is therefore necessary to express $\vec{n}-\vec{\beta}$ and $1-\vec{n} \cdot \vec{\beta}$ in an adequate form for achieving accurate software computation.
The expression for \vec{n} is

$$
\begin{align*}
& \vec{n}=\left(n_{x}, n_{y}, n_{z}\right)=(\cos \psi \cos \phi, \cos \psi \sin \phi, \sin \psi) \\
& \quad=\left[1-2\left(\sin ^{2} \phi / 2+\sin ^{2} \psi / 2\right)+4 \sin ^{2} \phi / 2 \sin ^{2} \psi / 2, \sin \phi\left(1-2 \sin ^{2} \psi / 2\right), \sin \psi\right] \tag{3.2.5}
\end{align*}
$$

where ϕ and ψ are the observation angles, given by

$$
\begin{equation*}
\phi=\operatorname{Atg}\left(\frac{r_{y}}{r_{x}}\right) \text { and } \psi=\operatorname{Atg}\left(\frac{r_{z}}{\sqrt{r_{x}^{2}+r_{y}^{2}}}\right) \tag{3.2.6}
\end{equation*}
$$

with $\vec{r}=\left(r_{x}, r_{y}, r_{z}\right)$, while $\vec{\beta}$ can be written under the form

$$
\begin{align*}
\vec{\beta}=\left(\beta_{x}, \beta_{y}, \beta_{z}\right) & =\left[\sqrt{\left(\beta^{2}-\beta_{y}^{2}-\beta_{z}^{2}\right)}, \beta_{y}, \beta_{z}\right] \\
& =\left[\sqrt{\left(1-1 / \gamma^{2}-\beta_{y}^{2}-\beta_{z}^{2}\right)}, \beta_{y}, \beta_{z}\right]=\left(1-a / 2+a^{2} / 8-a^{3} / 16+\ldots, \beta_{y}, \beta_{z}\right) \tag{3.2.7}
\end{align*}
$$

where $a=1 / \gamma^{2}+\beta_{y}^{2}+\beta_{z}^{2}$. This leads to

$$
n_{x}=1-\varepsilon_{x} \text { and } \beta_{x}=1-\xi_{x}
$$

with

$$
\varepsilon_{x}=2\left(\sin ^{2} \phi / 2+\sin ^{2} \psi / 2\right)-4 \sin ^{2} \phi / 2 \sin ^{2} \psi / 2
$$

and

$$
\xi_{x}=a / 2-a^{2} / 8+a^{3} / 16+\ldots
$$

All this provides, on the one hand,

$$
\begin{equation*}
\vec{n}-\vec{\beta}=\left(-\varepsilon_{x}+\xi_{x}, n_{y}-\beta_{y}, n_{z}-\beta_{z}\right) \tag{3.2.8}
\end{equation*}
$$

whose components are combinations of terms of the same order of magnitude (ε_{x} and $\xi_{x} \sim 1 / \gamma^{2}$ while n_{y}, β_{y}, n_{z} and $\left.\beta_{z} \sim 1 / \gamma\right)$ and, on the other hand,

$$
\begin{equation*}
1-\vec{n} \cdot \vec{\beta}=\varepsilon_{x}+\xi_{x}-n_{y} \beta_{y}-n_{z} \beta_{z}-\varepsilon_{x} \xi_{x} \tag{3.2.9}
\end{equation*}
$$

that combines terms of the same order of magnitude ($\varepsilon_{x}, \xi_{x}, n_{y} \beta_{y}$ and $n_{z} \beta_{z} \sim 1 / \gamma^{2}$), plus $\varepsilon_{x} \beta_{x} \sim 1 / \gamma^{4}$. The precision of these expressions is directly related to the order at which the series

$$
\xi_{x}=a / 2-a^{2} / 8+a^{3} / 16+\ldots \quad\left(a=1 / \gamma^{2}+\beta_{y}^{2}+\beta_{z}^{2}\right)
$$

is pushed, however the convergence is fast since $a \sim 1 / \gamma^{2} \ll 1$ in situations of concern.

3.2.2 Calculation of the Fourier Transform of the Electric Field

The Fourier transforms

$$
F T_{\omega}[\overrightarrow{\mathcal{E}}(\tau)]=\int \overrightarrow{\mathcal{E}}(\tau) e^{-i \omega \tau} d \tau
$$

of the σ and π electric field components provide the spectral angular energy density

$$
\begin{equation*}
\frac{\partial^{3} W}{\partial \phi \partial \psi \partial \omega}=\frac{r^{2}}{\mu_{0} c}\left|F T_{\omega}(\overrightarrow{\mathcal{E}}(\tau))\right|^{2} \tag{3.2.10}
\end{equation*}
$$

Fig. 6-right gives a typical example in the case of a short magnet. These Fourier transforms are computed without resorting to FFT techniques, namely from

$$
\begin{equation*}
F T_{\omega}[\overrightarrow{\mathcal{E}}(\tau)] \approx \sum \overrightarrow{\mathcal{E}}\left(\tau_{k}\right) e^{-i \omega \tau_{k}} \Delta \tau_{k} \tag{3.2.11}
\end{equation*}
$$

for two reasons. On the one hand, the number of integration steps Δs that define the trajectory (eqs. 1.2.4), is arbitrary and therefore in general not of order 2^{n}. On the other hand, the integration step defines a constant time differential element $\Delta t_{k}=\Delta s / \beta c$ which results in the observer differential time element $\Delta \tau_{k}$, which is also the differential element of the Fourier transform, being non-constant, since both are related by eq. 3.2.2 in which $\vec{\beta}$ and \vec{n} vary as a function of the integration step number k.

An additional issue is that $\Delta \tau_{k}$ may reach drastically small values in the region of the central peak of the electric impulse emitted in a dipole, i.e., $1-\vec{n}(t) \cdot \vec{\beta}(t) \rightarrow 1 / 2 \gamma^{2}$, whereas the total integrated time $\sum_{k=1}^{N} \Delta \tau_{k}$ may be several orders of magnitude larger. In terms of the physical phenomenon, the total duration of the electric field impulse as seen by the observer corresponds to the time delay $\sum_{k=1}^{N} \Delta \tau_{k}$ that separates photons emitted at the entrance of the magnet from photons emitted at the exit, but the significant part of it (in terms of energy density) which can be represented by the width $2 \tau_{c}=2 \frac{2 \rho}{3 \gamma^{3} c}\left(1+\gamma^{2} \psi^{2}\right)^{3 / 2}$ of the radiation peak, is a very small fraction of $\sum_{k=1}^{N} \Delta \tau_{k}$.
The consequence is that, again in relation to computer precision, the differential element $\Delta \tau_{k}$ involved in the computation of eq. 3.2.11 cannot be derived from such relation as $\Delta \tau_{k}=\sum_{k=1}^{n} \Delta \tau_{k}-\sum_{k=1}^{n-1} \Delta \tau_{k}$ but instead must be stored as is, in the course of the ray-tracing process, for subsequent data treatment.

4 SPACE CHARGE

zgoubi provides models for the simulation of space charge effects. This capability has been first developped in the context of a PhD work regarding fixed field ring proton driver design studies and accelerator-driven subcritical reactor applications. This section of the guide is essentially drawn from that PhD dissertation [29], which can be referred to for additional details - the document provides benchmarking proofs in both KV and Gaussian density models (see below), including bunch transport in a drift, transport in a beam line, bunch tracking in an FFAG ring represented using either zgoubi's FFAG keyword or magnetic field maps.

TO BE DOCUMENTED FURTHER

5 DESCRIPTION OF THE AVAILABLE PROCEDURES

5.1 Introduction

This chapter gives an inventory of the procedures available in zgoubi, their associated "keyword", and a brief description of the way they function.
The chapter has been split into several sections. Sections 5.2 to 5.5 explain the underlying content - physics and numerical methods - behind the keywords, they are organized by topics :

- How to defined an object (a set of initial coordinates),
- Available options,
- Optical elements and procedures,
- Output procedures.

Section 5.6 addresses further a series of functionalities that may be accessed by means of special input data or flags.

5.2 Definition of an Object

The description of the object, i.e., initial coordinates of the ensemble of particles, must be the first procedure in the zgoubi input data file, zgoubi.dat.

Several types of automatically generated objects are available, they are described in the following pages and include,

- non-random object, with various distributions : individual particles, grids, object for MATRIX, etc.
- Monte Carlo distribution, with various distributions as well : 6-D window, ellipsoids, etc.

A recurrent quantity appearing in these procedures is IMAX, the number of particles to be ray-traced. The maximum value allowed for IMAX can be changed at leisure in the include file ' MAXTRA. H^{\prime} where it is defined (that requires re-compiling zgoubi).

5.2.1 MCOBJET : Monte-Carlo generation of a 6-D object

MCOBJET generates a set of IMAX random 6-D initial conditions (the maximum value for IMAX is defined in the include file 'MAXTRA. H^{\prime}). It can be used in conjunction with the keyword REBELOTE which either allows generating an arbitrarily high number of initial conditions, or, in the hypothesis of a periodic structure, allows multi-turn tracking with initial conditions at pass number IPASS identified with conditions at end of pass number IPASS - 1 .

The first datum in MCOBJET is the reference rigidity (a negative value is allowed)

$$
B O R O=\frac{p_{0}}{q}(\mathrm{kG} . \mathrm{cm})
$$

Depending on the value of the next datum, KOBJ, the IMAX particles have their initial random conditions Y, T, Z, P, X and D (relative rigidity, $B \rho / B O R O$) generated on 3 different types of supports, as described below.
Next come the data

$$
K Y, K T, K Z, K P, K X, K D
$$

that specify the type of probability density for the 6 coordinates.
$K Y, K T, K Z, K P, K X$ can take the following values :

1. uniform density, $p(x)=1 / 2 \delta x$ if $-\delta x \leq x \leq \delta x, p(x)=0$ elsewhere,
2. Gaussian density, $p(x)=\frac{1}{\delta x \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \delta x^{2}}}$,
3. parabolic density, $p(x)=\frac{3}{4 \delta x}\left(1-\frac{x^{2}}{\delta x^{2}}\right)$ if $-\delta x \leq x \leq \delta x, p(x)=0$ elsewhere.
$K D$ can take the following values :
4. uniform density, $p(D)=1 / 2 \delta D$ if $-\delta D \leq D \leq \delta D, p(D)=0$ elsewhere,
5. exponential density, $p(D)=N_{0} \exp \left(C_{0}+C_{1} l+C_{2} l^{2}+C_{3} l^{3}\right)$ with $0 \leq l \leq 1$ and $-\delta D \leq D \leq \delta D$,
6. $p(D)$ is determined by a kinematic relation, namely, with $T=$ horizontal angle, $D=\delta D * T$.

Next come the central values for the random sorting,

$$
Y_{0}, \quad T_{0}, \quad Z_{0}, \quad P_{0}, \quad X_{0}, \quad D_{0}
$$

namely, the probability density laws $p(x)(x=Y, T, Z, P$ or $X)$ and $p(D)$ described above apply to the variables $x-x_{0}\left(\equiv Y-Y_{0}, T-T_{0}, \ldots\right)$ and $D-D_{0}$ respectively. Negative value for D_{0} is allowed (see section 5.6.12, page 184).

KOBJ = $\mathbf{1}$: Random generation of IMAX particles in a hyper-window with widths (namely the half-extent for uniform or parabolic distributions ($K Y, K T, \ldots=1$ or 3), and the r.m.s. width for Gaussian distributions $(K Y, K T, \ldots=2)$)

$$
\delta Y, \quad \delta T, \quad \delta Z, \quad \delta P, \quad \delta X, \quad \delta D
$$

Then follow the cut-off values, in units of the r.m.s. widths $\delta Y, \delta T, \ldots$ (used only for Gaussian distributions, $K Y, K T, \ldots=2)$

$$
N_{\delta Y}, \quad N_{\delta T}, \quad N_{\delta Z}, \quad N_{\delta P}, \quad N_{\delta X}, \quad N_{\delta D}
$$

The last data are the parameters

$$
N_{0}, \quad C_{0}, \quad C_{1}, \quad C_{2}, \quad C_{3}
$$

needed for generation of the D coordinate upon option $K D=2$ (unused if $K D=1,3$) and a set of three integer seeds for initialization of random sequences,

$$
I R 1, \quad I R 2, \quad I R 3 \quad\left(\text { all } \simeq 10^{6}\right)
$$

All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (e.g., with HISTO, MCDESINT).
$\mathbf{K O B J}=\mathbf{2}$: Random generation of $I M A X=I Y * I T * I Z * I P * I X * I D$ particles on a hyper-grid. The input data are the number of bars in each coordinate

$$
I Y, \quad I T, \quad I Z, \quad I P, \quad I X, \quad I D
$$

the spacing of the bars

$$
P Y, \quad P T, \quad P Z, \quad P P, \quad P X, \quad P D
$$

the width of each bar

$$
\delta Y, \quad \delta T, \quad \delta Z, \quad \delta P, \quad \delta X, \quad \delta D
$$

the cut-offs, used with Gaussian densities (in units of the r.m.s. widths)

$$
N_{\delta Y}, \quad N_{\delta T}, \quad N_{\delta Z}, \quad N_{\delta P}, \quad N_{\delta X}, \quad N_{\delta D}
$$

This is illustrated in Fig. 7.
The last two sets of data in this option are the parameters

$$
N_{0}, \quad C_{0}, \quad C_{1}, \quad C_{2}, \quad C_{3}
$$

needed for generation of the D coordinate upon option $\mathrm{KD}=2$ (unused if $\mathrm{KD}=1,3$) and a set of three integer seeds for initialization of random sequences, $I R 1, I R 2$, and $I R 3\left(\right.$ all $\left.\simeq 10^{6}\right)$.
All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (see HISTO and MCDESINT).

KOBJ = 3: Distribution of IMAX particles in a 6-D ellipsoid (with possible momentum correlation via dispersion) defined by the three sets of data (one set per 2-D phase-space)

$$
\begin{aligned}
& \alpha_{Y}, \quad \beta_{Y}, \frac{\varepsilon_{Y}}{\varepsilon_{Z}}, \quad N_{\varepsilon_{Y}}\left[, \quad N_{\varepsilon_{Y}}^{\prime}, \text { if } N_{\varepsilon_{Y}}<0\right]\left[, \quad D_{Y}, D_{T}\right] \\
& \alpha_{Z}, \beta_{Z}, \frac{\varepsilon_{Z}^{\prime}}{\pi}, \quad N_{\varepsilon_{Z}}\left[, \quad N_{\varepsilon_{Z}}^{\prime}, \text { if } N_{\varepsilon_{Z}}<0\right]\left[, \quad D_{Z}, D_{P}\right] \\
& \alpha_{X}, \beta_{X}, \frac{\varepsilon_{X}^{\pi}}{\pi}, \quad N_{\varepsilon_{X}}\left[, \quad N_{\varepsilon_{X}}^{\prime}, \text { if } N_{\varepsilon_{X}}<0\right],
\end{aligned}
$$

where $\alpha_{X, Y, Z}, \beta_{X, Y, Z}, D_{Y, T}, D_{Z, P}$ are the ellipse parameters and the dispersions and derivatives, $\varepsilon_{X, Y, Z} / \pi$ are the rms emittances. This defines for each plane an elliptical frontier :

$$
\begin{aligned}
& \frac{1+\alpha_{Y}^{2}}{\beta_{Y}} Y^{2}+2 \alpha_{Y} Y T+\beta_{Y} T^{2}=\varepsilon_{Y} / \pi \\
& \frac{1+\alpha_{Z}^{2}}{\beta_{Z}} Z^{2}+2 \alpha_{Z} Z P+\beta_{Z} P^{2}=\varepsilon_{Z} / \pi \\
& \frac{1+\alpha_{l}^{2}}{\beta_{l}} l^{2}+2 \alpha_{l} l \delta+\beta_{l} \delta^{2}=\varepsilon_{l} / \pi
\end{aligned}
$$

with l the bunch length variable (unit is cm) and δ a short notation for $\delta p / p$, momentum spread.

Sorting cut-offs $N_{\varepsilon_{Y}}, N_{\varepsilon_{Z}}$ and $N_{\varepsilon_{X}}$ are accounted for if distributions are Gaussian $(K Y, K T, \ldots=2)$; in this case rms values are

$$
\begin{aligned}
\sigma_{Y} & =\sqrt{\beta_{Y} \times \varepsilon_{Y} / \pi} \text { and } \sigma_{T}=\sqrt{\gamma_{Y} \times \varepsilon_{Y} / \pi} \\
\sigma_{Z} & =\sqrt{\beta_{Z} \times \varepsilon_{Z} / \pi} \text { and } \sigma_{P}=\sqrt{\gamma_{Z} \times \varepsilon_{Z} / \pi}
\end{aligned}
$$

$$
\sigma_{l}=\sqrt{\beta_{l} \times \varepsilon_{l} / \pi}(\text { bunch length, unit } \mathrm{cm}), \text { and } \sigma_{\delta}=\sqrt{\gamma_{l} \times \varepsilon_{l} / \pi} \text { momentum spread. }
$$

For uniform sorting, the distribution extends over the intervals, for respectively the radial, axial and longitudinal distribution,

$$
\begin{aligned}
& \pm \sqrt{\varepsilon_{Y} / \pi \times \beta_{Y}} \text { and } \pm \sqrt{\varepsilon_{Y} / \pi \times \gamma_{Y}} \\
& \pm \sqrt{\varepsilon_{Z} / \pi \times \beta_{Z}} \text { and } \pm \sqrt{\varepsilon_{Z} / \pi \times \gamma_{Z}} \\
& \pm \sqrt{\varepsilon_{l} / \pi \times \beta_{l}} \text { and } \pm \sqrt{\varepsilon_{l} / \pi \times \gamma_{l}}
\end{aligned}
$$

- N_{ε} may be negative. The meaning of this is for the sorting to fill up an elliptical ring that extends from $\left|N_{\varepsilon}\right|$ to N_{ε}^{\prime} (rather than the inner region determined by the N_{ε} cut-off as discussed above, when $N_{\varepsilon}>0$).

Figure 7: A scheme of input parameters to $M C O B J E T$ when $K O B J=2$.
Top : Possible distributions of the Y coordinate.
Bottom : A 2-D grid in (Y, Z) space.

5.2.2 OBJET : Generation of an object

OBJET is dedicated to the construction of sets of initial coordinates, in several ways.
The first datum is the reference rigidity (a negative value is allowed)

$$
B O R O=\frac{p_{0}}{q}
$$

At the object, the beam is defined by a set of IMAX particles (the maximum value for IMAX is defined in the include file 'MAXTRA. H^{\prime}) with the initial conditions (Y, T, Z, P, X, D) with $D=B \rho / B O R O$ the relative rigidity.
Depending on the value of the next datum KOBJ, these initial conditions may be generated in different ways, as follows.

KOBJ = 1 : Defines a grid in the Y, T, Z, P, X, D space. One defines the number of points desired

$$
I Y, \quad I T, \quad I Z, \quad I P, \quad I X, \quad I D
$$

with $I Y \leq n_{Y} \ldots I D \leq n_{D}$ such that $n_{Y} \times n_{T} \times \ldots \times n_{D} \leq \max (I M A X)$. One defines the sampling range in each coordinate

$$
d Y, \quad d T, \quad d Z, \quad d P, \quad d X, \quad d D
$$

zgoubi then generates $I M A X=I Y * I T * I Z * I P * I X * I D$ particles with initial coordinates

$$
\begin{array}{lllll}
0, & \pm d Y, & \pm 2 * d Y, & \ldots, & \pm I Y / 2 * d Y, \\
0, & \pm d T, & \pm 2 * d T, & \ldots, & \pm I T / 2 * d T \\
0, & \pm d Z, & \pm 2 * d Z, & \ldots, & \pm I Z / 2 * d Z, \\
0, & \pm d P, & \pm 2 * d P, & \ldots, & \pm I P / 2 * d P, \\
0, & \pm d X, & \pm 2 * d X, & \ldots, & \pm I X / 2 * d X, \\
0, & \pm d D, & \pm 2 * d D, & \ldots, & \pm I D / 2 * d D,
\end{array}
$$

In this option relative rigidities will be classified automatically in view of possible further use of IMAGES[Z] for momentum analysis and image formation.
The particles are tagged with an index IREP possibly indicating a symmetry with respect to the (X, Y) plane, as explained in option $K O B J=3$. If two trajectories have mid-plane symmetry, only one will be ray-traced, while the other will be deduced using the mid-plane symmetries. This is done for the purpose of saving computing time. It may be incompatible with the use of some procedures (e.g. MCDESINT, which involves random processes).
The last datum is a reference in each coordinate, $Y R, T R, Z R, P R, X R, D R$. For instance the reference rigidity is $D R * B O R O$, resulting in the rigidity of a particle defined by $I * d D$ to be $(D R+I * d D) * B O R O$.

KOBJ = 1.1 : Same as KOBJ= 1 except for the Z symmetry. The initial Z and P conditions are the following

$$
\begin{array}{llll}
0, & d Z, & 2 * d Z, & \ldots, \\
0, & d P, & 2 * d P, & \ldots, \\
\hline & (I P-1) * d Z, \\
\hline
\end{array}
$$

This object results in shorter outputs/CPU-time when studying problems with Z symmetry.
KOBJ = 2 : Next data: IMAX, IDMAX. Initial coordinates are entered explicitly for each trajectory. $I M A X$ is the total number of particles. These may be classified in groups of equal number for each value of momentum, in order to fulfill the requirements of image calculations by IMAGES[Z]. IDMAX is the number of groups of momenta. The following initial conditions defining a particle are specified for each one of the IMAX particles

$$
Y, \quad T, \quad Z, \quad P, \quad X, \quad D, \quad{ }^{\prime} A^{\prime}
$$

where $D * B O R O$ is the rigidity (negative value allowed) and ${ }^{\prime} A^{\prime}$ is a (arbitrary) tagging character.

The last record $\operatorname{IEX}(\mathrm{I}=1, \operatorname{IMAX})$ contains $I M A X$ times either the character " 1 " to indicates that the particle has to be tracked, or "-9" to indicates that the particle should not be tracked.
This option $K O B J=2$ may be be useful for the definition of objects including kinematic effects.
KOBJ = 2.1: Same as $K O B J=2$ except for the units, meter and radian in that case.
Note that in this option KOBJ $=\mathbf{2}[]$.$] , only the first 7$ trajectories can possibly have their coodinates varied when using the FIT[2] procedure.

KOBJ = $\mathbf{3}$: This option allows the reading of initial conditions from an external input file FNAME. The next three data lines are :

```
IT1, IT2, ITStep
IP1, IP2, IPStep
YF,TF, ZF, PF, SF, DPF, TiF, TAG
YR,TR,ZR,PR,SR,DPR,TiR
InitC
```

followed by the storage file name FNAME.
IT1, IT2, ITStep cause the code to read coordinates of particles number IT1 through IT2 by step ITStep. IP1, IP2, IPStep cause the code to read coordinates belonging in the passes range IP1 through IP2, step IPStep.
$Y F, T F, Z F, P F, S F, D P F, T i F$ are scaling factors whereas $Y R, T R, Z R, P R, S R, D P R, T i R$ are references added to the values of respectively $\mathrm{Y}, \mathrm{T}, \mathrm{Z}, \mathrm{P}, \mathrm{S}, \mathrm{DP}$ as read in file FNAME, so that any coordinate $C=Y, T, Z \ldots$ is changed into $\mathrm{CF}^{*} \mathrm{C}+\mathrm{CR}$. In addition a flag character TAG allows retaining only particles with identical tagging letter LET, unless TAG='*' in which case it has no selection effect for instance TAG='S' can be used to retain only secondary particles following in-flight decay simulations.
If InitC $=1$ ray-tracing starts from the current coordinates $F(J, I)$, if $\mathrm{Init} \mathrm{C}=0$ ray-tracing starts from the initial coordinates $F O(J, I)$, as read from file FNAME.
The file FNAME must be formatted in the appropriate manner. The following FORTRAN sequence is an instance, details and possible updates are to be found in the source file ' obj3.f' :

```
        OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD')
DO I = 1, IMAX
    READ (NL, 100) LET (I), IEX(I), (FO(J,I),J=1,6), (F (J,I),J=1,6), I, IREP(I),
        > LET(I),IEX(I),-1.D0+FO(1,I),(FO(J,I),J=2,MXJ),
        > -1.D0+F(1,I),F(2,I),F(3,I),
        > (F(J,I),J=4,MXJ),ENEKI,
        > ID,I,IREP(I), SORT(I),D,D,D,D,RET(I),DPR(I),
        > D, D, D, BORO, IPASS, KLEY,LBL1,LBL2,NOEL
    00 FORMAT(1X,
C1 LET(IT),KEX, 1.D0-FO(1,IT),(FO(J,IT),J=2,MXJ),
        1 A1,1X,I2,1P,7E16.8,
        1.D0-F(1,IT),(FO(J,IT),J=2,MXJ),
            /,3E24.16,
C3 Z,P*1.D3,SAR, TAR, DS,
    3 /,4E24.16,E16.8,
C4 KART, IT,IREP(IT),SORT(IT),X, BX,BY,BZ, RET(IT), DPR(IT),
    4 /,I1,2I6,7E16.8,
C5 EM,EY,EZ, BORO, IPASS, KLEY, (LABEL (NOEL,I), I=1,2),NOEL
```

where the meaning of the parameters (apart from $\mathrm{D}=$ dummy real, $\mathrm{ID}=$ dummy integer) is the following
LET(I) : one-character string (for tagging)
$\operatorname{IEX}(I):$ flag, see $K O B J=2$ and page 184
$F O(1-6, I)$: coordinates D, Y, T, Z, P and path length of particle number I, at the origin. $D * B O R O=$ rigidity
$F(1-6, I)$: id, at the current position.

IREP is an index which indicates a symmetry with respect to the median plane. For instance, if $Z(I+1)=$ $-Z(I)$, then normally $\operatorname{IREP}(I+1)=\operatorname{IREP}(I)$. Consequently the coordinates of particle $I+1$ will not be obtained from ray-tracing but instead deduced from those of particle I by simple symmetry. This saves on computing time.

KOBJ= 3 can be used for reading files filled by FAISCNL, FAISTORE.
If more than IMAX particles are to be read from a file, use REBELOTE.
Note : In this option, one has to make sure that input data do not conflict with possible use of the keyword PARTICUL that assigns mass and charge.
$\mathbf{K O B J}=3.1$: Same as $\mathbf{K O B J}=\mathbf{3}$, except for the formatting of trajectory coordinate data in FNAME, namely, according to the following FORTRAN sequence

```
OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD')
1 CONTINUE
READ (NL,*,END=10,ERR=99) Y, T, Z, P, S, D
GOTO 1
CALL ENDFIL
CALL ERREAD
```

KOBJ = 3.2 : As for $\mathbf{K O B J = 3 . 1}$, except for the different format

$$
\operatorname{READ}(N L, *) \quad X, Y, Z, P X, P Y, P Z
$$

where $P X, P Y$, and $P Z$, are the momenta in MeV / c. Note that DPR will be ignored in this case.
KOBJ = 3.3 : As for KOBJ=3.1, except for the different format :
READ (NL, *) DP, Y, T, Z, P, S, TIME, MASS, CHARGE
where MASS is the mass in MeV / c and CHARGE is the charge in units of the elementary charge.
Note : For details and possible updates in the formatted read of concern in the FORTRAN, regarding options 3.1-3.3, see the source file' obj3.f'.

RECOVERING FROM A CRASH

OBJET with option KOBJ=3[.*] can be used to recover from a job crash, when multi-turn tracking - due to computer crash or else. This is discussed in the SCALING section, page 80, an example of job resuming is given page 255 .

KOBJ = 5: Mostly dedicated to the calculation of first order transfer matrix and various other optical parameters, using for instance MATRIX or TWISS. The user defines the coordinate sampling

$$
d Y, \quad d T, \quad d Z, \quad d P, \quad d D
$$

These values should be small enough, so that the paraxial ray approximation be valid. The code generates 11 particles, with initial coordinates

$$
0, Y R \pm d Y, T R \pm d T, Z R \pm d Z, P R \pm d P, D R \pm d D
$$

given the reference trajectory

$$
Y R, \quad T R, \quad Z R, \quad P R, \quad D R
$$

(with $D R * B O R O$ the reference rigidity - negative value allowed).
KOBJ = 5.1 : Same as $K O B J=5$, except for an additional data line giving initial beam ellipse parameters and dispersions, $\alpha_{Y}, \beta_{Y}, \alpha_{Z}, \beta_{Z}, \alpha_{X}, \beta_{X}, D_{Y}, D_{Y}^{\prime}, D_{Z}, D_{Z}^{\prime}$, for further transport of these using MATRIX or OPTICS, or for possible use by the FIT[2] procedure.

KOBJ $=\mathbf{5} . \mathbf{N}(N \geq 2):$ Like $K O B J=5$ except for its allowing $N \geq 2$ reference trajectories, rather than just one as in $K O B J=5$ case (thus $N-1$ additional input data lines are needed in this case). These reference trajectories can be for instance chromatic orbits. Zgoubi will generate N sets of 11 particles with initial coordinates in each set taken wrt. one of the N references.

A subsequent use of MATRIX would then cause the computation of N transport matrices.
Note that in the option $K O B J=5 . N, N \geq 2$, only the first 7 reference trajectories can possibly have their coodinates varied when using the FIT[2] procedure.

KOBJ = 6 : Mostly dedicated to the calculation of first, second and other higher order transfer coefficients and various other optical parameters, using for instance MATRIX. The input data are the coordinate sampling (normally taken paraxial)

$$
d Y, \quad d T, \quad d Z, \quad d P, \quad d D
$$

to allow the building up of an object containing 61 particles (note : their coordinates can be checked by printing out into zgoubi.res using FAISCEAU), whereas a last data line gives the reference

$$
Y R, \quad T R, \quad Z R, \quad P R, \quad D R
$$

(with $D R * B O R O$ the reference rigidity - negative value allowed), which adds to the previous coordinate values.

KOBJ = 7 : Object with kinematics
The data and functioning are the same as for $K O B J=1$, except for the following

- $I D$ is not used,
- $P D$ is the kinematic coefficient, such that for particle number I, the initial relative rigidity D_{I} is calculated from the initial angle T_{I} following

$$
D_{I}=D R+P D * T_{I}
$$

while T_{I} is in the range

$$
0, \quad \pm P T, \quad \pm 2 * P T, \quad \ldots, \quad \pm I T / 2 * P T
$$

as when using $K O B J=1$.

KOBJ = 8 : Generation of phase-space coordinates on ellipses.
The ellipses are defined by the three sets of data (one set per ellipse)

$$
\begin{array}{lll}
\alpha_{Y}, & \beta_{Y}, & \varepsilon_{Y} / \pi \\
\alpha_{Z}, & \beta_{Z}, & \varepsilon_{Z} / \pi \\
\alpha_{X}, & \beta_{X}, & \varepsilon_{X} / \pi
\end{array}
$$

where α, β are the ellipse parameters and $\varepsilon /$ is the ellipse surface, corresponding to an ellipse with equation

$$
\frac{1+\alpha_{Y}^{2}}{\beta_{Y}} Y^{2}+2 \alpha_{Y} Y T+\beta_{Y} T^{2}=\varepsilon_{Y} / \pi
$$

(idem for the (Z, P) or (X, D) planes).
The ellipses are centered respectively on $\left(Y_{0}, T_{0}\right),\left(Z_{0}, P_{0}\right),\left(X_{0}, D_{0}\right)$.
The number of samples per plane is respectively $I X, I Y, I Z$. If that value is zero, the central value above is assigned.

5.2.3 OBJETA : Object from Monte-Carlo simulation of decay reaction [30]

This generator simulates the reactions

$$
M_{1}+M_{2} \longrightarrow M_{3}+M_{4}
$$

and then

$$
M_{4} \longrightarrow M_{5}+M_{6}
$$

where M_{1} is the mass of the incoming body; M_{2} is the mass of the target; M_{3} is an outgoing body; M_{4} is the rest mass of the decaying body ; M_{5} and M_{6} are decay products. Example :

$$
\begin{gathered}
p+d \longrightarrow{ }^{3} \mathrm{He}+\eta \\
\eta \longrightarrow \mu^{+}+\mu^{-}
\end{gathered}
$$

The first input data are the reference rigidity

$$
B O R O=p_{0} / q
$$

an index $I B O D Y$ which specifies the particle to be ray-traced, namely $\mathrm{M} 3(I B O D Y=1)$, $\mathrm{M} 5(I B O D Y=$ 2) or M6 (IBODY = 3). In this last case, initial conditions for M6 must be generated by a first run of OBJETA with $I B O D Y=2$; they are then stored in a buffer array, and restored as initial conditions at the next occurrence of OBJETA with $I B O D Y=3$. Note that zgoubi by default assumes positively charged particles.

Another index, KOBJ, specifies the type of distribution for the initial transverse coordinates Y, Z; namely either uniform $(K O B J=1)$ or Gaussian $(K O B J=2)$. The other three coordinates T, P and D are deduced from the kinematic of the reactions.

The next data are the number of particles to be generated, IMAX, the masses involved in the two previous reactions.

$$
M_{1}, \quad M_{2}, \quad M_{3}, \quad M_{4}, \quad M_{5}, \quad M_{6}
$$

and the kinetic energy T_{1} of the incoming body $\left(M_{1}\right)$.
Then one gives the central value of the distribution for each coordinate

$$
Y_{0}, \quad T_{0}, \quad Z_{0}, \quad P_{0}, \quad D_{0}
$$

and the width of the distribution around the central value

$$
\delta Y, \quad \delta T, \quad \delta Z, \quad \delta P, \quad \delta D
$$

so that only those particles in the range

$$
Y_{0}-\delta Y \leq Y \leq Y_{0}+\delta Y \quad \ldots \quad D_{0}-\delta D \leq D \leq D_{0}+\delta D
$$

will be retained. The longitudinal initial coordinate is uniformly sorted in the range

$$
-X L \leq X_{0} \leq X L
$$

The random sequences involved may be initialized with different values of the two integer seeds $I R_{1}$ and $I R_{2}\left(\simeq 10^{6}\right)$.

Possible use of PARTICUL will have no effect : it will not change the mass and charge assumptions as set by OBJETA.

5.3 Declaring Options

A series of options are available which allow the control of various of the procedures and functionalities of the code.

Some of these options are normally declared right after the object definition, for instance

- SPNTRK : switch-on spin tracking,
- PARTICUL to declare particle mass and charge, if for instance tracking in electric fields, or tracking spin, or in presence of synchrotron radiation energy loss simulations,
some may appear further down in the structure (in zgoubi.dat), for instance
- MCDESINT : switch-on in-flight decay, could be after a target,
- REBELOTE : for multi-turn tracking, including an extraction line section for instance,
others may normally be declared at the end of zgoubi.dat data pile, for instance
- END : end of a problem,
- FIT : fitting procedure - can also appear before REBELOTE

GETFITVAL may appear before the object definition (keyword [MC]OBJET, normally the first in zgoubi input data list). This is the case if variables prior saved following a 'FIT[2]' procedure and then read back using GETFITVAL, happen to belong in the [MC]OBJET data list.

SYSTEM as well, may appear anywhere in the data list.

5.3.1 BINARY : BINARY/FORMATTED data converter

This procedure translates field map data files from "BINARY" to "FORMATTED" - in the FORTRAN sense, or the other way.

The keyword is followed by, next data line,

$$
N F[. J], N C O L, N H D R
$$

the number of files to be translated [READ format option, a single digit integer, optional], number of data columns in the file, number of header lines in the file.

Fortran READ format, case of formatted input file :
If J is not given, the $N C O L$ arrangement should be consistent with the following FORTRAN READ statement:

READ (unit=ln,*) (X7 (I), I=1,NCOL)
If $J=1$, NCOL should be consistent with the following FORTRAN READ statement :
READ (unit=ln,fmt=' ($\left.1 \mathrm{x}, \mathrm{ncol*E11.2)}^{\prime}\right) ~(X 7(I), I=1, N C O L) ~$
Fortran READ format, case of formatted input file :
Data are expected to have been recorded under the form of Ncol column rows.
Then follow, line by line, the NF names of the files to be translated.
Iff a file name begins with the prefix "B_" or "b_", it is assumed "binary", and hence converted to "formatted", and given the same name after suppression of the prefix "B_" or "b.". Conversely, iff the file name does not begin with "B_" or "b_", the file is presumed "formatted" and hence translated to "binary", and is given the same name after addition of the prefix "b_".

In its present state, the procedure BINARY only supports a limited number of read/write formats. Details concerning I/O formatting can be found in the FORTRAN file 'binary. f^{\prime}.

5.3.2 END or FIN : End of input data list

The end of a problem, or of a set of several problems stacked in the data file, should be stated by means of the keywords FIN or END.

Any information following these keywords will be ignored.
In some cases, these keywords may cause some information to be printed in zgoubi.res, for instance when the keyword PICKUPS is used.

5.3.3 ERRORS : Injecting errors in optical elements

UNDER DEVELOPMENT

The keyword ERRORS allows injecting diverse types of errors in optical elements, including field and positionning defects. Uniform and Gaussian distribution laws are available.

Optical elements concerned can be discriminated using one or both of their labels.
ERRORS is under development, functionalities at the moment are the following :
MULTIPOL can be injected multipole field defects on any one of its dipole to 20-pole component. The defect can be relative (to the current field value) or absolute (adds to the current field value).

TOSCA can be injected a field defect that applies to the field map as a whole. The defect can be relative (to the current field value) or absolute (adds to the current field value).

Some rules:

- if REBELOTE is used in multi-turn mode (i.e., its K argument value is 99), then the same defect series is applied at each pass, by default. However one may want to simulate one turn by repeating a cell subset, using REBELOTE, in which case defects of random type in the subset should be changed at each pass. This requires modification in errors.f program.

5.3.4 FIT, FIT2 : Fitting procedure

The keywords FIT, FIT2 allow the automatic adjustment of up to 20 variables, for fitting up to 20 constraints.

FIT was implemented in 1985, drawn from the matrix transport code BETA [31]. FIT2 is a simplex method (Nelder-Mead method), it has been implemented in 2007 [32]. One or the other may converge faster, or may have some advantages/disadvantages, depending on the problem.

Any physical parameter of any element in the zgoubi.dat data list may be varied. Examples of available constraints are, amongst others :

- trajectory coordinates in the $F(J, I)$ array, $I=$ particle number, $J=$ coordinate number $=1$ to 7 for respectively $D, Y, T, Z, P, S=$ path length, time ;
- spin coordinates ;
- any of the 6×6 coefficients of the first order transfer matrix $\left[R_{i j}\right]$ as defined in the keyword MATRIX;
- any of the $6 \times 6 \times 6$ coefficients of the second order array $\left[T_{i j k}\right]$ as defined in MATRIX;
- any of the 4×4 coefficients of the beam σ-matrix
- transmission efficiency of an optical channel.
- tunes $\nu_{Y, Z}$ and periodic betatron functions $\beta_{Y, Z}, \alpha_{Y, Z}, \gamma_{Y, Z}$, as computed in the coupled hypothesis [33].

A full list of the constraints available is given in the table page 233.
FIT, FIT2 are compatible with the use of (i.e., can be encompassed in) REBELOTE for successive fitting trials using various sets of parameters (option $K=22$ in REBELOTE).

VARIABLES

The first input data in FIT[2] is the number of variables $N V$. A variable is defined by a line of data comprised of
$I R=$ number of the varied element in the structure
$I P=$ number of the physical parameter to be varied in this element
$X C=$ coupling parameter. Normally $X C=0$. If $X C \neq 0$, coupling will occur (see below) followed by, either
$D V=$ allowed relative range of variation of the physical parameter $I P$
or
$[V \min , V \max]=$ allowed interval of variation of the physical parameter $I P$

Numbering of the Elements (IR) :

The elements (i.e., keywords DIPOLE, QUADRUPO, etc.) as read by zgoubi in the zgoubi.dat sequence are assigned a number. which follows their sequence in the data file. It is that very number, $I R$, that the FIT[2] procedure uses. A simple way to get $I R$ once the zgoubi. dat file has been built, is to do a preliminary run, since the first thing zgoubi does is copy the sequence from zgoubi.dat into the result file zgoubi.res, with all elements numbered.

Numbering of the Physical Parameters (IP) :

All the data that follow a keyword are numbered - except for SCALING, see below.

With most of the keywords, the numbering follows the principle hereafter :

Input data

'KEYWORD'
first line $\quad 1,2,3, \ldots, 9$
second line this is a comment next line and so on...

Numbering for FIT

$10,11,12,13, \ldots, 19$
a line of comments is skipped
$20,21,22, \ldots, 29$

The examples of QUADRUPO (quadrupole) and TOSCA (Cartesian or cylindrical mesh field map) are as follows.

Input data

'QUADRUPO'
IL
$X L, R_{0}, B$
X_{E}, λ_{E}
NCE, $C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$
X_{S}, λ_{S}
NCS, $C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$
XPAS
KPOS, XCE, YCE, ALE

'TOSCA'

IC, IL
BNORM, X- [, Y-, Z-]NORM
TIT
$I X, I Y, I Z, M O D$
FNAME
$I D, A, B, C\left[A^{\prime}, B^{\prime}, C^{\prime}\right.$, etc. if $\left.I D \geq 2\right]$
IORDRE
XPAS
KPOS, XCE, YCE, ALE

Numbering for FIT

1
10, 11, 12
20, 21
30, 31, 32, 33, 34, 35, 36
40, 41
$50,51,52,53,54,55,56$
60
70, 71, 72, 73

1, 2
$10,11[, 12,13]$
This is text
20, 21, 22, 23
This is text
$30,31,32,33[34,35,36[, 37,38,39]$ if $I D \geq 2]$
40
50
60,61,62,63

A different numbering, fully sequential, has been adopted in the following elements :
AIMANT, DIPOLE, EBMULT, ELMULT, MULTIPOL.
It is illustrated here after in the case of MULTIPOL and DIPOLE-M.

Input data

'MULTIPOL'
0
365.76010 .07 .57391 .49390 .00 .00 .00 .00 .00 .00 .00 .0
10.04 .00 .800 .00 .00 .00 .0 0. 0. 0. 0.
$N C, C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$
10.04 .00 .800 .00 .00 .00 .0 0. 0. 0. 0.
$N C, C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$
0. 0. 0. 0. 0. 0. 0. 0. 0. 0 .
step size
KPOS, XCE, YCE, ALE

Numbering for FIT

1
$2,3,4,5, \ldots, 13$
$14,15, \ldots, 24$
$25,26,27,28,29,30,31$
32, 33, ..., 42
43, 44, ..., 49
50, 51, ..., 59
60 [and 61, 62 reserved]
63, 64, 65, 66

Input data

'DIPOLE-M'
NFACE, IC, IL
IAMAX, IRMAX
B_{0}, N, B, G
AT, ACENT, RM, RMIN, RMAX
λ, ξ
NC, $C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, shift $\omega, \theta, R_{1}, U_{1}, U_{2}, R_{2}$ etc.

Numbering for FIT

1, 2, 3
4, 5
6, 7, 8, 9
$10,11,12,13,14$
15,16
$17,18,19,20,21,22,23,24$
$25,26,27,28,29,30$

Parameters in SCALING also have a sequential numbering, yet some positions are skipped, this is illustrated in the example hereafter which covers all possible working modes of SCALING (all details regarding the numbering can be found in the FORTRAN subroutine rscal.f):

Input data

'SCALING'

| 1 |
| :--- | :--- |
| 9 |

AGSMM *AF *BF

AGSQUAD QH_*
3

| 0.605 | 0.77 | 0.879 |
| :--- | :--- | :--- | :--- |
| 1 | 2000 | 10000 |

AGSQUAD QV_*
3

| 0.587 | 0.83 | 0.83 |
| :--- | :--- | :--- | :--- |
| 1 | 2000 | 10000 |

MULTIPOL
-1
0.72135154291

1
MULTIPOL COH1
1.10
./Csnk3D/bump_centered.scal
12
MULTIPOL COH2
1.10
./Csnk3D/bump_centered.scal
14
MULTIPOL KICKH KICKV
2
0.10 .3
$33 \quad 34$
3536

Quantities to be varied
(see SCALING for details)

Non relevant
Keywords concerned, their labels
$\mathrm{dB} 1, \mathrm{~dB} 2, \mathrm{~dB} 3$ parameters in AGSMM
Field factor
Timing

General rule. Precedes labeled cases if any. (meaningless)
(meaningless)
No numbering if 1.10 type of option

Field factor
Timing
$18 \quad 19 \quad 20$
$21 \quad 22 \quad 23$

Coupled Variables ($X C$)

Coupling a variable parameter to any other parameter in the structure is possible. This is done by giving $X C$ a value of the form int.ijk where the integer part "int" is the number of the coupled element in the structure (equivalent to $I R$, see above), and the decimal part "ijk" is the number of its parameter of concern (equivalent to $I P$, see above) (if the parameter number is in the range $1,2, \ldots, 9$ (resp. 10, 11, ... 19, and $100, \ldots$), then $i j k$ must take the form $00 k$ (resp. $0 j k, i j k$)). For example, $X C=20.010$ is a request for coupling with the parameter number 10 of element number 20 of the structure, while $X C=20.100$ is a request for coupling with the parameter number 100 of element 20.

An element of the structure which is coupled (by means of $X C \neq 0$) to a variable declared in the data list of the FIT[2] keyword, needs not appear as one of the $N V$ variables in that data list (this would be redundant information).
$X C$ can be either positive or negative. If $X C>0$, then the coupled parameter will be given the same value as the variable parameter (for example, symmetric quadrupoles in a lens triplet will be given the same field). If $X C<0$, then the coupled parameter will be given a variation opposite to that of the variable, so that the sum of the two parameters stays constant (for example, an optical element can be shifted while preserving the length of the structure, by coupling together its upstream and downstream drift spaces).

Variation Range

There are two ways to define the allowed range for a variable, as follows.
(i) DV : For a variable (parameter number $I P$ under some keyword) with initial value v, the FIT[2] procedure is allowed to explore the range $v \times(1 \pm D V)$.
(i) $\left[v_{\min }, v_{\max }\right]$: This specifies the allowed interval of variation.

CONSTRAINTS

The next input data in FIT[2] is the number of constraints, NC. A list of the available constraints is given in the table page 233 ; adding or changing a constraint resorts to the FORTRAN file ff.f.

Each constraint is defined by the following list of data :
$I C[. I C 2]=$ type of constraint (see table p. 233).
$I, J=$ constraint (i.e., $R_{i j}$, determinant, tune ; $T_{i j k} ; \sigma_{i j} ;$ trajectory $\# I$ and coordinate $\# J$)
IR $\quad=$ number of the keyword at the exit of which the constraint applies ; instead of numeral, can also be '\#End', so the constraint applies at the last keyword preceeding 'FIT[2]'
$V \quad=$ desired value of the constraint
$W \quad=\quad$ weight of the constraint (smaller W for higher weight)
$N P \quad N P$ additional parameters, values $P R_{1-N P}$, defining the constraint
$I C=0$: The coefficients $\sigma_{11}\left(\sigma_{33}\right)=$ horizontal (vertical) beta values and $\sigma_{22}\left(\sigma_{44}\right)=$ horizontal (vertical) derivatives ($\alpha=-\beta^{\prime} / 2$) are obtained by transport of their initial values at line start as introduced using for instance OBJET, KOBJ=5.1.
$I C=0.1$: Beam parameters: $\sigma_{11}=\beta_{Y}, \sigma_{12}=\sigma_{21}=-\alpha_{Y}, \sigma_{22}=\gamma_{Y}, \sigma_{33}=\beta_{Z}, \sigma_{34}=\sigma_{43}=-\alpha_{Z}, \sigma_{44}=$ γ_{Z}; periodic dispersion: $\sigma_{16}=D_{Y}, \sigma_{26}=D_{Y}^{\prime}, \sigma_{36}=D_{Z}, \sigma_{46}=D_{Z}^{\prime}$, all quantities derived by assuming periodic structure and identifying the first order transfer matrix with the form $I \cos \mu+J \sin \mu$.
$I C=1,2$: The coefficients $R_{i j}$ and $T_{i j k}$ are calculated following the procedures described in MATRIX, option IFOC $=0$. The fitting of the $\left[R_{i j}\right]$ matrix coefficients supposes the tracking of particles with paraxial coordinates, normally defined using $O B J E T$ option $K O B J=5$ or 6 .

Type of constraint	Parameters defining the constraints						Recommended [MC]OBJET ; comments
	IC	I	J	Constraint	Additional parameter(s)		
$\begin{aligned} & \text { Transported } \sigma \text {-matrix } \\ & \quad(\sigma(s)=T \sigma(0) \tilde{T}) \end{aligned}$	0	1-6	1-6	$\sigma_{I J}\left(\sigma_{11}=\beta_{Y}, \sigma_{21,12}=\alpha_{Y}\right.$, etc. $)$			OBJET/KOBJ=5.1
Periodic σ-matrix $\begin{gathered} (\sigma=I \cos \mu+J \sin \mu) \\ (\mathrm{N}=1-9 \text { for } \end{gathered}$ MATRIX block 1-9)	$\begin{gathered} 0 . \mathrm{N} \\ (N \leq 9) \end{gathered}$	$\begin{gathered} 1-6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	$\begin{aligned} & 1-6 \\ & \text { any } \end{aligned}$	$\begin{gathered} \sigma_{I J} \quad\left(\sigma_{11}=\cos \mu_{Y}+\alpha_{Y} \sin \mu_{Y}, \text { etc. }\right) \\ \mu_{Y} / 2 \pi \\ \mu_{Z} / 2 \pi \\ \cos \left(\mu_{Y}\right) \\ \cos \left(\mu_{Z}\right) \end{gathered}$			OBJET/KOBJ $=5 . \mathrm{N}$
First order transport coeffs.	1	$\begin{gathered} 1-6 \\ 7 \\ 8 \end{gathered}$	$\begin{gathered} 1-6 \\ \mathrm{i} \\ \mathrm{j} \end{gathered}$	Transport coeff. $R_{I J}$ $i \neq 8$: YY-determinant ; i=8: YZ-det. $j \neq 7:$ ZZ-determinant $; \mathrm{j}=7$: ZY-det.			OBJET/KOBJ $=5$
Second order transport coeffs.	2	$1-6$	11-66	Transport coeff. $T_{I, j, k}$ $(j=[J / 10], k=J-10[J / 10])$			OBJET/KOBJ=6
Trajectory coordinates ($\mathrm{I}=$ particle	3	$\begin{gathered} 1-I M A X \\ -1 \\ -2 \end{gathered}$	$\begin{aligned} & 1-7 \\ & 1-7 \\ & 1-7 \end{aligned}$	$\begin{gathered} F(J, I) \\ <F(J, i)>_{i=I 1, I 2} \end{gathered}$	$\left\{\begin{array}{l}0 \\ 2\end{array}\right.$	$I_{1}, \quad I_{2}$	$\begin{aligned} & {[M C] O B J E T} \\ & 1 \rightarrow I M A X \\ & 1 \leq I_{1} \leq I_{2} \leq I M A X \end{aligned}$
number; $\mathrm{J}=1-7$ for		-3	1-7	Dist $F(J, I)_{i=I 1, I 2}$	3	$I_{1}, I_{2}, \Delta I$	$1 \leq I_{1} \leq I_{2} \leq$ IMAX
D,Y,T,Z,P,S,time)		-4	1-7	Dist $\left[P U_{i}, i=1, N\right]$	2	$\mathrm{NOEL}_{A}, \mathrm{NOEL}_{B}$	PU range
	3.1	1 - IMAX	1-7	$\|F(J, I)-F O(J, I)\|$			
	3.2	1 - IMAX	1-7	$\|F(J, I)+F O(J, I)\|$			
	3.4	1 - IMAX	$1-7$	$\|F(J, I)-F(J, K)\|$	1	K	$K \leq I M A X$
	3.5	1 - IMAX	$1-7$	$(F(J, I)-F(J, K)) / F(J, K)$	1	K	$K \leq I M A X$
Ellipse parameters	4	$1-6$	$1-6$	$\begin{gathered} \sigma_{I J} \quad\left(\sigma_{11}=\beta_{Y}\right. \\ \left.\sigma_{12}=\sigma_{21}=\alpha_{Y}, \text { etc. }\right) \end{gathered}$			OBJET/KOBJ=8 ; MCOBJET/KOBJ=3
Number of particles	5	$\begin{gathered} -1 \\ 1-3 \\ 4-6 \end{gathered}$	any any any	$\begin{gathered} N_{\text {survived }} / \text { IMAX } \\ N_{\text {in } \epsilon_{Y, Z, X} / N_{\text {survived }}} / N_{\text {survived }} \end{gathered}$	1	$\epsilon_{Y, Z, X} / \pi$	OBJET MCOBJET MCOBJET
Coordinates \& fields, across optical elements	$\begin{aligned} & 7.1 \\ & 7.2 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 1-I M A X \\ & 1-I M A X \\ & 1-I M A X \end{aligned}$	$\begin{aligned} & 1-7 \\ & 1-7 \\ & 1-7 \end{aligned}$	$\min .\left(p r_{1}=1\right)$ or max. (2) of $F(J, I)$ $\max (F(J, I))-\min F(J, I))$ $\min F(J, I))+\max (F(J, I))$	1	1-2	[MC]OBJET
$\begin{gathered} (\mathrm{J}=1,2,3 \text { for } \\ \left.B_{X, Y}, Z\right) \end{gathered}$	$\begin{aligned} & 7.6 \\ & 7.7 \\ & 7.8 \\ & 7.9 \end{aligned}$	$\begin{aligned} & 1-I M A X \\ & 1-I M A X \\ & 1-I M A X \\ & 1-I M A X \end{aligned}$	$\begin{aligned} & 1-3 \\ & 1-3 \\ & 1-3 \\ & 1-3 \end{aligned}$	$\begin{gathered} \min .\left(p r_{1}=1\right) \text { or } \max .(2) \text { value of } B_{J} \\ \max \left(B_{J}\right)-\min \left(B_{J}\right) \\ \min \left(B_{J}\right)+\max \left(B_{J}\right) \\ \int B_{J} d s \end{gathered}$	1	1-2	
Spin	$\begin{gathered} 10 \\ 10.1 \\ 10.2 \\ 10.3 \end{gathered}$	$\begin{gathered} 1-\text { IMAX } \\ 1-\text { IMAX } \\ 1 \text { - IDMAX } \\ 1 \text { - IDMAX } \end{gathered}$	$\begin{gathered} 1-4 \\ 1-3 \\ \text { any } \\ 1-3 \end{gathered}$	$\begin{gathered} S_{X, Y, Z}(I),\|\vec{S}(I)\| \\ \left\|S_{X, Y, Z}(I)-S O_{X, Y, Z}(I)\right\| \\ \text { spin rotation angle (rad) } \end{gathered}$ rotation axis, X -, Y- or Z-component			SPNTRK+ [MC]OBJET OBJET/KOBJ=2 OBJET/KOBJ=2

IMAX: total number of particles tracked.
$F(J, I)$: particle coordinate array ; J : coordinate (1-7 for respectively D, Y, T, Z, P, S, time, resp. units : none, cm, mrad, cm, mrad, cm, $\mu \mathrm{s}$) ; I : particle number. $F O(J, I)$: initial particle coordinates.
$S(J, I)$: spin coordinate array ; J : coordinate (1, 2, 3 for respectively X, Y, Z) ; I : particle number.
$S O(J, I)$: initial spin coordinates.
$I C=3:$ If $1 \leq I \leq I M A X$ then the value of coordinate type $J(J=1,6$ for respectively $D, Y, T, Z, P, S)$ of particle number $I(1 \leq I \leq I M A X)$ is constrained. However I can take special meaning, as follows.
$I=-1$: the constraint is the average value of coordinate of type J over particles $\left[I_{1}, I_{2}\right]$,
$I=-2$: the constraint is the maximum value of coordinate of type J,
$I=-3:$ the constraint is the distance between particles $I_{1}-I_{2}($ step $\Delta I)$.
$I=-4:$ take the average of the $F(J, i)$ coordinate (J=1-7 for D,Y,T,Z,P,S,time) over $(I 2-I 1+1)$ particles in the range $i=I 1-I 2$, get it at N different pickup locations $P U_{1}, P U_{2}, \ldots, P U_{N}$. The constraint is, minimizing the distance between these averages, $\operatorname{Dist}\left[<F(J, i)>_{i=I 1, I 2}\right]_{P U_{1-N}}$ (Ex. : minimize the difference between PU records, for a series of PUs along a beamline). If the number of locations is 997 (i.e., $\mathrm{N}+2=999$) then all PUs upstream of IR are accounted for. This constraint requires declaring pick-ups using PICKUPS keyword, their locations are as numbered in the data list in zgoubi.res.
$I C=3.1$: Absolute value of the difference between local and initial J-coordinate of particle I (convenient $e . g$. for closed orbit search).
$I C=3.2$: Absolute value of the sum of the local and initial J-coordinate of particle number I.
$I C=3.4$: Absolute value of the difference between local J-coordinates of particles respectively I and K.
$I C=3.5$: Difference between local J-coordinates of particles respectively I and K, relative to J-coordinate of particle K.
$I C=4$: The coefficients $\sigma_{11}\left(\sigma_{33}\right)=$ horizontal (vertical) beta values and $\sigma_{22}\left(\sigma_{44}\right)=$ horizontal (vertical) derivatives ($\alpha=-\beta^{\prime} / 2$) are derived from an ellipse match of the current particle population (as generated for instance using MCOBJET, KOBJ=3).
The fitting of the $\left[\sigma_{i j}\right]$ coefficients supposes the tracking of a relevant population of particles within an appropriate emittance.
$I C=5$: The constraint value is the ratio of particles (over IMAX). Three cases possible :
$I=-1$, ratio of particles still on the run.
$I=1,2,3$, maximization of the number of particles encompassed within a given I-type (for respectively Y, Z, D) phase-space emittance value. Then, $N P=1$, followed by the emittance value. The center and shape of the ellipse are determined by a matching to the position and shape of the particle distribution.
$I=4,5,6$, same as previous case, except for the ellipse, taken to be the rms matched ellipse to the distribution. Thus $N P=0$.
$I C=7$ series : The quantity to be constrained is taken inside the optical element with number $I R$ (see page 65).
$I C=7.1$: Minimum or maximum value as reached by coordinate J of particle number I.
$I C=7.2$: Maximum minus minimum of the value of coordinate J of particle number I.
$I C=7.3$: Maximum plus minimum of the value of coordinate J of particle number I.
$I C=7.6$: Minimum $(P R=1)$ or maximum $(P R=2)$ value as reached by the X, Y or Z component of the field along the trajectory of particle number I.
$I C=7.7$: Maximum minus minimum of the values taken by the X, Y or Z component of the field along the trajectory of particle number I.
$I C=7.8$: Maximum plus minimum of the values taken by the X, Y or Z component of the field along the trajectory of particle number I.
$I C=7.9$: Integral of the X, Y or Z component of the field as experienced by particle number I, across the optical element.
$I C=10$: If $1 \leq I \leq I M A X$ then the constrint is the value of coordinate type J ($J=1,3$ for respectively S_{X}, S_{Y}, S_{Z}) of particle number I.
$I C=10.1$: Difference between final and initial J-spin coordinate of particle I (convenient e.g. for \vec{n}_{0} spin vector search).
$I C=10.2$: Constraint on spin rotation angle for particles of momentum group \#K. This requires $O B-$ $J E T / K O B J=2$, with groups of 3 particles, all particles in a group have the same momentum, and their spins in direction, respectively, X, Y, Z.
$I C=10.3$: Constraint on spin rotation axis for particles of momentum group \#K. This requires $O B-$ $J E T / K O B J=2$, with groups of 3 particles, all particles in a group have the same momentum, and their spins in direction, respectively, X, Y, Z.

OBJECT DEFINITION

Depending on the type of constraint (see table p. 233), constraint calculations are performed either from transport coefficient calculation and in such case require OBJET with either $K O B J=5$ or $K O B J=6$, or from particle distributions and in this case need object definition using for instance OBJET with $K O B J=8$, $M C O B J E T$ with $K O B J=3$.

THE FITTING METHODS

The FIT procedure was drawn from the matrix transport code BETA [31]. It is a direct sequential minimization of the quadratic sum of all errors (i.e., differences between desired and actual values for the NC constraints), each normalized by its specified weight W (the smaller W, the stronger the constraint).
The step sizes for the variation of the physical parameters depend on their initial values, and cannot be accessed by the user. At each iteration, the optimum value of the step size, as well as the optimum direction of variation, is determined for each one of the $N V$ variables. Then follows an iterative global variation of all $N V$ variables, until the minimization fails which results in a next iteration on the optimization of the step sizes.
The FIT2 procedure is based on the Nelder-Mead method, it has various specificities, details can be found in Ref. [32].
The optimization process may be stopped by means of a penalty value, or a maximum number of iterations on the step size or on the call to the function.

COMBINING FIT[2] AND REBELOTE

FIT[2] may be followed by the keyword REBELOTE. This allows for instance executing again the fitting procedure, following a change, by REBELOTE, in the value of some parameter(s) in zgoubi.dat data list. More on that can be found under REBELOTE, Sec. 5.3.12, page 78.
An example is given page 234.
Conversely, REBELOTE may be followed by the keyword FIT[2]. This allows for instance optimization of constraints that require multi-turn tracking (e.g., optimized tune-jump quadrupole settings for beam acceleration through depolarizing resonances).

FIT[2] OPTIONS

FIT and FIT2 accept various options, as follows.

- 'nofinal' option : a request to avoid a final run that would normally follow the completion of the fit, allowing for the variable values as just determined by FIT[2]. By default, i.e., if 'nofinal' does not appear in the FIT[2] data list, then that final run does occur.
- 'save' [, FileName] option : a request for the variable values as resulting from FIT[2] to be saved, by default in zgoubi.FITVALS.out, or in FileName file if the latter is specified following the 'save' instruction.
- Penalty : value of the penalty to be reached, following what the FIT[2] procedure will be considered completed, and thus stopped.
- ITER : maximum allowed number of "calls to the function" (namely, (recursive) calls to zgoubi). Once that number is reached, FIT[2] is stopped, regardless of a possible "penalty" value.
An example using all five options, "nofinal", "save [FileName]", "penalty" and "ITER", is given in page 235.

5.3.5 GASCAT : Gas scattering

Modification of particle momentum and velocity vector, performed at each integration step, under the effect of scattering by residual gas.

Installation is to be completed.

5.3.6 GETFITVAL : Get values of variables as saved from former FIT[2] run

This keyword allows reading, from a file whose name needs be specified, parameter values to be assigned to optical elements in zgoubi.dat.

That file is expected to contain a copy-paste of the data under the FIT[2] procedure as displayed in zgoubi.res, normally under the form

StAtus of variables				(Iteration \#		95)						
LMNT	VAR	PARAM	1 MIN	IMUM	INITIAL	FINAL	MAXIMUM			JAME		BL2
145	1	4		000E+03	762.	761.9484791	$3.000 \mathrm{E}+03$	1.2	4E-05	MULTIPOL		DHCB02
182	2	4		000E+03	-231.	-230.9846875	$1.000 \mathrm{E}+03$	4.1	2E-06	MULTIPOL		DHCB08
146	3	4		000E+03	-320.	-319.8554171	$1.000 \mathrm{E}+03$	4.1	2E-06	MULTIPOL		DVCB02
183	4	4		000E+03	528.	527.7249064	$1.000 \mathrm{E}+03$	4.1	2E-06	MULTIPOL		DVCB08
615	5	4		000E+03	308.	307.6860565	$3.000 \mathrm{E}+03$	1.2	4E-05	MULTIPOL		DHCF02
651	6	4		000E+03	-114.	-113.8490362	$1.000 \mathrm{E}+03$	4.1	2E-06	MULTIPOL		DHCF08
616	7	4		000E+03	-78.9	-78.88730937	$1.000 \mathrm{E}+03$	4.1	2E-06	MULTIPOL		DVCF 02
652	8	4	-1.	000E+03	212.	211.8789183	$1.000 \mathrm{E}+03$	4.1	2E-06	MULTIPOL		DVCF08
\# Statu	US OF	CONSTRAINTS										
\# TYPE	I	J LM	LMNT\#	DES	IRED	WEIGHT	REACHED			2	Parameter(s)	
3	1	21	127	0.0000	000E+00	$1.0000 \mathrm{E}+00$	$1.0068088 \mathrm{E}-08$		6.03	35E-01 *	0	
3	1	31	127	0.0000	000E+00	$1.0000 \mathrm{E}+00$	$7.0101405 \mathrm{E}-09$		2.92	50E-01	0	
\# 3	1	41	127	0.0000	000E+00	$1.0000 \mathrm{E}+00$	$2.9184383 \mathrm{E}-10$		5.06	6E-04	0	
3	1	51	127	0.0000	000E+00	$1.0000 \mathrm{E}+00$	$3.1142381 \mathrm{E}-10$		5.77	7E-04 *	0	
\# 3	1	24	436	0.0000	000E+00	$1.0000 \mathrm{E}+00$	$3.8438378 \mathrm{E}-09$		8.79	4E-02 *	0	
\# 3	1	$3 \quad 4$	436	0.0000	00E+00	$1.0000 \mathrm{E}+00$	$1.5773011 \mathrm{E}-09$		1.48	$8 \mathrm{E}-02$	0	
\# 3	1	44	436	0.0000	000E+00	$1.0000 \mathrm{E}+00$	$2.2081272 \mathrm{E}-10$		2.90	$2 \mathrm{E}-04$ *		
\# 3	1	54	436	0.0000	00E+00	$1.0000 \mathrm{E}+00$	$5.7930552 \mathrm{E}-11$		1.99	5E-05 *	0 :	
\# Fun	ctio	on cal	alled	1859	times							
\# Xi2		$1.68006 \mathrm{E}-16$ Busy										

A '\#' at the beginning of a line means it is commented, thus it will not be taken into account. However a copy-paste from zgoubi.res (which is the case in the present example) would not not need any commenting.
Since some of the FIT[2] variables may belong in [MC]OBJET, GETFITVAL may appear upstream of [MC]OBJET in zgoubi.dat, to allow updating the latter.
Once completed, FIT[2] will be followed by a final run of zgoubi.dat with variable values updated as resulting from the fit. This can be inhibited by indicating 'nofinal' option in FIT[2] (see page 68). For that final run GETFITVAL will be inhibited so avoid overridding the updated variable values.

5.3.7 MCDESINT : Monte-Carlo simulation of in-flight decay[34]

When MCDESINT is met in a structure (normally, after OBJET or after CIBLE), in-flight decay simulation starts. It must be preceded by PARTICUL for the definition of mass M_{1} and COM lifetime τ_{1} of the parent particle.
The two-body decay simulated is

$$
1 \longrightarrow 2+3
$$

The decay is isotropic in the center of mass. 1 is the incoming particle, with mass M_{1}, momentum $p_{1}=$ $\gamma_{1} M_{1} \beta_{1} c$ (relative momentum $D_{1}=\frac{p_{1}}{q} \frac{1}{B O R O}$ with $B O R O=$ reference rigidity, defined in [MC]OBJET). 2 and 3 are decay products with respective masses and momenta M_{2}, M_{3} and $p_{2}=\gamma_{2} M_{2} \beta_{2} c, p_{3}=\gamma_{3} M_{3} \beta_{3} c$. The average distance s_{1} at which a particle will decay is related to its center of mass lifetime τ_{1} by

$$
s_{1}=c \tau_{1} \sqrt{\gamma_{1}^{2}-1}
$$

The actual path length s up to the decay point is calculated, for each one of the particles defined by [MC]OBJET and prior t ray-tracing, from a random number $0<R_{1} \leq 1$ by using the exponential decay formula

$$
s=-s_{1} \ln R_{1}
$$

After decay of the parent particle 1 , particle 2 will be ray-traced with assumed positive charge, while particle 3 is discarded. Its scattering angles in the center of mass θ^{*} and ϕ are generated from two other random numbers $0<R_{2} \leq 1$ and $0<R_{3} \leq 1$ by

$$
\begin{aligned}
\theta^{*} & =\operatorname{acos}\left(1-2 R_{2}\right) & & \left(0<\theta^{*} \leq \pi\right) \\
\phi & =2 \pi R_{3} & & (0<\phi \leq 2 \pi)
\end{aligned}
$$

ϕ is a relativistic invariant, and θ in the laboratory frame (Fig. 8) is given by

$$
\tan \theta=\frac{1}{\gamma_{1}} \frac{\sin \theta^{*}}{\frac{\beta_{1}}{\beta_{2}^{*}}+\cos \theta^{*}}
$$

β_{2}^{*} and momentum p_{2} are given by

$$
\begin{aligned}
\gamma_{2}^{*} & =\frac{M_{1}^{2}+M_{2}^{2}-M_{3}^{2}}{2 M_{1} M_{2}} \\
\gamma_{2} & =\gamma_{1} \gamma_{2}^{*}\left(1+\beta_{1} \beta_{2}^{*} \cos \theta^{*}\right) \\
\beta_{2} & =\left(1-\frac{1}{\gamma_{2}^{2}}\right)^{1 / 2} \\
p_{2} & =M_{2} \sqrt{\gamma_{2}^{2}-1}
\end{aligned}
$$

Finally, θ and ϕ are transformed into the angles T_{2} and P_{2} in the zgoubi frame, and the relative momentum takes the value $D_{2}=\frac{p_{2}}{q} \frac{1}{B O R O}$ (where BORO is the reference rigidity, see OBJET), while the starting position of M_{2} is the very location of the parent particle decay, $\left(Y_{1}, Z_{1}, s_{1}\right)$.

The decay simulation by zgoubi satisfies the following procedures. In optical elements and field maps, after each integration step XPAS, the actual path length of the particle, $F(6, I)$, is compared to its limit path length s. If s is passed, then the particle is considered as having decayed at $F(6, I)-\frac{X P A S}{2}$, at a position obtained by a linear translation from the position at $F(6, I)$. Presumably, the smaller XPAS, the smaller the error on position and angles at the decay point.

Figure 8: At position $M\left(X_{1}, Y_{1}, Z_{1}\right)$, particle 1 decays into 2 and 3 ; zgoubi then proceeds with the computation of the trajectory of 2 , while 3 is discarded. θ and ϕ are the scattering angles of particle 2 relative to the direction of the incoming particle 1 ; they transform to T_{2} and P_{2} in zgoubi frame.

In ESL and CHANGREF, $F(6, I)$ is compared to s at the end of the element. If the decay occurs inside the element, the particle is considered as having decayed at its actual limit path length s, thus its coordinates at s are recalculated by translation.

The limit path length of all particles ($I=1, I M A X$) is stored in the array $\operatorname{FDES}(6, I)$. For further statistical purposes (e.g., use of HISTO) the daughter particle 2 is tagged with an ${ }^{\prime} S^{\prime}$ standing for "secondary". When a particle decays, its coordinates D, Y, T, Z, P, s, time at the decay point are stored in $\operatorname{FDES}(J, I)$, $J=1,7$.

A note on negative drifts :
The use of negative drifts with MCDESINT is allowed and correct. For instance, negative drifts may occur in a structure for some of the particles when using CHANGREF (due to the Z-axis rotation or a negative XCE), or when using DRIFT with $X L<0$. Provision has been made to take it into account during the MCDESINT procedure, as follows.
If, due to a negative drift, a secondary particle reaches back the decay location of its parent particle, then the parent particle is "resurrected " with its original coordinates at that location, the secondary particle is discarded, and ray-tracing resumes in a regular way for the parent particle which is again allowed to decay, after the same path length. This procedure is made possible by prior storage of the coordinates of the parent particles (in array $\operatorname{FDES}(J, I)$) each time a decay occurs.
Negative steps ($X P A S<0$) in optical elements are not compatible with MCDESINT.

5.3.8 OPTICS : Write out optical functions. Log to zgoubi.OPTICS.out

OPTICS normally appears next to object definition, it normally works in conjunction with element label(s). OPTICS causes the transport and write out, in zgoubi.res, of the 6×6 beam matrix, following options KOPT and 'label', below.

IF $K O P T=0$: Off
IF $K O P T=1$: Will transport the optical functions with initial values as specified in $O B J E T$, option $K O B J=5.1$. Note that OPTICS assumes the first particle of the set of 11 as defined by OBJET, to be the reference particle for computation of the transport coefficients.
Note : In the case of a periodic structure, the initial coordinate values in OBJET[KOBJ=5.1] may be the periodic ones (as obtained, for instance, from a first run using MATRIX[IFOC=11]). Using TWISS keyword instead may be considered in that case.

A second argument, 'label', allows

- if label = all : printing out, into zgoubi.res, after all keywords of the zgoubi.dat structure,
- otherwise, printing out at all keyword featuring $L A B E L \equiv$ label as a first label (see section 5.6.6, page 180 , regarding the labelling of keywords).

PRINT : An optional third argument, $I M P=1$, or equivalently the command 'PRINT', will cause saving of the transported optical functions into file zgoubi.OPTICS.out.

About the source code :

The program beamat ensures the transport of the beam matrix along the zgoubi.dat sequence. beamat is called by opticc, itself called after each optical element, in the program zgoubi.
The starting beam matrix value is in the array FI, initialized by OBJET[KOBJ=5.1], program obj5. The array FO contains the running beam matrix.
The program beaimp prints to zgoubi.res, whereas opt imp prints to zgoubi.OPTICS.out. Both are called from opticc.

5.3.9 OPTIONS : Global or special options

OPTIONS allows on/off switching of various options.
Available, for now :

- "WRITE ON or OFF"

Role : inhibit (most of) write statements to zgoubi.res.
Interest : "WRITE OFF" may allow substantial savings on CPU time. "WRITE ON" sets back to normal (the 'normal' state of write outs may depend on the status of other commands, such as REBELOTE, on-going FIT[2], etc.).

- "CONSTY ON or OFF"

Role : force to constant Y and Z coordinates during stepwise integration.
This allows for instance checking fields, or fabricating field maps from zgoubi's analytical models of optical elements, as follows.
Concurrent use of with $I L=1$, 2, or 7 (cf. Sec. 5.6.5, p. 179) will allow logging \vec{B} and/or \vec{E} field(s) (and their derivatives) experienced across optical elements, in zgoubi.res, zgoubi.plt or zgoubi.impdev.out respectively.
As a consequence, forcing Y and Z to constant values, using "CONSTY ON", allows checking of fields (and derivatives) at constant Y and Z, as determined by OBJET, across (individual or short series of) optical elements. This may be helpful when setting up input data in zgoubi. It can be for instance of great help in case of complex geometrical and field data inputs, as in DIPOLES, FFAG.
Initial coordinates are set in a very regular manner using OBJET. The Y coordinate will stand for the radius value in the case of optical elements defined in polar coordinates (e.g., DIPOLES, polar field maps, etc.).

5.3.10 ORDRE : Taylor expansions order

The position \vec{R} and velocity \vec{u} of a particle are obtained from Taylor expansions as described in eq. (1.2.4). By default, these expansions are up to the fifth order derivative of \vec{u},

$$
\begin{aligned}
& \vec{R}_{1} \approx \vec{R}_{0}+\vec{u} \Delta s+\ldots+\vec{u}^{(5)} \frac{\Delta s^{6}}{6!} \\
& \vec{u}_{1} \approx \vec{u}+\vec{u}^{\prime} \Delta s+\ldots+\vec{u}^{(5)} \frac{\Delta s^{5}}{5!}
\end{aligned}
$$

which corresponds to fourth order derivatives of fields \vec{B}, eq. (1.2.8). and of \vec{E}, eq. (1.2.13).
However, third or higher order derivatives of fields may be zero in some optical elements, for instance in a sharp edge quadrupole. Also, in several elements, no more than first and second order field derivatives are implemented in the code. One may also wish to save on computation time by limiting the time-consuming calculation of lengthy (while possibly ineffective in terms of accuracy) Taylor expansions.

In that spirit, the purpose of $O R D R E$, option $I O=2-5$, is to allow for expansions to the $\vec{u}^{(n)}$ term in eq. 1.2.4. Default functioning is $I O=4$, stated in FORTRAN file block.f.

Note the following :
As concerns the optical elements

DECAPOLE, DODECAPO, EBMULT, ELMULT, MULTIPOL, OCTUPOLE, QUADRUPO, SEXTUPOL

field derivatives (see eq. 1.2 .10 p. 21, eq. 1.2 .15 p .23 ,) have been installed in the code according to $\vec{u}^{(5)}$ Taylor development order ; it may not be as complete for other optical elements. In particular, in electric optical elements field derivatives (eq. 1.2.15) are usually provided to no more than second order, which justifies saving on computing time by means of ORDRE, so to avoid pushing Taylor expansions as high as $\vec{u}^{(5)}$.

NOTE : see also the option IORDRE in field map declarations (DIPOLE-M, TOSCA, etc.).

5.3.11 PARTICUL : Particle characteristics

Since zgoubi works using the rigidity, (BORO, as declared in [MC]OBJET), PARTICUL only needs be introduced (normally, following [MC]OBJET in the input data file zgoubi.dat) when the definition of some characteristics of the particles (mass, charge, gyromagnetic factor, life-time in the center of mass) is needed, as is the case when using the following procedures :

CAVITE	: mass, charge
MCDESINT	: mass, COM life-time
SPNTRK	: mass, gyromagnetic factor
SRLOSS	: mass, charge
SYNRAD	: mass, charge
Electric and Electro-Magnetic elements	: mass, charge

The declaration of PARTICUL must precede these keywords.
If PARTICUL is omitted, which is in general the case when ray-tracing ions in purely magnetic optical assemblies, then zgoubi, since it only knows the rigidity, will skip the computation of such quantities as time of flight.

5.3.12 REBELOTE : 'Do it again'

When REBELOTE is encountered in the input data file, the code execution jumps,

- either back to the beginning of the data file - the default behavior,
- or, if option $K=99.1$ or $K=99.2$, back to a particular LABEL.

Then NPASS-1 passes (from LABEL to REBELOTE) follow.
As to the last pass, number NPASS +1 , there are two possibilities :

- either it also encompasses the whole LABEL to REBELOTE range,
- or, upon request (option $K=99.2$), execution may exit that final pass upstream of REBELOTE, at a location defined by a second dedicated $L A B E L$ placed between the first above mentioned $L A B E L$, and REBELOTE. In both cases, following the end of this "multiple-pass" procedure, the execution continues from the keyword which follows REBELOTE, until 'END' is encountered.

The two functionalities of REBELOTE are the following :

- REBELOTE can be used for Monte Carlo simulations when more than $\operatorname{Max}(I M A X)$ particles are to be tracked. Thus, when the following random procedures are used : MCOBJET, OBJETA, MCDESINT, $\operatorname{SPNTRK}(K S O=5)$, their random seeds are not reset and independent statistics will add up.
This includes Monte Carlo simulations, in beam lines : normally $K=0$. NPASS runs through the same structure, from MCOBJET to REBELOTE will follow, resulting in the calculation of $(1+$ NPASS $) * I M A X$ trajectories, with as many random initial coordinates.
- REBELOTE can be used for multi-turn ray-tracing in circular machines circular machines : normally $K=99$ in that case. NPASS turns in the same structure will follow, resulting in the tracking of IMAX particles over $1+$ NPASS turns. For the simulation of pulsed power supplies, synchrotron motion, and other Q-jump manipulation, see SCALING.
For instance, using option described $K=99.2$ above, a full "injection line + ring + extraction line" installation can be simulated - kicker firing and other magnet ramping can be simulated using SCALING.
Using the double-LABEL method discussed above with option $K=99.2$, it is possible to encompass the ring between an injection line section (namely, with the element sequence of the latter extending from OBJET to the first $L A B E L$), and an extraction line (its description will then follow REBELOTE), whereas the ring description extends from to the first $L A B E L$ to REBELOTE, with possible extraction, at the last pass, at the location of the second $L A B E L$, located between the first one and REBELOTE,

In addition to what precedes, REBELOTE can change the value of arbitrary parameters in zgoubi.dat data list, using the forth argument IOPT=1 (see page 270). NPRM tells the number of parameters to be changed. A series of NPRM lists of values, one list per parameter to be changed and each list with NRBLT data, tells the values to be taken by each one of these parameters, over the NRBLT passes of the REBELOTE process.

Output prints over NPASS+1 passes might result in a prohibitively big zgoubi.res file. They may be switched on/off by means of the option $K W R I T=i . j$, with $i=1 / 0$ respectively. The j flag commands printing pass number and some other information onto the video output, every 10^{j-1} turns if $j>0$; output is switched off if $j=0$.

REBELOTE also provides information : statistical calculations and related data regarding particle decay (MCDESINT), spin tracking (SPNTRK), stopped particles (CHAMBR, COLLIMA), etc.

COMBINING REBELOTE AND FIT[2]

The keyword REBELOTE can follow FIT[2]. This allows executing again the fit procedure, after changing the value of some parameter(s) in zgoubi.dat using REBELOTE with option IOPT=1. That's the interest of the game : REBELOTE changes that (these) parameter(s), and then sends the zgoubi execution pointer back to the top of zgoubi.dat for a new FIT[2] run.
Conversely, REBELOTE may be followed by the keyword FIT[2]. This allows for instance optimization of constraints that require multi-turn tracking (e.g., optimized tune-jump quadrupole settings for beam acceleration through depolarizing resonances).

EXAMPLES

An example of the use of the REBELOTE procedure is given page 271.
An example of FIT preceding REBELOTE is given page 234.

RECOVERING FROM A CRASH

When accelerating a bunch, REBELOTE is used to ensure the multi-turn process. Now, if the job is stopped - due to computer crash or else - it is possible to resume the tracking from the latest records (in [b_]zboubi.fai storage file), for instance using OBJET, KOBJ= 3. CAVITE and SCALING aspects of the data file modifications necessary to ensure the recovery, in the case of pulsed magnets, are discussed respectively in the SCALING section, pp. 80, 82, an example of job resuming is given page 255.

5.3.13 RESET : Reset counters and flags

Resets counters involved in CHAMBR, COLLIMA, HISTO and INTEG procedures.
Switches off CHAMBR, MCDESINT, SCALING and SPNTRK options.

5.3.14 SCALING : Power supplies and R.F. function generator

SCALING acts as a function generator dedicated to varying fields in optical elements, potentials in electrostatic devices, possibly in correlation with RF parameters in CAVITE. It is normally intended to be declared right after the object definition.

Used in conjunction with REBELOTE for the simulation of multi-turn tracking, SCALING allows to change fields turn-by-turn in an arbitrary, user defined manner during an acceleration multi-turn. Fields (for instance main magnets') can as well be forced to follow a rigidity change caused by CAVITE, this can be obtained by simply using $N T=-1$ as the first argument in SCALING.

The latter (i.e., fields being correlated to CAVITE) holds in general, allowing as well the simulation of a recirculating linac (thus optical elements between cavities are scaled, following the rigidity increase), or multiple RF stations in a ring.

SCALING acts on families of elements, a family being designated by its name that coincides with the keyword of the corresponding element. For instance, declaring MULTIPOL as to be scaled will result in the same timing law being applied to all MULTIPOLs in zgoubi.dat optical structure data file. Subsets can be selected by labeling keywords in the data file (section 5.6.6, page 180) and adding the corresponding LABEL(s) in the SCALING declarations (9 LABELs maximum - this can be changed in MXFS.H, parameter MLF). The family name of concern, as well as the scaling function for that family, are given as input data to the keyword SCALING. There is an upper limit to the number $N F$ of families that can be declared as subject to a scaling law (this can be changed in the FORTRAN include file MXFS . H, parameter MXF).

A scaling law can be comprised of up to $N T$ successive timings. A linear interpolation will determine the value of the scaling factor between successive timings.

If a family appears more than once in the SCALING list (i.e., identical keyword and label list), the following will occur :

- if each instance addresses a different parameter in the optical elements concenred, both scaling rules are applied,
- if two (or more) instance address the same parameter in the optical elements, the last instance will prevail.
If a family addressed is a subset of a previously declared one, the SCALING rule will override the previous one, for that subset only.

An example of data formatting for the simulation of an acceleration cycle in a circular machine is given in the following.

SCALING		
15		Active. $N F=5$ families of elements are concerned, as listed below :
QUADRUPO QFA QFB		- QUADRUPO keywords labeled 'QFA' and Quadrupoles labeled 'QFB'
2		$N T=2$ timings
18131.E-3	24176.E-3	The field increases (linearly) from 18131E-3* B_{0} to $24176 \mathrm{E}-3 * B_{0}$
1	6379	from turn 1 to turn 6379
MULTIPOL		- General rule. Precedes labeled cases if any.
2		$N T=2$ timings
18131.E-3	24176.E-3	Fields increase from 18131E-3*Bi to $24176 \mathrm{E}-3 * B_{i}(\forall i=1,10$ poles)
1	6379	from turn 1 to turn 6379
MULTIPOL QDA QDB		- MULTIPOL keywords labeled 'QDA' and Multipoles labeled 'QDB'
2		$N T=2$ timings
18131.E-3	24176.E-3	Fields increase from 18131E-3* B_{i} to $24176 \mathrm{E}-3 * B_{i}(\forall i=1,10$ poles)
1	6379	from turn 1 to turn 6379
BEND		- All BEND keywords, regardless of any LABEL
2		$N T=2$ timings
18131.E-3	24176.E-3	As above
1	6379	
CAVITE		- Accelerating cavity
3		$N T=3$ timings
11.22	1.33352	The synchronous rigidity $(B \rho)_{s}$ increases,
1200	6379	from $(B \rho)_{s_{o}}$ to $1.22 *(B \rho)_{s_{o}}$ from turn 1 to 1200 , and

The timing is in unit of turns. In this example, TIMING $=1$ to 6379 (turns). Therefore, at turn number N, B and B_{i} are updated in the following way. Let $\operatorname{SCALE}(\operatorname{TIMING}=N)$ be the updating scale factor

$$
\operatorname{SCALE}(N)=18.131 \frac{24.176-18.131}{1+6379-1}(N-1)
$$

and then

$$
\begin{aligned}
B(N) & =\operatorname{SCALE}(N) B_{0} \\
B_{i}(N) & =\operatorname{SCALE}(N) B_{i 0}
\end{aligned}
$$

The RF frequency is computed using

$$
f_{R F}=\frac{h c}{\mathcal{L}} \frac{q(B \rho)_{s}}{\left(q^{2}(B \rho)_{s}^{2}+\left(M c^{2}\right)^{2}\right)^{1 / 2}}
$$

where the rigidity is updated in the following way. Let $(B \rho)_{s_{o}}$ be the initial rigidity (namely, $(B \rho)_{s_{o}}=$ $B O R O$ as defined in the keyword OBJET for instance). Then, at turn number N,

$$
\begin{aligned}
& \text { if } 1 \leq N \leq 1200 \text { then, } \operatorname{SCALE}(N)=1+\frac{1.22-1}{1+1200-1}(N-1) \\
& \text { if } 1200 \leq N \leq 6379 \text { then, } \operatorname{SCALE}(N)=1.22+\frac{1.33352-1.22}{1+6379-1200}(N-1200)
\end{aligned}
$$

and then,

$$
(B \rho)_{s}(N)=\operatorname{SCALE}(N) \cdot(B \rho)_{s_{o}}
$$

from which value the calculations of $f_{R F}(N)$ follow.
$N T$ can take negative values, then acting as an option switch (rather than giving number of timings), as follows :

- $N T=-1$: this is convenient for synchrotron acceleration. In this case the next two lines both contain a single data (as for $N T=1$), respectively the starting scaling factor value, and 1 . The current field scaling factor will then be updated from the energy kick by the cavity if for instance CAVITE/IOPT=2 is used, namely,

$$
\operatorname{SCALE}(N)=\operatorname{SCALE}(N-1) * \frac{B \rho(N)}{B \rho(N-1)}
$$

Note that in the case of the previous example (assuming, though, that the ramping of the magnetic fields strictly follows the CAVITE kick, which was not strictly the case), the SCALING argument list can be simplified, including by suppressing 'CAVITE' from the list, as follows :

```
SCALING - Scaling
1 Active. NF=3 families of elements are concerned, as listed below
QUADRUPO QFA QFB - Quadrupoles labeled 'QFA' and Quadrupoles labeled 'QFB'
-1
18131.E-3
1
MULTIPOL QDA QDB
-1
18131.E-3
1
BEND - All BENDs (regardless of any LABEL)
-1
18131.E-3
1
```

- $N T=-2$: this is convenient for reading an RF law for CAVITE from an external data file, including usage for acceleration in fixed field accelerators.
- $N T=1.10$: allows taking the scaling law from an external data file, as in the following example :

MULTIPOL COH1

1.10
./Csnk3D/bump_centered.scal 12

File name
Column numbers in the file : col. 2 gives the scaling factor at rigidity given by col. 1 .

Notes :

1. In causing, via CAVITE, a change of the synchronous rigidity, SCALING causes a change of the reference rigidity, following (see CAVITE)

$$
B \rho_{r e f}=B O R O \longrightarrow B \rho_{r e f}=B O R O+\delta B \rho_{s}
$$

2. It may happen that some optical elements won't scale, for source code development or updating reasons. This should be paid attention to by preliminary simulation tests.

RECOVERING FROM A CRASH

When accelerating a bunch in a pulsed ring, SCALING is used to ramp magnetic fields, so following the rigidity increase by CAVITE. CAVITE may or may not be part of the SCALING argument list, see the two previous examples. Now, if the job is stopped - due to computer crash or else - it is possible to resume the tracking from the latest records (in [b_]zboubi.fai storage file), for instance using OBJET, KOBJ=3. In the presence of acceleration using CAVITE however, since there is no reference particle in zgoubi, CAVITE needs be told the reference rigidity at the corresponding time/turn where tracking is resumed. This is done using SCALING, see example page 255 . This has the effect of updating the refrence rigidity $B \rho_{\text {ref }}$ to its correct value (see Note 1 above), the one it had when the job stopped.

5.3.15 SPACECHARG : Space charge

The keyword SPACECHARG enables (or disables) the calculation of space charge effects. It must be preceded by PARTICUL for definition of mass and charge values, as they enter in the definition of space charge parameters.

SPACECHARG is supposed to appear a first time at the location where space charge effects should start being taken into account, with the first data $L M N T$ set to 'all' or a keyword.

SPACECHARG is supposed to appear a second time at the location where calculations should stop, with LMNT set to 'none'. It results in summary outputs in zgoubi.res.

Occurence of PRINT amongst SPACECHARG arguments results in storage of computational data and other relevant informations in zgoubi.SPACECHARG.out, as space charge computation proceeds.

5.3.16 SPNTRK : Spin tracking

The keyword SPNTRK allows switching spin tracking on (index $K S O=1$) or off ($K S O=0$), or resuming (index $K S O=-1$, following an occurence $K S O=0$). It also permits the attribution of an initial spin to each one of the IMAX particles of the beam, following a distribution that depends on the option index KSO. It must be preceded by PARTICUL for the definition of mass and gyromagnetic factor.
KSO =1 (respectively $\mathbf{2 , 3}$) : the IMAX particles defined with [MC]OBJET are given a longitudinal ($1,0,0$) spin component (respectively transverse horizontal ($0,1,0$), vertical ($0,0,1$)).

KSO = $\mathbf{4}$: initial spin components are entered explicitly for each one of the IMAX particles of the beam.
KSO = 4.1 : three initial spin components S_{X}, S_{Y}, S_{Z} are entered explicitly just once, they are then assigned to each one of the IMAX particles of the beam.
KSO = 4.2 : under development. Read spin components from a file, file name has to be provided. (that file at present can be zgoubi.res : KSO=4.2 looks for key "(deg) (deg)" that appears at start of the spin coordinates list under the keyword SPNPRT).

KSO = 5: random generation of $I M A X$ initial spin conditions as described in Fig. 9. Given a mean polarization axis (\mathbf{S}) defined by its angles T_{0} and P_{0}, and a cone of angle A with respect to this axis, the IMAX spins are sorted randomly in a Gaussian distribution

$$
p(a)=\exp \left[-\frac{(A-a)^{2}}{2 \delta A^{2}}\right] / \delta A \sqrt{2 \pi}
$$

and within a cylindrical uniform distribution around the (S) axis. Examples of simple distributions available by this mean are given in Fig. 10.

Figure 9: Spin distribution as obtained with option $K S O=5$.
The spins are distributed within an annular strip δA (standard deviation) at an angle A with respect to the axis of mean polarization (\vec{S}) defined by T_{0} and P_{0}.

Figure 10: Examples of the use of $K S O=5$.
A : Gaussian distribution around a mean vertical polarization axis, obtained with $T_{0}=$ arbitrary, $P_{0}=\pi / 2, A=0$ and $\delta A \neq 0$.
B : Isotropic distribution in the median plane, obtained with $P_{0}= \pm \pi / 2$, $A=\pi / 2$, and $\delta A=0$.

5.3.17 SRLOSS : Synchrotron radiation energy loss [19]

The keyword SRLOSS allows activating or stopping (option $K S R=1,0$ respectively) stepwise tracking of energy loss by stochastic emission of photons in magnetic fields, following the method described in section 3.1.

It can be chosen to allow radiation in the sole dipole fields, or in all types of fields regardless of their multipole composition. It can also be chosen to allow for the radiation induced transverse kick.

SRLOSS must be preceded by PARTICUL for defining mass and charge values as they enter in the definition of SR parameters.

Statistics on SR parameters are computed and updated while tracking, the results of which can be obtained by means of the keyword SRPRNT.

5.3.18 SYNRAD : Synchrotron radiation spectral-angular densities

The keyword SYNRAD enables (or disables) the calculation of synchrotron radiation (SR) electric field and spectral angular energy density. It must be preceded by PARTICUL for defining mass and charge values, as they enter in the definition of SR parameters.

SYNRAD is supposed to appear a first time at the location where SR should start being taken into account, with the first data $K S R$ set to 1 . It results in on-line storage of the electric field vector and other relevant quantities in zgoubi.sre, as step by step integration proceeds. The observer position $(X O, Y O, Z O)$ is specified next to $K S R$.

Data stored in zgoubi.sre :
($E L x, E L y, E L z$) : electric field vector $\overrightarrow{\mathcal{E}}$ (eq. 3.2.1)
$(b t x, b t y, b t z)=\vec{\beta}=\frac{1}{c} \times$ particle velocity
$(g x, g y, g z)=\frac{d \vec{\beta}}{d t}=$ particle acceleration (eq. 3.2.3)
$\Delta \tau=$ observer time increment (eq. 3.2.2)
$t^{\prime}=\tau-r\left(t^{\prime}\right) / c=$ retarded (particle) time
(rtx, rty, rtz) : $\vec{R}(t)$, particle to observer vector (eq. 3.2.4)
$(x, y, z)=$ particle coordinates
$\Delta s=$ step size in the magnet (fig. 2)
$N S=$ step number
$I=$ particle number
$\operatorname{LET}(I)=$ tagging letter
$\operatorname{IEX}(I)=$ stop flag (see section 5.6.11)
SYNRAD is supposed to appear a second time at the location where SR calculations should stop, with $K S R$ set to 2 . It results in the output of the angular energy density $\int_{\nu_{1}}^{\nu_{2}} \partial^{3} W / \partial \phi \partial \psi \partial \nu$ (eq. 3.2.11) as calculated from the Fourier transform of the electric field (eq. 3.2.11). The spectral range of interest and frequency sampling (ν_{1}, ν_{2}, N) are specified next to $K S R$.

5.3.19 SYSTEM : System call

The keyword SYSTEM allows one or a series of system calls. It can appear anywhere, an arbitrary number of times, in the zgoubi.dat data list. It is effective at the very location where it appears.

SYSTEM keyword is followed by the list of the desired system commands. That can be saving zgoubi output files, calling again zgoubi at the end of a run so allowing dependent consecutive jobs, etc.

Examples of the use of SYSTEM are given in pp. 234, 286.

5.4 Optical Elements and Related Numerical Procedures

AGSMM : AGS main magnet

The AGS main magnet is a combined function dipole with straight axis (lines of constant field are straight lines).
The field computation routines for AGSMM are the same as for MULTIPOL (details in section 1.3.7, page 27), however AGSMM has the following four particularities :

- There are only three multipole components present in AGSMM : dipole, quadrupole and sextupole.
- The dipole field B_{0} is drawn from the reference rigidity, $B \rho_{r e f}$, and follows the latter so to preserve $\rho=B \rho_{\text {ref }} / B_{0}$ and the orbit deviation L / ρ. In particular,
- in the absence of acceleration, $B \rho_{\text {ref }} \equiv B O R O$, with $B O R O$ the quantity appearing in the object definition using [MC]OBJET,
- in presence of acceleration using CAVITE, $B \rho_{r e f}$ is changed to $B O R O \times D_{\text {ref }}$ at each passage in the cavity, with $D_{\text {ref }}$ the relative synchronous momentum increase, a quantity that zgoubi updates at cavity traversal.
- The field indices, quadrupole $K 1$ and sextupole $K 2$, are derived from the reference rigidity, $B \rho_{r e f}$, via momentum-dependent polynomials, taken from Ref. [35], and following in that the methods found in the MAD model of the AGS [36].
- The AGS main dipole has back-leg windings, used for instance for injection and extraction orbit bumps. The number of winding turns and the number of ampere-turns are part of the data in the input data list. The intensity in the windings is accounted for in the conversion from total ampere-turns in the magnet to momentum and then to magnetic field.

Note : A consequence of items 2 and 3 is that no field value is required in defining the AGS main magnets in the zgoubi.dat input data list.

AGSQUAD : AGS quadrupole

The AGS quadrupoles are regular quadrupoles. The simulation of AGSQUAD uses the same field modelling as MULTIPOL, section 1.3.7, page 27. However amperes are provided as input to AGSQUAD rather than fields, the reason being that some of the AGS quadrupoles have two superimposed coil circuits, with separate power supplies. It has been dealt with this particularity by allowing for an additional set of quadrupole data in AGSQUAD, compared to MULTIPOL.

The field in AGSQUAD is computed using transfer functions, from the specified ampere-turns in the coils to magnetic field at pole-tip, that account for the non-linearity of the magnetic permeability [36].

AIMANT : Generation of dipole mid-plane 2-D map, polar frame

The keyword AIMANT provides an automatic generation of a dipole median plane field map in polar coordinates.

A more recent and improved version will be found in DIPOLE-M. In addition, a similar modelling, that however skips the stage of an intermediate mid-plane field map, can be found in DIPOLE[S].
The extent of the map is defined by the following parameters, as shown in Figs. 11A and 11B,
$\begin{array}{ll}\text { AT } & : \text { total angular aperture } \\ R M & : \text { mean radius used for the positioning of field boundaries } \\ \text { RMIN, RMAX } & : \text { minimum and maximum radial boundaries of the map }\end{array}$
The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape and position of which are determined by the following parameters,

ACENT : arbitrary angle, used for the positioning of the EFBs.
$\omega \quad:$ azimuth of an EFB with respect to ACENT
$\theta \quad$: angle of a boundary with respect to its azimuth (wedge angle)
$R_{1}, R_{2} \quad$: radius of curvature of an EFB
$U_{1}, U_{2} \quad$: extent of the linear part of the EFB.
At any node of the map mesh, the value of the Z component of the field is calculated as

$$
\begin{equation*}
B_{Z}=\mathcal{F}(R, \theta) * B_{0} *\left(1+N *\left(\frac{R-R M}{R M}\right)+B *\left(\frac{R-R M}{R M}\right)^{2}+G *\left(\frac{R-R M}{R M}\right)^{3}\right) \tag{5.4.1}
\end{equation*}
$$

where N, B and G are respectively the first, second and third order field indices and $\mathcal{F}(R, \theta)$ is the fringe field coefficient (it determines the "flutter" in periodic structures).

Calculation of the Fringe Field Coefficient

With each EFB a realistic extent of the fringe field, λ, is associated (Figs. 11A and 11B), and a fringe field coefficient F is calculated. In the following λ stands for either λ_{E} (Entrance), λ_{S} (Exit) or λ_{L} (Lateral EFB).
If a node of the map mesh is at a distance of the EFB larger than λ, then $F=0$ outside the field map and $F=1$ inside. If a node is inside the fringe field zone, then F is calculated as follows.

Two options are available, for the calculation of F, depending on the value of ξ.
If $\xi \geq \mathbf{0}, F$ is a second order type fringe field (Fig. 12) given by

$$
\begin{gather*}
F=\frac{1}{2} \frac{(\lambda-s)^{2}}{\lambda^{2}-\xi^{2}} \quad \text { if } \xi \leq s \leq \lambda \tag{5.4.2}\\
F=1-\frac{1}{2} \frac{(\lambda-s)^{2}}{\lambda^{2}-\xi^{2}} \quad \text { if }-\lambda \leq s \leq-\xi \tag{5.4.3}
\end{gather*}
$$

where s is the distance to the EFB, and

$$
\begin{gather*}
F=\frac{1}{2}+\frac{s}{\lambda+\xi} \quad \text { if } 0 \leq s \leq \xi \tag{5.4.4}\\
F=\frac{1}{2}-\frac{s}{\lambda+\xi} \quad \text { if }-\xi \leq s \leq 0 \tag{5.4.5}
\end{gather*}
$$

This simple model allows a rapid calculation of the fringe field, but may lead to erratic behavior of the field when extrapolating out of the median plane, due to the discontinuity of $d^{2} B / d s^{2}$, at $s= \pm \xi$ and $s= \pm \lambda$. For better accuracy it is advised to use the next option.

Figure 11: A : Parameters used to define the field map and geometrical boundaries.
B : Parameters used to define the field map and fringe fields.

If $\xi=\mathbf{- 1}, F$ is an exponential type fringe field (Fig. 12) given by [37]

$$
\begin{equation*}
F=\frac{1}{1+\exp P(s)} \tag{5.4.6}
\end{equation*}
$$

where s is the distance to the EFB, and

$$
\begin{equation*}
P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+C_{3}\left(\frac{s}{\lambda}\right)^{3}+C_{4}\left(\frac{s}{\lambda}\right)^{4}+C_{5}\left(\frac{s}{\lambda}\right)^{5} \tag{5.4.7}
\end{equation*}
$$

The values of the coefficients C_{0} to C_{5} should be such that the derivatives of B_{Z} with respect to s be negligible at $s= \pm \lambda$, so as not to perturb the extrapolation of \vec{B} out of the median plane.
It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter shift. s is then changed to $s-$ shift in the previous equation. This allows small variations of the total magnetic length.
Let F_{E} (respectively F_{S}, F_{L}) be the fringe field coefficient attached to the entrance (respectively exit, lateral) EFB following the equations above. At any node of the map mesh, the resulting value of the fringe field coefficient (eq. 5.4.1) is (Fig. 13)

$$
\mathcal{F}(R, \theta)=F_{E} * F_{S} * F_{L}
$$

In particular, $F_{L} \equiv 1$ if no lateral EFB is requested.

The Mesh of the Field Map

The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial step is given by

$$
\delta R=\frac{R M A X-R M I N}{I R M A X-1}
$$

and the angular step by

$$
\delta \theta=\frac{A T}{I A M A X-1}
$$

where, RMIN and RMAX are the lower and upper radial limits of the field map, and $A T$ is its total angular aperture (Fig. 11B). IRMAX and IAMAX are the total number of nodes in the radial and angular directions.

Simulating Field Defects and Shims

Once the initial map is calculated, it is possible to perturb it by means of the parameter NBS, so as to simulate field defects or shims.

If NBS $=\mathbf{- 2}$, the map is globally modified by a perturbation proportional to $R-R_{0}$, where R_{0} is an arbitrary radius, with an amplitude $\Delta B_{Z} / B_{0}$, so that B_{Z} at the nodes of the mesh is replaced by

$$
B_{Z} *\left(1+\frac{\Delta B_{Z}}{B_{0}} \frac{R-R_{0}}{R M A X-R M I N}\right)
$$

If $\mathrm{NBS}=\mathbf{- 1}$, the perturbation is proportional to $\theta-\theta_{0}$, and B_{Z} is replaced by

$$
B_{Z} *\left(1+\frac{\Delta B_{Z}}{B_{0}} \frac{\theta-\theta_{0}}{A T}\right)
$$

Figure 12: Second order type fringe field (upper plot) and exponential type fringe field (lower plot).

Figure 13: Effective value of $\mathcal{F}(R, \theta)$ for overlapping fringe fields F_{1} and F_{2} centered at O_{1} and O_{2}.

If $\operatorname{NBS} \geq \mathbf{1}$, then $N B S$ shims are introduced at positions $\frac{R_{1}+R_{2}}{2}, \frac{\theta_{1}+\theta_{2}}{2}$ (Fig. 14) [38] The initial field map is modified by shims with second order profiles given by

$$
\theta=\left(\gamma+\frac{\alpha}{\mu}\right) \beta \frac{X^{2}}{\rho^{2}}
$$

where X is shown in Fig. 14, $\rho=\frac{R_{1}+R_{2}}{2}$ is the central radius, α and γ are the angular limits of the shim, β and μ are parameters.
At each shim, the value of B_{Z} at any node of the initial map is replaced by

$$
B_{Z} *\left(1+F \theta * F R * \frac{\Delta B_{Z}}{B_{0}}\right)
$$

where $F \theta=0$ or $F R=0$ outside the shim, and $F \theta=1$ and $F R=1$ inside.

Extrapolation Off Median Plane

The vertical field \vec{B} and its derivatives in the median plane are calculated by means of a second or fourth order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE $=2,25$ or 4 , see section 1.4.2). The transformation from polar to Cartesian coordinates is performed following eqs. (1.4.9 or 1.4.10). Extrapolation off median plane is then performed by means of Taylor expansions following the procedure described in section 1.3.3.

Figure 14: A second order profile shim. The shim is centered at $\frac{\left(R_{1}+R_{2}\right)}{2}$ and $\frac{\left(\theta_{1}+\theta_{2}\right)}{2}$.

AUTOREF : Transport beam into a new reference frame

AUTOREF positions the new reference frame following four different options (apart from $\mathbf{I}=\mathbf{0}$ which is just an "off" switch) :

If $\mathbf{I}=\mathbf{1}$, AUTOREF is equivalent to

$$
\text { CHANGREF }[X C E=0, Y C E=Y(1), A L E=T(1)]
$$

so that the new reference frame is at the exit of the last element, with particle 1 at the origin with its horizontal angle set to $T=0$.

If $\mathbf{I}=\mathbf{2}$, it is equivalent to

CHANGREF[XW,YW,T(1)]

so that the new reference frame is at the position $(X W, Y W)$ of the waist (calculated automatically in the same way as for IMAGE) of the three rays number 1, 4 and 5 (compatible for instance with OBJET, KOBJ $=5,6$, together with the use of MATRIX) while $T(1)$, the horizontal angle of particle number $I 1$, is set to zero.

If $\mathbf{I}=\mathbf{3}$, it is equivalent to
CHANGREF[XW,YW,T(I1)]
so that the new reference frame is at the position $(X W, Y W)$ of the waist (calculated automatically in the same way as for IMAGE) of the three rays number I1, I2 and I3 specified as data, while $T(I 1)$ is set to zero.

If $\mathrm{I}=4$: new horizontal beam centroid positionning $X C E, Y C E, A L E$ is provided. The beam is moved by $X C E$ and then centered on YCE, ALE.

If $\mathrm{I}=4.1$: new beam centroid positionning XCE, YCE, ALE, DCE, TIME is provided. The beam is moved by $X C E$ and then centered on YCE, ALE. In addition, the beam is centered on a new relative momentum DCE and new timing value TIME.

If $\mathrm{I}=4.2$: same as 4.1 , except that particles all have their timing set to TIME.
If $\mathbf{I}=5$: new vertical beam centroid positionning ZCE, PLE (position, angle) is provided. The beam is centered on vertical position and angle ZCE, PLE.

BEAMBEAM : Beam-beam lens

BEAMBEAM is a beam-beam lens simulation, a point transform [39].
Upon option using SPNTRK, BEAMBEAM will include spin kicks, after modelling as described in Ref. [40].

BEND : Bending magnet, Cartesian frame

BEND is one of several keywords available for the simulation of dipole magnets. It presents the interest of easy handling, and is well adapted for the simulation of synchrotron dipoles and such other regular dipoles as sector magnets with wedge angles.

The field in BEND is defined in a Cartesian coordinate frame (unlike for instance DIPOLE[S] that uses a polar frame). As a consequence, having particle coordinates at entrance or exit of the magnet referring to the curved main direction of motion may require using $K P O S$, in particular $K P O S=3$ (in a circular machine cell for instance, see section 5.6.8, p. 181).

The dipole simulation accounts for the magnet geometrical length $X L$, for a possible skew angle (X-rotation, useful for obtaining vertical deviation magnet), and for the field $B 1$ such that in absence of fringe field the deviation θ satisfies $X L=2 \frac{B O R O}{B 1} \sin \frac{\theta}{2}$.

Then follows the description of the entrance and exit EFBs and fringe fields. The wedge angles W_{E} (entrance) and W_{S} (exit) are defined with respect to the sector angle, with the signs as described in Fig. 15. Within a distance $\pm X_{E}\left(\pm X_{S}\right)$ on both sides of the entrance (exit) EFB, the fringe field model is used (same as for QUADRUPO, Fig. 36, p. 148) ; elsewhere, the field is supposed to be uniform.

If λ_{E} (resp. λ_{S}) is zero sharp edge field model is assumed at entrance (resp. exit) of the magnet and X_{E} (resp. X_{S}) is forced to zero. In this case, the wedge angle vertical first order focusing effect (if $\vec{B} 1$ is non zero) is simulated at magnet entrance and exit by a kick $P_{2}=P_{1}-Z_{1} \tan (\epsilon / \rho)$ applied to each particle (P_{1}, P_{2} are the vertical angles upstream and downstream the EFB, Z_{1} the vertical particle position at the EFB, ρ the local horizontal bending radius and ϵ the wedge angle experienced by the particle; ϵ depends on the horizontal angle T).

Magnet (mis-)alignment is assured by KPOS. KPOS also allows some degrees of automatic alignment useful for periodic structures (section 5.6.8).

Figure 15: Geometry and parameters of $B E N D: X L=$ length, $\theta=$ deviation, W_{E}, W_{S} are the entrance and exit wedge angles. The motion is computed in the Cartesian frame (O, X, Y, Z)

From matrice-style code modeling, to zgoubi : Fig. 16 illustrates the conversion of matrix method style of data where the magnet is defined by its length and deviation angle (see MAD input below, using 'SBEND'), to zgoubi input data using BEND (in this particular case of an illustration of a rectangular magnet, MULTIPOL could be used, as well).

Figure 16: Simulating a matrix method style of rectangular magnet (e.g., MAD's 'SBEND') by means of $B E N D$, in three different ways, see text. In case (a), the straight length in zgoubi's $B E N D$ is $L^{\prime}=\rho \sin (A)$, whereas in cases (b, c) it is $L=2 \rho \sin (A / 2)$.

- MAD style 'BEND' definition :

```
L = 1.
A = 0.1
Larc = L*(A/2.)/ sin(A/2.)
e1 = 0.
e2 = A
B: SBEND, L=Larc, ANGLE=A, e1 = e1, e2 = e2
\(\mathrm{L}=1\).
\(\mathrm{A}=0.1\)
e1 \(=0\).
e2 \(=A\).
B: SBEND, L=Larc, ANGLE=A, e1 = e1, e2 = e2
```

- zgoubi, case (a) :

```
(a) YS=-rho*(1-cos(A)) translated, non-rotated BEND,
    followed by A Z-rotation of frame
```

 ' CHANGREF'
    ```
    ' CHANGREF'
YS -4.997916927068
YS -4.997916927068
    'BEND'
    'BEND'
1
1
99.8750260394 0. 1.
99.8750260394 0. 1.
0.0.0.05 ! e1=A/
0.0.0.05 ! e1=A/
0 0. 0. 0. 0. 0. 0.
0 0. 0. 0. 0. 0. 0.
0.0.0.05 ! e2=A/2
0.0.0.05 ! e2=A/2
0 0. 0. 0. 0. 0. 0.
0 0. 0. 0. 0. 0. 0.
-1
-1
1 0. 0. 0.
1 0. 0. 0.
', CHANGREF'
', CHANGREF'
ZR -5.72957795131
```

```
ZR -5.72957795131
```

```
- zgoubi, case (b) or (c) using KPOS=1 or 3 :
(b) A/2 Z-rotated BEND followed by A/2 Z-rotation of frame

\section*{' CHANGREF'}

ZR -2.86478897565
'BEND'
1
100. 0. 1.
0.0.0. ! e1=0

0 0. 0. 0. 0. 0. 0 .
0.0.0.1 ! e2=A
00.0.0.0.0.0.
.1
10 . 0.0 .
, CHANGREF'
ZR -2.86478897565
(c) same as (b), using \(K P O S=3\) instead
```

'BEND'
1
100. 0.1.
0.0.0. ! e1=0
0 0. 0. 0. 0. 0. 0 .
0.0.0.1 ! e2=A
00.0.0.0.0.0.
30 . 0. -0.05

```
\(\rightarrow\) (

Negative bend, vertical bend, tricks : Use YMY for the former, TRAROT with a \(\pm \pi\) X-rotation for the latter. The two can be combined, so that a vertical negative bend can be represented by the sequence TRAROT[ \(\pi]\), YMY, BEND[B>0], YMY, TRAROT[ \(-\pi]\), with positionning methods for BEND as discussed above (Fig. 16) still applying.

\section*{BREVOL : 1-D uniform mesh magnetic field map}

BREVOL reads a 1-D axial field map from a storage data file, whose content must match the following FORTRAN reading sequence (possible FORMAT updates are to be found in fmapw.f).
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) X(I), BX(I)
ELSE
READ (NL,*) X(I), BX(I)
ENDIF
CONTINUE

```
where \(I X\) is the number of nodes along the (symmetry) \(X\)-axis, \(X(I)\) their coordinates, and \(B X(I)\) are the values of the \(X\) component of the field. \(B X\) is normalized with BNORM factor prior to ray-tracing, as well X is normalized with the coefficient \(X N O R M\) (useful to convert to centimeters, the working units in zgoubi). For binary files, FNAME must begin with ' \(\mathrm{B}_{-}\)' or ' \(\mathrm{b}_{-}\)', a flag 'BINARY' will thus be set to '.TRUE.' by the FORTRAN.
\(X\)-cylindrical symmetry is assumed, resulting in \(B Y\) and \(B Z\) taken to be zero on axis. \(\vec{B}(X, Y, Z)\) and its derivatives along a particle trajectory are calculated by means of a 5-point polynomial interpolation followed by second order off-axis extrapolation (see sections 1.3.2, 1.4.1).

Entrance and/or exit integration boundaries may be defined in the same way as in CARTEMES by means of the flag \(I D\) and coefficients \(A, B, C\), etc.

\section*{CARTEMES : 2-D Cartesian uniform mesh magnetic field map}

CARTEMES was originally dedicated to the reading and processing of the measured median plane field maps of the QDD spectrometer SPES2 at Saclay, assuming mid-plane dipole symmetry. However, it can be used for the reading of any 2-D median plane maps, provided that the format of the field data storage file fits the following FORTRAN sequence
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
IF (BINARY) THEN
READ (NL) (Y(J), J=1, JY)
ELSE
READ (NL,FMT='(10F8.2)') (Y(J), J=1, JY)
ENDIF
DO 1 I=1, IX
IF (BINARY) THEN
READ (NL) X(I), (BMES(I,J), J=1, JY)
ELSE
READ (NL,FMT='(10F8.1)') X(I), (BMES(I,J), J=1, JY)
ENDIF
CONTINUE

```
where, \(I X\) and \(J Y\) are the number of longitudinal and transverse horizontal nodes of the uniform mesh, and \(X(I), Y(J)\) their coordinates. FNAME is the name of the file containing the field data. For binary files, FNAME must begin with 'B_' or 'b_', a flag 'BINARY' will thus be set to '.TRUE.' by the FORTRAN.

The measured field BMES is normalized with BNORM,
\[
B(I, J)=B M E S(I, J) \times B N O R M
\]

As well the longitudinal coordinate X is normalized with a \(X N O R M\) coefficient (useful to convert to centimeters, the working units in zgoubi).
The vector field, \(\vec{B}\), and its derivatives out of the median plane are calculated by means of a second or fourth order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE \(=2,25\) or 4 , see section 1.4.2).

In case a particle exits the mesh, its IEX flag is set to -1 (see section 5.6.11, p. 184), however it is still tracked with the field being extrapolated from the closest nodes of the mesh. Note that such extrapolation process may induce erratic behavior if the distance from the mesh gets too large.

Entrance and/or exit integration boundaries (so-called "droite de coupure" in the code) can be defined with the flag \(I D\), as follows (Fig. 17).

If \(\operatorname{ID}=\mathbf{1}\) : the integration in the field is terminated on a boundary with equation \(A^{\prime} X+B^{\prime} Y+C^{\prime}=0\), and then the trajectories are extrapolated linearly onto the exit border of the map.
If ID \(=\mathbf{- 1}\) : an entrance boundary is defined, with equation \(A^{\prime} X+B^{\prime} Y+C^{\prime}=0\), up to which trajectories are first extrapolated linearly from the map entrance border, prior to being integrated in the field.
If ID \(\geq \mathbf{2}\) : one entrance boundary, and \(I D-1\) exit boundaries are defined, as above. The integration in the field terminates on the last \((I D-1)\) exit boundary. No extrapolation onto the map exit border is performed in this case.


Figure 17: \(O X Y\) is the coordinate system of the mesh. Integration boundaries may be defined, using \(I D \neq 0\) : particle coordinates are extrapolated linearly from the entrance face of the map, onto the boundary \(A^{\prime} X+B^{\prime} Y+C^{\prime}=0\); after ray-tracing inside the map and terminating on the boundary \(A X+B Y+C=0\), coordinates are extrapolated linearly onto the exit face of the map if \(I D=2\), or terminated on the last ( \(I D-1\) ) boundary if \(I D>2\).

\section*{CAVITE : Accelerating cavity}

CAVITE provides a simulation of a (zero length) accelerating cavity ; it can be used in conjunction with keywords REBELOTE and SCALING for the simulation of multi-turn tracking with synchrotron or fixed field (FFAG, cyclotron) acceleration (see section 5.6.10). It can also be used to simulate recirculating/energyrecovery linacs. CAVITE must be preceded by PARTICUL for the definition of mass \(M\) and charge \(q\).

A major effect of CAVITE on optics settings is the following :
The reference rigidity \(B \rho_{r e f}\) in zgoubi, as used for instance when determining optical strengths from field values (see sections 1.2.1-1.2.3), is defined when creating the object by means of [MC]OBJET. However, in many cases - options as described below - that reference rigidity will be updated upon crossing a cavity, consistently with the amount of synchronous rigidity increase as induced by the energy change, namely,
\[
\begin{equation*}
B \rho_{r e f}=B O R O \longrightarrow B \rho_{r e f}=B O R O+\delta B \rho_{s} \tag{5.4.8}
\end{equation*}
\]

Note as an illustration of the process, that, in this case, a simple way to have the optical elements have their strengths maintained constant is to use SCALING with the option NTIM \(=-1\).
- If IOPT \(=\mathbf{0}:\) CAVITE is switched off.
- If IOPT = 1: CAVITE simulates the RF cavity of a synchrotron accelerator : the periodic motion over \(I P=1\), NPASS +1 turns (passes through the structure) is obtained using the keyword \(R E-\) BELOTE, option \(\mathrm{K}=99\), while RF and optical elements time dependent functions are simulated by means of SCALING - see section 5.6.10. CAVITE may conveniently be located at the end of the optical structure, otherwise its phasing has to be indicated. The synchrotron motion of any of the IMAX particles of a beam is obtained from the following mapping
\[
\left\{\begin{array}{l}
\phi_{2}-\phi_{1}=2 \pi f_{R F}\left(\frac{\ell}{\beta c}-\frac{\mathcal{L}}{\beta_{s} c}\right) \\
W_{2}-W_{1}=q \hat{V} \sin \phi_{1}
\end{array}\right.
\]
where
\[
\begin{array}{ll}
\phi & =\text { RF phase } ; \phi_{2}-\phi_{1}=\text { variation of } \phi \text { between two traversals } \\
\hat{V} & =\text { peak RF voltage } \\
W & =\text { kinetic energy } ; W_{2}-W_{1}=\text { energy gain at a traversal of CAVITE } \\
\mathcal{L} & =\text { length of the synchronous closed orbit (to be calculated by prior ray-tracing, } \\
\text { see 'CLOSED ORBIT COMPUTATION' below) } \\
\beta_{s} c & =\text { velocity associated with the synchronous energy } \\
\ell & =\text { particle trajectory length between two traversals } \\
\beta c & =\text { particle velocity } \\
c & =\text { velocity of light. }
\end{array}
\]

The RF frequency \(f_{R F}\) is a multiple of the synchronous revolution frequency, and is obtained from the input data, following
\[
f_{R F}=\frac{h c}{\mathcal{L}} \frac{q(B \rho)_{s}}{\sqrt{q^{2}(B \rho)_{s}^{2}+(M c)^{2}}}
\]
where
\[
\begin{aligned}
& h \quad=\text { harmonic number of the R.F } \\
& B \rho_{s}=\text { rigidity associated with the synchronous energy }
\end{aligned}
\]

The synchronous rigidity \((B \rho)_{s}\) is obtained from the timing law specified by means of SCALING following \((B \rho)_{s}=B O R O \cdot S C A L E(T I M I N G)\) (see SCALING for the meaning and calculation of the scale factor SCALE(TIMING)). If SCALING is not used, \((B \rho)_{s}\) is assumed to keep the constant value BORO as given in the object description (see OBJET for instance).

The velocity \(\beta c\) of a particle is calculated from its current rigidity
\[
\beta=\frac{q(B \rho)}{\sqrt{q^{2}(B \rho)^{2}+(M c)^{2}}}
\]

The velocity \(\beta_{s} c\) of the synchronous particle is obtained in the same way from
\[
\beta_{s}=\frac{q(B \rho)_{s}}{\sqrt{q^{2}(B \rho)_{s}^{2}+(M c)^{2}}}
\]

The kinetic energies and rigidities involved in these formulae are related by
\[
q(B \rho)=\sqrt{W\left(W+2 M c^{2}\right)}
\]

Finally, the initial conditions for the mapping, at the first turn, are the following
- For the (virtual) synchronous particle
\[
\begin{aligned}
\phi_{1} & =\phi_{s}=\text { synchronous phase } \\
(B \rho)_{1 s} & =B O R O
\end{aligned}
\]
- For any of the \(I=1\), IMAX particles of the beam
\[
\begin{aligned}
\phi_{1 I} & =\phi_{s}=\text { synchronous phase } \\
(B \rho)_{1 I} & =B O R O * D_{I}
\end{aligned}
\]
where the quantities \(B O R O\) and \(D_{I}\) are given in the object description.

\section*{Calculation of the Coordinates}

Let \(p_{I}=\left[p_{X I}^{2}+p_{Y I}^{2}+p_{Z I}^{2}\right]^{1 / 2}\) be the momentum of particle \(I\) at the exit of the cavity, while \(p_{I_{0}}=\) \(\left[p_{X I_{0}}^{2}+p_{Y I_{0}}^{2}+p_{Z I_{0}}^{2}\right]^{1 / 2}\) is its momentum at the entrance. The kick in momentum is assumed to be fully longitudinal, resulting in the following relations between the coordinates at the entrance (denoted by the index zero) and at the exit
\[
\begin{aligned}
p_{X I} & =\left[p_{I}^{2}-\left(p_{I_{0}}^{2}-p_{X I_{0}}^{2}\right)\right]^{1 / 2} \\
p_{Y I} & =p_{Y I_{0}}, \quad \text { and } \quad p_{Z I}=p_{Z I_{0}} \quad \text { (longitudinal kick) } \\
X_{I} & =X_{I_{0}}, \quad Y_{I}=Y_{I_{0}} \quad \text { and } \quad Z_{I}=Z_{I_{0}} \quad \text { (zero length cavity) }
\end{aligned}
\]
and for the angles (see Fig. 1)
\[
\left.\begin{array}{l}
T_{I}=\operatorname{Atg}\left(\frac{p_{Y I}}{p_{X I}}\right) \\
P_{I}=\operatorname{Atg}\left(\frac{P_{Z I}}{\left(p_{X I}^{2}+p_{Y I}^{2}\right)^{1 / 2}}\right)
\end{array}\right\} \quad \text { (damping of the transverse motion) }
\]
- If \(\operatorname{IOPT}=2\) : the same simulation of a synchrotron RF cavity as for IOPT \(=\mathbf{1}\) is performed, except that the keyword SCALING (family CAVITE) is not taken into account in this option : the increase in kinetic energy at each traversal, for the synchronous particle, is
\[
\Delta W_{s}=q \hat{V} \sin \phi_{s}
\]
where the synchronous phase \(\phi_{s}\) is part of the input data to to CAVITE. From this, the calculation of the law \((B \rho)_{s}\) and the RF frequency \(f_{R F}\) follows, according to the formulae given in the \(I O P T=1\) case.
\(I O P T=2\) can be used for SR loss compensation in storage ring mode. In that case \(\phi_{s}\) should be given the appropriate value for compensation for SR induced energy loss.
\(I O P T=2\) handles double RF systems. Respective harmonic value and voltage amplitudes are \(h_{1}, h_{2}\) and \(V_{1}, V_{2}\). It follows CERN ISR-TH-RF/80-26 [41]. In particular, the stable phase \(\phi_{n}\) of the higher harmonic voltage is taken to be
\[
\phi_{\mathrm{n}}=\operatorname{atan}\left(\tan \left(\phi_{\mathrm{s}}\right) / \mathrm{n}\right) / \mathrm{n}
\]
wherein \(n=h_{2} / h_{1}\). The synchronous energy gain is
\[
\Delta W_{s}=q \hat{V}\left(\sin \left(\phi_{s}\right)+k \sin \left(n \phi_{n}\right)\right)
\]
with \(k=V_{2} / V_{1}\).
The option IOPT = 2 handles synchrotron radiation energy loss in the case of stationary bucket (see \(I O P T=11\) for accelerating bucket). Compensation is derived from the synchronous phase \(\phi_{s}\), via \(\Delta W_{S R}=q \hat{V} \sin \phi_{s}\), therefore assuming appropriate value
\[
\phi_{s}=\operatorname{asin}\left(\Delta W_{S R} / q \hat{V}\right)
\]
with \(\Delta W_{S R}=\) the energy loss between passes in the cavity.
- If IOPT \(=\mathbf{3}\) : sine RF law, acceleration without synchrotron motion. Any particle will be given a kick
\[
\Delta W=q \hat{V} \sin \phi_{s}
\]
where \(\hat{V}\) and \(\phi_{s}\) are input data.
The option IOPT = 3 handles synchrotron radiation energy loss in the case of stationary bucket (as in \(I O P T=2\) ).
- If \(\operatorname{IOPT}=4\) : to be documented.
- If \(\operatorname{IOPT}=\mathbf{5}\) : to be documented.
- If IOPT \(=\mathbf{6}\) : allows reading the RF frequency and/or phase law from an external file (wih name normally "zgoubi.freqLaw.In"). See routines cavite.f and scalin. \(f\) for details Was first used for acceleration in scaling FFAG [49].
- If \(\mathrm{IOPT}=\mathbf{7}\) : fixed frequency RF, quasi- or isochronous acceleration. Was first used for quasiisochronous, fixed frequency acceleration in the EMMA prototype linear FFAG [50, 51].
\(I O P T=7\) can be used for cyclotron acceleration.
- If \(\operatorname{IOPT}=\mathbf{8}\) : to be documented.
- If \(\operatorname{IOPT}=9\) : to be documented.
- If IOPT = 10 : fixed frequency RF. Was first installed/used for CEBAF and eRHIC ERL simulations. A Chambers matrix method is used to get the transverse focusing effect. Particles undergo a longitudinal boost in energy
\[
\Delta W=q \hat{V} \cos \left(2 \pi f_{R F} t+\phi_{s}\right)
\]
with \(t\) the arrival time at the center of the cavity. The phase datum \(\phi_{s}\) in this option has two roles, (i) that played in the equation above, (ii) determining the updating of zgoubi's reference rigidity, namely,
\(B \rho_{\text {ref }}=B O R O \rightarrow B \rho_{\text {ref }}=B O R O+\delta B \rho_{s} \quad\) with \(\quad \delta B \rho_{s}=\frac{\Delta\left(\beta_{s}\left(W_{s}+M\right)\right)}{q c}, \quad \Delta W_{s}=q \hat{V} \cos \left(\phi_{s}\right)\)

The cavity length \(L\) as specified in the input data is also used to update the path length of the particles (linearly). An option ('IOP' flag) allows small \(\Delta W\) approximation of Chambers matrices, as well as removing the longitudinal damping (thus geometrical emittance is conserved), as follows :
- IOP = 1 : Chambers cavity with \(\Delta W / W\) aproximation, namely, for both planes,
\[
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
\left.\sqrt{( } W_{i} / W_{o}\right) & \left.L_{c a v} \times \sqrt{( } W_{i} / W_{o}\right)  \tag{5.4.10}\\
0 . & \left.\sqrt{( } W_{i} / W_{o}\right)
\end{array}\right)\binom{x}{x^{\prime}}_{\text {in }}
\]
with \(W_{i}, W_{o}\) respectively the incoming and outgoing kinetic energies.
- IOP \(=-1:\) Same as 1 , with matrix in both planes re-normalized to determinant=1 (i.e., \(R_{i j} \rightarrow\) \(\left.R_{i j} / \sqrt{R_{11} R_{12}-R_{21} R_{22}}\right)\),
- IOP = 2 : Chambers cavity without aproximation on \(\Delta W / W\), namely, for both planes,
\[
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
\cos (u)-\sqrt{2} \sin (u) \cos (\phi) & v W_{i} \sin (u) \cos (\phi)  \tag{5.4.11}\\
-\frac{\sin (u)}{v W_{o}}\left(2 \cos (\phi)+\frac{1}{\cos (\phi)}\right) & \frac{W_{i}}{W_{o}}(\cos (u)+\sqrt{2} \sin (u) \cos (\phi))
\end{array}\right)\binom{x}{x^{\prime}}_{i n}
\]
with \(u=\log \left(W_{o} / W_{i}\right) /(\sqrt{8} \cos (\phi)), v=\sqrt{8} L /\left(W_{o}-W_{i}\right), \phi\) the particle phase at the cavity.
\(-\mathrm{IOP}=-2\) : Same as 1 , with matrix in both planes re-normalized to determinant=1.
- IOP = 0 : Transverse matrix is that of a drift with length \(L\).
- If \(\mathbf{I O P T}=11\) : under development.

The same simulation of a synchrotron RF cavity as for IOPT \(=\mathbf{2}\) is performed, but in addition IOPT \(=10\) handles synchrotron radiation energy loss, both stationnary or accelerated bucket.

\section*{CLOSED ORBIT COMPUTATION}

Due to possible dipole type of optical defects (e.g., fringe fields, straight axis combined function dipoles), the closed orbit may not coincide with the ideal axis of the optical elements (hence it will be almost everywhere non-zero). One way to calculate it at the beginning of the structure (i.e., where the initial particle coordinates are defined) is to ray-trace a single particle over a sufficiently large number of turns, starting with initial conditions taken near the reference orbit, so as to obtain statistically well-defined transverse phase-space ellipses. The local closed orbit coincides with the coordinates \(Y_{c}, T_{c}, Z_{c}, P_{c}\) of the center of the ellipses. A few iterations are usually sufficient (avoid near-integer tunes) to ensure accuracy. Next, ray-tracing over one turn a particle starting with the initial condition \(\left(Y_{c}, T_{c}, Z_{c}, P_{c}\right)\) will provide the entire closed orbit, and as a sub-product its length \(\mathcal{L}\) (the \(F(6,1)\) coordinate in the FORTRAN).

\section*{RECOVERING FROM A CRASH}

When accelerating a bunch in a pulsed ring, SCALING is used to ramp magnetic fields, so following the rigidity increase by CAVITE. CAVITE may or may not be part of the SCALING argument list, this is discussed in the SCALING section, page 82. Now, if the job is stopped - due to computer crash or else - it is possible to resume the tracking from the latest records (in [b_]zboubi.fai storage file), for instance using OBJET, KOBJ= 3. In the presence of acceleration using CAVITE however, since there is no reference particle in zgoubi, CAVITE needs be told the reference rigidity at the corresponding time/turn where tracking is resumed. This is done using SCALING. This has the effect of updating the refrence rigidity \(B \rho_{\text {ref }}\) to its correct value (see Note 1 above), the one it had when the job stopped. See the SCALING section for more (page 80) and the examples there, as well as the example page 255.

PRINT : The optional command 'PRINT', following the first argument, 'IOPT', in CAVITE keyword, will cause logging of computational data (synchronous time and momentum, RF phase, and much more) in the file zgoubi.CAVITE.Out.

\section*{For software developers}

Cavity simulations are done in cavite.f. Management of the reference rigidity \(B \rho_{\text {ref }}\) is ensured for part in cavite.f, and for part in routines associated with 'SCALLING', essentially scaler.f.

\section*{CHAMBR : Long transverse aperture limitation}

CHAMBR causes the identification, counting and stopping of particles that reach the transverse limits of the vacuum chamber. The chamber can be either rectangular (IFORM \(=1\) ) or elliptic (IFORM \(=2\) ). The chamber is centered at \(Y C, Z C\) and has transverse dimensions \(\pm Y L\) and \(\pm Z L\) such that any particle will be stopped if its coordinates \(Y, Z\) satisfy
\[
\begin{array}{rll}
(Y-Y C)^{2} \geq Y L^{2} \text { or }(Z-Z C)^{2} \geq Z L^{2} & \text { if } & \text { IFORM }=1 \\
\frac{(Y-Y C)^{2}}{Y L^{2}}+\frac{(Z-Z C)^{2}}{Z L^{2}} \geq 1 & \text { if } & \text { IFORM }=2
\end{array}
\]

The conditions introduced with CHAMBR are valid along the optical structure until the next occurrence of the keyword CHAMBR. Then, if \(I L=1\) the aperture is possibly modified by introducing new values of \(Y C, Z C, Y L\) and \(Z L\), or, if \(I L=2\) the chamber ends and information is printed concerning those particles that have been stopped.

The testing is done in optical elements at each integration step, between the EFBs. For instance, in QUADRUPO there will be no testing from \(-X_{E}\) to 0 and from \(X L\) to \(X L+X_{S}\), but only from 0 to \(X L\); in DIPOLE, there is no testing as long as the ENTRANCE EFB is not reached, and testing is stopped as soon as the EXIT or LATERAL EFBs are passed.

In optical elements defined in polar coordinates, \(Y\) stands for the radial coordinate (e.g., DIPOLE, see Figs. 3C, p. 29, and 11, p. 92). Thus, centering CHAMBR at
\(Y C=R M\) simulates a chamber curved with radius \(R M\), and having a radial acceptance \(R M \pm Y L\). In DRIFT, the testing is done at the beginning and at the end, and only for positive drifts. There is no testing in CHANGREF.

When a particle is stopped, its index IEX (see OBJET and section 5.6.11) is set to the value -4 , and its actual path length is stored in the array \(\operatorname{SORT}\) for possible further use.

\section*{CHANGREF : Transformation to a new reference frame}

CHANGREF transports particles from a reference plane \((O, Y, Z)\) at path distance \(S\), to a new one by a combination of translations and/or rotations. It essentially aims at positioning optical elements with respect to one another, as setting a reference frame at the entrance or exit of field maps, or to simulate misalignments (see also KPOS option). CHANGREF can be placed anywhere in a structure.

Spin tracking, particle decay and gas-scattering are taken into account in CHANGREF. Energy loss by synchrotron radiation (SRLOSS keyword) is not.
There are two "styles" of CHANGREF, as follows.
The "old style" CHANGREF requires the three data \(X C E, Y C E, A L E\) and then gets the new particle coordinates \(Y_{2}, T_{2}, Z_{2}, P_{2}\) and path length \(S_{2}\) from the old ones \(Y_{1}, T_{1}, Z_{1}, P_{1}\) and \(S_{1}\) using
\[
\begin{aligned}
T_{2} & =T_{1}-A L E \\
Y_{2} & =\frac{\left(Y_{1}-Y C E\right) \cos T_{1}+X C E \sin T_{1}}{\cos T_{2}} \\
D L^{2} & =\left(X C E-Y_{2} \sin A L E\right)^{2}+\left(Y C E-Y_{1}+Y_{2} \cos A L E\right)^{2} \\
Z_{2} & =Z_{1}+D L \operatorname{tg} P_{1} \\
S_{2} & =S_{1}+\frac{D L}{\cos P_{1}} \\
P_{2} & =P_{1}
\end{aligned}
\]


Figure 18: Scheme of the CHANGREF procedure.
where, \(X C E\) and \(Y C E\) are shifts in the horizontal plane along, respectively, \(X\) - and \(Y\)-axis, and \(A L E\) is a rotation around the \(Z\)-axis. \(D L\) is given the sign of \(X C E-Y_{2} \sin (A L E)\).
The example below shows the use of CHANGREF for the symmetric positioning of a combined function dipole+quadrupole magnet in a drift-bend-drift geometry with 12.691 degrees deviation (obtained upon combined effect of a dipole component and of quadrupole axis shifted 1 cm off optical axis).

Zgoubi data file :
```

Using CHANGREF, "Old style"
'OBJET'
51.71103865921708 ! Electron, Ekin=15MeV.
2
1 1 ! One particle, with
2. 0. 0.0 0.0 0.0 1. 'R' ! Y_0=2 cm.
1 1 1 1 1 1 1 1
'MARKER' BEG .plt ! Print into zgoubi.plt.
'DRIFT'' ! 10 cm drift.
10.
' CHANGREF'
0. 0. -6.34165 ! 1/ half Z-rotation.
'CHANGREF'
0. 1.0. ! 2/ Y-shift.
'MULTIPOL' ! Combined function dipole + quadrupole.
2 ! Print into zgoubi.plt.
5 10.2.064995867082342 2.0.0.0.0.0.0.0.0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 . 1455 2.2670 -.6395 1.1558 0.0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 . 1455 2.2670 -.6395 1.1558 0.0.
0 0 0 0 0 0 0 0 0 0
.1 step size
1 0.0. 0.
' CHANGREF'
0. -1. -6.34165 ! 1/ Y-shift, 2/ half Z-rotate.
'DRIFT' ! 10 cm drift.
10.
'FAISCEAU'
'END'

```

The "new style" CHANGREF allows all 6 degrees of freedom rather than just 3, namely, X-, Y-, Zshift, X-, Y-, Z-rotation. In addition, CHANGREF "new style" allows up to 9 successive such elementary transformations, in arbitrary order. The "old style" example above is transposed into "new style", hereafter.

Zgoubi data file :
```

Using CHANGREF, "New Style"
'OBJET'
51.71103865921708 ! Electron, Ekin=15MeV.
2
1 1 ! One particle, with
2. 0. 0.0 0.0 0.0 1. 'R' ! Y_0=2 cm.
1 1 1 1 1 1 1 1
'MARKER' BEG .plt ! Print into zgoubi.plt.
'DRIFT' ! 10 cm drift.
10.
' CHANGREF'
ZR -6.34165 YS 1. ! 1/ half Z-rotate, 2/ Y-shift.
'MULTIPOL' ! Combined function dipole + quadrupole.
2 ! Print into zgoubi.plt.
5 10.2.064995867082342 2.0.0.0.0.0.0.0.0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 . }1455 2.2670 -.6395 1.1558 0. 0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4 . 1455 2.2670 -.6395 1.1558 0.0.
0 0 0 0 0 0 0 0 0 0
.1 step size
1 0. 0. 0
' CHANGREF'
YS -1. ZR -6.34165 ! 1/ Y-shift, 2/ half Z-rotate.
'DRIFT' ! 10 cm drift.
10.
'FAISCEAU'
' END'

```

\section*{CIBLE or TARGET : Generate a secondary beam following target interaction}

The reaction is \(1+2 \longrightarrow 3+4\) with the following parameters
\begin{tabular}{lllll} 
Laboratory momentum & \(p_{1} \equiv 0\) & \(p_{2}\) & \(p_{3}\) & \(p_{4}\) \\
Rest mass & \(M_{1}\) & \(M_{2}\) & \(M_{3}\) & \(M_{4}\) \\
Total energy in laboratory & \(M_{1} c^{2}\) & \(W_{2}\) & \(W_{3}\) & \(W_{4}\)
\end{tabular}

The geometry of the interaction is shown in Fig. 19.
The angular sampling at the exit of the target consists of the \(N T\) coordinates \(0, \pm T S, \pm 2 * T S \ldots \pm(N T-\) 1) \(* T S / 2\) in the median plane, and the \(N P\) coordinates \(0, \pm P S, \pm 2 * P S \ldots \pm(N P-1) * P S / 2\) in the vertical plane.
The position of \(B\) downstream is deduced from that of \(A\) upstream by a transformation equivalent to two transformations using CHANGREF, namely
\[
\operatorname{CHANGREF}(X C E=Y C E=0, \quad A L E=\beta)
\]
followed by
\[
\operatorname{CHANGREF}(X C E=Y C E=0, \quad A L E=\theta-\beta) .
\]

Particle 4 is discarded, while particle 3 continues. The energy loss \(Q\) is related to the variable mass \(M_{4}\) by
\[
Q=M_{1}+M_{2}-\left(M_{3}+M_{4}\right) \quad \text { and } \quad d Q=-d M_{4}
\]

The momentum sampling of particle 3 is derived from conservation of energy and momentum, according to
\[
\begin{aligned}
M_{1} c^{2}+W_{2} & =W_{3}+W_{4} \\
p_{4}^{2} & =p_{2}^{2}+p_{3}^{2}-2 p_{2} p_{3} \cos (\theta-T)
\end{aligned}
\]


Figure 19: Scheme of the principles of CIBLE (TARGET)
\(A, T=\) position, angle of incoming particle 2 in the entrance reference frame
\(P=\) position of the interaction
\(B, T=\) position, angle of the secondary particle in the exit reference frame
\(\theta=\) angle between entrance and exit frames
\(\beta=\) tilt angle of the target

\section*{COLLIMA : Collimator}

COLLIMA acts as a mathematical aperture of zero length. It causes the identification, counting and stopping of particles that reach the aperture limits.

\section*{Physical Aperture}

A physical aperture can be either rectangular (IFORM =1) or elliptic (IFORM =2). The collimator is centered at \(Y C, Z C\) and has transverse dimensions \(\pm Y L\) and \(\pm Z L\) such that any particle will be stopped if its coordinates \(Y, Z\) satisfy
\[
\begin{array}{rlll}
(Y-Y C)^{2} \geq Y L^{2} \text { or }(Z-Z C)^{2} \geq Z L^{2} & \text { if } & \text { IFORM }=1 \\
\frac{(Y-Y C)^{2}}{Y L^{2}}+\frac{(Z-Z C)^{2}}{Z L^{2}} \geq 1 & \text { if } & \text { IFORM }=2
\end{array}
\]

\section*{Longitudinal Phase-space Collimation}

COLLIMA can act as a longitudinal phase-space aperture, coordinates acted on are selected with IFORM.J. Any particle will be stopped if its horizontal (h) and vertical (v) coordinates satisfy
\[
\left(h \leq h_{\min } \text { or } h \geq h_{\max }\right) \text { or }\left(v \leq v_{\min } \text { or } v \geq v_{\max }\right)
\]
wherein, \(h\) is either path length \(S\) if \(\operatorname{IFORM=6}\) or time if \(\operatorname{IFORM=7,}\) and \(v\) is either \(1+\mathrm{DP} / \mathrm{P}\) if \(J=1\) or kinetic energy if \(J=2\) (provided mass and charge have been defined using the keyword PARTICUL).

\section*{Transverse Phase-space Collimation}

COLLIMA can act as a transverse phase-space aperture. Any particle will be stopped if its coordinates satisfy
\[
\begin{array}{cl}
\gamma_{Y} Y^{2}+2 \alpha_{Y} Y T+\beta_{Y} T^{2} \geq \epsilon_{Y} / \pi & \text { if } \quad \text { IFORM }=11 \text { or } 14 \\
\gamma_{Z} Z^{2}+2 \alpha_{Z} Z P+\beta_{Z} P^{2} \geq \epsilon_{Z} / \pi & \text { if } \quad \text { IFORM }=12 \text { or } 15
\end{array}
\]

If IFORM=11 (respectively 12) then \(\epsilon_{Y} / \pi\) (respectively \(\epsilon_{Z} / \pi\) ) is to be specified by the user as well as \(\alpha_{Y, Z}\), \(\beta_{Y, Z}\). If IFORM=14 (respectively 15) then \(\alpha_{Y}\) and \(\beta_{Y}\) (respectively \(\alpha_{Z}, \beta_{Z}\) ) are determined by zgoubi by prior computation of the matched ellipse to the particle population, so only \(\epsilon_{Y, Z} / \pi\) need be specified by the user.

When a particle is stopped, its index IEX (see OBJET and section 5.6.11) is set to the value -4 , and its actual path length is stored in the array SORT for possible further use with HISTO).

\section*{DECAPOLE : Decapole magnet (Fig. 20)}

The meaning of parameters for DECAPOLE is the same as for QUADRUPO.
In fringe field regions the magnetic field \(\vec{B}(X, Y, Z)\) and its derivatives up to fourth order are derived from the scalar potential expressed to the 5th order in \(Y\) and \(Z\)
\[
\begin{aligned}
V(X, Y, Z) & =G(X)\left(Y^{4} Z-2 Y^{2} Z^{3}+\frac{Z^{5}}{5}\right) \\
\text { with } G_{0} & =\frac{B_{0}}{R_{0}^{4}}
\end{aligned}
\]

The modelling of the fringe field form factor \(G(X)\) is described under QUADRUPO, p. 147.
Outside fringe field regions, or everywhere in sharp edge decapole ( \(\lambda_{E}=\lambda_{S}=0\) ), \(\vec{B}(X, Y, Z)\) in the magnet is given by
\[
\begin{aligned}
& B_{X}=0 \\
& B_{Y}=4 G_{0}\left(Y^{2}-Z^{2}\right) Y Z \\
& B_{Z}=G_{0}\left(Y^{4}-6 Y^{2} Z^{2}+Z^{4}\right)
\end{aligned}
\]


Figure 20: Decapole magnet

\section*{DIPOLE : Dipole magnet, polar frame}

DIPOLE provides a model of a dipole field, and allows transverse indices. The field along a particle trajectory is computed as the particle motion proceeds, straightforwardly from the dipole geometrical boundaries. Field simulation in DIPOLE is the same as used in DIPOLE-M and AIMANT for computing a field map ; the essential difference in DIPOLE is in its skipping that intermediate stage of field map generation found in DIPOLE-M and AIMANT.

DIPOLE is available in a version, DIPOLES, that allows overlapping of fringe fields in a configuration of neighboring magnets.

The dimensioning of the magnet is defined by (Fig. 11, p. 92)
```

$A T$: total angular aperture
$R M$: mean radius used for the positioning of field boundaries

```

The 2 or 3 effective field boundaries (EFB), from which the dipole field is drawn, are defined from geometric boundaries, the shape and position of which are determined by the following parameters.
\begin{tabular}{ll} 
ACENT & : arbitrary inner angle, used for EFBs positioning \\
\(\omega\) & : azimuth of an EFB with respect to ACENT \\
\(\theta\) & : angle of an EFB with respect to its azimuth (wedge angle) \\
\(R_{1}, R_{2}\) & : radius of curvature of an EFB \\
\(U_{1}, U_{2}\) & : extent of the linear part of an EFB.
\end{tabular}

The magnetic field is calculated in polar coordinates. At any position \((R, \theta)\) along the particle trajectory the value of the vertical component of the mid-plane field is calculated using
\[
\begin{equation*}
B_{Z}(R, \theta)=\mathcal{F}(R, \theta) * B_{0} *\left(1+N *\left(\frac{R-R M}{R M}\right)+B *\left(\frac{R-R M}{R M}\right)^{2}+G *\left(\frac{R-R M}{R M}\right)^{3}\right) \tag{5.4.12}
\end{equation*}
\]
where \(N, B\) and \(G\) are respectively the first, second and third order field indices and \(\mathcal{F}(R, \theta)\) is the fringe field coefficient (it determines the "flutter" in periodic structures).

\section*{Calculation of the Fringe Field Coefficient}

With each EFB a realistic extent of the fringe field, \(\lambda\) (normally equal to the gap size), is associated and a fringe field coefficient \(F\) is calculated. In the following \(\lambda\) stands for either \(\lambda_{E}\) (Entrance), \(\lambda_{S}\) (Exit) or \(\lambda_{L}\) (Lateral EFB).
\(F\) is an exponential type fringe field (Fig. 12, p. 94) given by [37]
\[
F=\frac{1}{1+\exp P(s)}
\]
wherein \(s\) is the distance to the EFB and depends on \((R, \theta)\), and
\[
P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+C_{3}\left(\frac{s}{\lambda}\right)^{3}+C_{4}\left(\frac{s}{\lambda}\right)^{4}+C_{5}\left(\frac{s}{\lambda}\right)^{5}
\]

It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter shift. \(s\) is then changed to \(s\)-shift in the previous equation. This allows small variations of the magnetic length.

Let \(F_{E}\) (respectively \(F_{S}, F_{L}\) ) be the fringe field coefficient attached to the entrance (respectively exit, lateral) EFB. At any position on a trajectory the resulting value of the fringe field coefficient (eq. 5.4.12) is
\[
\mathcal{F}(R, \theta)=F_{E} * F_{S} * F_{L}
\]

In particular, \(F_{L} \equiv 1\) if no lateral EFB is requested.

\section*{Calculation of the Mid-plane Field and Derivatives}
\(B_{Z}(R, \theta)\) in Eq. 5.4.12 is computed at the \(n \times n\) nodes ( \(n=3\) or 5 in practice) of a "flying" interpolation grid in the median plane centered on the projection \(m_{0}\) of the actual particle position \(M_{0}\) as schemed in Fig. 21. A polynomial interpolation is involved, of the form
\[
B_{Z}(R, \theta)=A_{00}+A_{10} \theta+A_{01} R+A_{20} \theta^{2}+A_{11} \theta R+A_{02} R^{2}
\]
that yields the requested derivatives, using
\[
A_{k l}=\frac{1}{k!l!} \frac{\partial^{k+l} B_{Z}}{\partial \theta^{k} \partial r^{l}}
\]

Note that, the source code contains the explicit analytical expressions of the coefficients \(A_{k l}\) solutions of the normal equations, so that the operation is not CPU time consuming.


Figure 21: Interpolation method. \(m_{0}\) and \(m_{1}\) are the projections in the median plane of particle positions \(M_{0}\) and \(M_{1}\) and separated by \(\delta s\), projection of the integration step.

\section*{Extrapolation Off Median Plane}

From the vertical field \(\vec{B}\) and derivatives in the median plane, first a transformation from polar to Cartesian coordinates is performed, following eqs (1.4.9 or 1.4.10), then, extrapolation off median plane is performed by means of Taylor expansions, following the procedure described in section 1.3.3.

\section*{DIPOLE-M : Generation of dipole mid-plane 2-D map, polar frame}

DIPOLE-M is a more recent, simpler and improved version of AIMANT.
The keyword DIPOLE-M provides an automatic generation of a dipole field map in polar coordinates. The extent of the map is defined by the following parameters, as shown in Figs. 11A and 11B.
\(A T \quad:\) total angular aperture
\(R M \quad:\) mean radius used for the positioning of field boundaries
RMIN, RMAX : minimum and maximum radii
The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape and position of which are determined by the following parameters.
```

ACENT : arbitrary inner angle, used for EFBs positioning
\omega}\quad:\mathrm{ : azimuth of an EFB with respect to ACENT
0 : angle of an EFB with respect to its azimuth (wedge angle)
R1, R2 : radius of curvature of an EFB
U1,U}\mp@subsup{U}{2}{}\quad\mathrm{ : extent of the linear part of an EFB.

```

At any node of the map mesh, the value of the field is calculated as
\[
\begin{equation*}
B_{Z}(R, \theta)=\mathcal{F}(R, \theta) * B_{0} *\left(1+N *\left(\frac{R-R M}{R M}\right)+B *\left(\frac{R-R M}{R M}\right)^{2}+G *\left(\frac{R-R M}{R M}\right)^{3}\right) \tag{5.4.13}
\end{equation*}
\]
where \(N, B\) and \(G\) are respectively the first, second and third order field indices and \(\mathcal{F}\) is the fringe field coefficient.

\section*{Calculation of the Fringe Field Coefficient}

With each EFB a realistic extent of the fringe field, \(\lambda\) (normally equal to the gap size), is associated and a fringe field coefficient \(F\) is calculated. In the following \(\lambda\) stands for either \(\lambda_{E}\) (Entrance), \(\lambda_{S}\) (Exit) or \(\lambda_{L}\) (Lateral EFB).
\(F\) is an exponential type fringe field (Fig. 12) given by [37]
\[
F=\frac{1}{1+\exp P(s)}
\]
where \(s\) is the distance to the EFB , and
\[
P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+C_{3}\left(\frac{s}{\lambda}\right)^{3}+C_{4}\left(\frac{s}{\lambda}\right)^{4}+C_{5}\left(\frac{s}{\lambda}\right)^{5}
\]

It is also possible to simulate a shift of the \(E F B\), by giving a non zero value to the parameter shift. \(s\) is then changed to \(s\)-shift in the previous equation. This allows small variations of the total magnetic length.

Let \(F_{E}\) (respectively \(F_{S}, F_{L}\) ) be the fringe field coefficient attached to the entrance (respectively exit, lateral) EFB. At any node of the map mesh, the resulting value of the fringe field coefficient (eq. 5.4.13) is
\[
\mathcal{F}(R, \theta)=F_{E} * F_{S} * F_{L}
\]

In particular, \(F_{L} \equiv 1\) if no lateral EFB is requested.

\section*{The Mesh of the Field Map}

The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial step is given by
\[
\delta R=\frac{R M A X-R M I N}{I R M A X-1}
\]
and the angular step by
\[
\delta \theta=\frac{A T}{I A M A X-1}
\]
where RMINand RMAX are the lower and upper radial limits of the field map, and \(A T\) is its total angular aperture (Fig. 11B). IRMAX and IAMAX are the total number of nodes in the radial and angular directions.

\section*{Simulating Field Defects and Shims}

Once the initial map is calculated, it is possible to modify it by means of the parameter NBS, so as to simulate field defects or shims.

If NBS \(=\mathbf{- 2}\), the map is globally modified by a perturbation proportional to \(R-R_{0}\), where \(R_{0}\) is an arbitrary radius, with an amplitude \(\Delta B_{Z} / B_{0}\), so that \(B_{Z}\) at the nodes of the mesh is replaced by
\[
B_{Z} *\left(1+\frac{\Delta B_{Z}}{B_{0}} \frac{R-R_{0}}{\text { RMAX-RMIN }}\right)
\]

If \(\operatorname{NBS}=\mathbf{- 1}\), the perturbation is proportional to \(\theta-\theta_{0}\), and \(B_{Z}\) is replaced by
\[
B_{Z} *\left(1+\frac{\Delta B_{Z}}{B_{0}} \frac{\theta-\theta_{0}}{A T}\right)
\]

If NBS \(\geq \mathbf{1}\), then \(\operatorname{NBS}\) shims are introduced at positions \(\frac{R_{1}+R_{2}}{2}, \frac{\theta_{1}+\theta_{2}}{2}\) (Fig. 14) [38] The initial field map is modified by shims with second order profiles given by
\[
\theta=\left(\gamma+\frac{\alpha}{\mu}\right) \beta \frac{X^{2}}{\rho^{2}}
\]
where \(X\) is shown in Fig. 12, \(\rho=\frac{R_{1}+R_{2}}{2}\) is the central radius, \(\alpha\) and \(\gamma\) are the angular limits of the shim, \(\beta\) and \(\mu\) are parameters.
At each shim, the value of \(B_{Z}\) at any node of the initial map is replaced by
\[
B_{Z} *\left(1+F \theta * F R * \frac{\Delta B_{Z}}{B_{0}}\right)
\]
where \(F \theta=0\) or \(F R=0\) outside the shim, and \(F \theta=1\) and \(F R=1\) inside.

\section*{Extrapolation Off Median Plane}

The vector field \(\vec{B}\) and its derivatives in the median plane are calculated by means of a second or fourth order polynomial interpolation, depending on the value of the parameter \(\operatorname{IORDRE}\) (IORDRE \(=2,25\) or 4, see section 1.4.2). The transformation from polar to Cartesian coordinates is performed following eqs (1.4.9 or 1.4.10). Extrapolation off median plane is then performed by means of Taylor expansions, following the procedure described in section 1.3.3.

\section*{DIPOLES : Dipole magnet \(N\)-tuple, polar frame [42, 43]}

DIPOLES works much like DIPOLE as to the field modelling, yet with the particularity that it allows positioning up to 5 such dipoles within the angular sector with full aperture \(A T\) thus allowing accounting for overlapping fringe fields. This is done in the following way \({ }^{5}\).

The dimensioning of the magnet is defined by
\(A T\) : total angular aperture
\(R M\) : mean radius used for the positioning of field boundaries
For each one of the \(N=1\) to 5 dipoles of the \(N\)-tuple, the 2 effective field boundaries (entrance and exit EFBs) from which the dipole field (eqs. 5.4.14, 5.4.15) is drawn are defined from geometrical boundaries, the shape and position of which are determined by the following parameters (in the same manner as in DIPOLE, DIPOLE-M) (see Fig. 11-A, p. 92, and Fig. 22)
\[
\begin{array}{ll}
A C N_{i} & : \text { arbitrary inner angle, used for EFBs positioning } \\
\omega & : \text { azimuth of an EFB with respect to } A C N \\
\theta & : \text { angle of an EFB with respect to its azimuth (wedge angle) } \\
R_{1}, R_{2} & : \text { radius of curvature of an EFB } \\
U_{1}, U_{2} & : \text { extent of the linear part of an EFB }
\end{array}
\]

\section*{Calculation of the Field From a Single Dipole}

The magnetic field is calculated in polar coordinates. At all \((R, \theta)\) in the median plane \((Z=0)\), the magnetic field due a single one (index \(i\) ) of the dipoles of a \(N\)-tuple magnet can take either form, upon option,
\[
\begin{gather*}
B_{Z i}(R, \theta)=B_{Z 0, i} \mathcal{F}_{i}(R, \theta)\left(1+b_{1_{i}}\left(R-R M_{i}\right) / R M_{i}+b_{2_{i}}\left(R-R M_{i}\right)^{2} / R M_{i}^{2}+\ldots\right)  \tag{i}\\
B_{Z}(R, \theta)=B_{Z 0, i}+\sum_{i=1}^{N} \mathcal{F}_{i}(R, \theta)\left(b_{1_{i}}\left(R-R M_{i}\right)+b_{2_{i}}\left(R-R M_{i}\right)^{2}+\ldots\right) \tag{5.4.14}
\end{gather*}
\]
wherein \(B_{Z_{0, i}}\) is a reference field, at reference radius \(R M_{i}\), and \(\mathcal{F}(R, \theta)\) is the fringe field coefficient, see below. This field model is proper to simulate for instance chicane dipoles, cyclotron or FFAG magnets, etc.


Figure 22: Definition of a dipole triplet using the DIPOLES or FFAG procedures.

\section*{Calculation of the Fringe Field Coefficient}

In a dipole, a realistic extent of the fringe field, \(g\), is associated with each EFB, and a fringe field coefficient \(F\) is calculated.
\({ }^{5}\) FFAG can be referred to as another instance of a procedure based on such method.
\(F\) is an exponential type fringe field (Fig. 12, page 94) given by [37]
\[
F=\frac{1}{1+\exp P(d)}
\]
wherein \(d\) is the distance to the EFB and depends on \((R, \theta)\), and
\[
P(d)=C_{0}+C_{1}\left(\frac{d}{g}\right)+C_{2}\left(\frac{d}{g}\right)^{2}+C_{3}\left(\frac{d}{g}\right)^{3}+C_{4}\left(\frac{d}{g}\right)^{4}+C_{5}\left(\frac{d}{g}\right)^{5}
\]

In addition, \(g\) is made dependent of \(R\) (a way to simulate the effect of variable gap size on fringe field extent), under the form
\[
g(R)=g_{0}(R M / R)^{\kappa}
\]

This dependence is accounted for rigorously if the interpolation method (see below) is used, or else to order zero (derivatives of \(g(R)\) are not considered) if the analytic method (below) is used.
Let \(F_{E}\) (respectively \(F_{S}\) ) be the fringe field coefficient attached to the entrance (respectively exit) EFB ; at any position on a trajectory the resulting value of the fringe field coefficient is taken to be
\[
\begin{equation*}
\mathcal{F}_{i}(R, \theta)=F_{E} * F_{S} \tag{5.4.16}
\end{equation*}
\]

\section*{Calculation of the Field Resulting From all \(N\) Dipoles}

Now, accounting for \(N\) neighboring dipoles in an \(N\)-tuple, the mid-plane field and field derivatives are obtained by addition of the contributions of the \(N\) dipoles taken separately, namely
\[
\begin{align*}
B_{Z}(R, \theta) & =\sum_{i=1, N} B_{Z i}(R, \theta)  \tag{5.4.17}\\
\frac{\partial^{k+l} \vec{B}_{Z}(R, \theta)}{\partial \theta^{k} \partial r^{l}} & =\sum_{i=1, N} \frac{\partial^{k+l} \vec{B}_{Z i}(R, \theta)}{\partial \theta^{k} \partial r^{l}} \tag{5.4.18}
\end{align*}
\]

Note that, in doing so it is not meant that field superposition does apply in reality, it is just meant to provide the possibility of obtaining a realistic field shape, that would for instance closely match (using appropriate \(C_{0}-C_{5}\) sets of coefficients) 3-D field simulations obtained from magnet design codes.

\section*{Calculation of the Mid-plane Field Derivatives}

Two methods have been implemented to calculate the field derivatives in the median plane (Eq. 5.4.17), based on either analytical expressions derived from the magnet geometrical description, or classical numerical interpolation.
The first method has the merit of insuring best symplecticity in principle and fastest tracking. The interest of the second method is in its facilitating possible changes in the mid-plane magnetic field model \(B_{Z}(R, \theta)\), for instance if simulations of shims, defects, or special \(R, \theta\) field dependence need to be introduced.

Analytical method [44] :
The starting ingredients are, on the one hand distances to the EFBs,
\[
d(R, \theta)=\sqrt{\left(x(R, \theta)-x_{0}(R, \theta)\right)^{2}+\left(y(R, \theta)-y_{0}(R, \theta)\right)^{2}}
\]
to be computed for the two cases \(d_{\text {Entrance }}, d_{\text {Exit }}\), and on the other hand the expressions of the coordinates of particle position \(M\) and its projection \(P\) on the EFB in terms of the magnet geometrical parameters, namely
\[
\begin{aligned}
x(R, \theta) & =\cos (A C N-\theta)-R M \\
y(R, \theta) & =R \sin (A C N-\theta) \\
x_{P}(R, \theta) & =\sin (u)\left(y(R, \theta)-y_{b}\right) / 2+x_{b} \sin ^{2}(u)+x(R, \theta) \cos ^{2}(u) \\
y_{P}(R, \theta) & =\sin (u)\left(x(R, \theta)-x_{b}\right) / 2+y_{b} \cos ^{2}(u)+y(R, \theta) \sin ^{2}(u)
\end{aligned}
\]
with \(x_{b}, y_{b}, u\) parameters drawn from the magnet geometry (sector angle, wedge angle, face curvatures, etc.).
These ingredients allow calculating the derivatives \(\frac{\partial^{u+v} x(R, \theta)}{\partial \theta^{u} \partial r^{v}}, \frac{\partial^{u+v} y(R, \theta)}{\partial \theta^{u} \partial r^{v}}, \frac{\partial^{u+v} x_{0}(R, \theta)}{\partial \theta^{u} \partial r^{v}}, \frac{\partial^{u+v} y_{0}(R, \theta)}{\partial \theta^{u} \partial r^{v}}\), which, in turn, intervene in the derivatives of the compound functions \(\frac{\partial^{u+v} F(R, \theta)}{\partial \theta^{u} \partial r^{v}}, \frac{\partial^{u+v} p(R, \theta)}{\partial \theta^{u} \partial r^{v}}\), \(\frac{\partial^{u+v} d(R, \theta)}{\partial \theta^{u} \partial r^{v}}\).

\section*{Interpolation method :}

The expression \(B_{Z}(R, \theta)\) in Eq. 5.4 .17 is, in this case, computed at the \(n \times n\) nodes ( \(n=3\) or 5 in practice) of a "flying" interpolation grid in the median plane centered on the projection \(m_{0}\) of the actual particle position \(M_{0}\) as schemed in Fig. 23. A polynomial interpolation is involved, of the form
\[
B_{Z}(R, \theta)=A_{00}+A_{10} \theta+A_{01} R+A_{20} \theta^{2}+A_{11} \theta R+A_{02} R^{2}
\]
that yields the requested derivatives, using
\[
A_{k l}=\frac{1}{k!l!} \frac{\partial^{k+l} B}{\partial \theta^{k} \partial r^{l}}
\]

Note that, the source code contains the explicit analytical expressions of the coefficients \(A_{k l}\) solutions of the normal equations, so that the operation is not CPU time consuming.


Figure 23: Interpolation method. \(m_{0}\) and \(m_{1}\) are the projections in the median plane of particle positions \(M_{0}\) and \(M_{1}\) and separated by \(\delta s\), projection of the integration step.

\section*{Extrapolation Off Median Plane}

From the vertical field \(\vec{B}\) and derivatives in the median plane, first a transformation from polar to Cartesian coordinates is performed, following eqs (1.4.9 or 1.4.10), then, extrapolation off median plane is performed by means of Taylor expansions, following the procedure described in section 1.3.3.

\section*{Sharp Edge}

Sharp edge field fall-off at a field boundary can only be simulated if the following conditions are fulfilled :
- entrance (resp. exit) field boundary coincides with entrance (resp. exit) dipole limit (it means in particular, see Fig. 11, \(\omega^{+}=A C E N T\) (resp. \(\omega^{-}=-(A T-A C E N T)\) ), together with \(\theta=0\) at entrance (resp. exit) EFBs),
- analytical method for calculation of the mid-plane field derivatives is used.

\section*{DODECAPO : Dodecapole magnet (Fig. 24)}

The meaning of parameters for DODECAPO is the same as for QUADRUPO.
In fringe field regions the magnetic field \(\vec{B}(X, Y, Z)\) and its derivatives up to fourth order are derived from the scalar potential approximated to the 6th order in \(Y\) and \(Z\)
\[
\begin{aligned}
V(X, Y, Z) & =G(X)\left(Y^{4}-\frac{10}{3} Y^{2} Z^{2}+Z^{4}\right) Y Z \\
\text { with } G_{0} & =\frac{B_{0}}{R_{0}^{5}}
\end{aligned}
\]

The modelling of the fringe field form factor \(G(X)\) is described under QUADRUPO, p. 147.
Outside fringe field regions, or everywhere in sharp edge dodecapole ( \(\lambda_{E}=\lambda_{S}=0\) ), \(\vec{B}(X, Y, Z)\) in the magnet is given by
\[
\begin{aligned}
& B_{X}=0 \\
& B_{Y}=G_{0}\left(5 Y^{4}-10 Y^{2} Z^{2}+Z^{4}\right) Z \\
& B_{Z}=G_{0}\left(Y^{4}-10 Y^{2} Z^{2}+5 Z^{4}\right) Y
\end{aligned}
\]


Figure 24: Dodecapole magnet

\section*{DRIFT or ESL : Field free drift space}

DRIFT or ESL allow introduction of a drift space with length XL with positive or negative sign, anywhere in a structure. The associated equations of motion are (Fig. 25)
\[
\begin{aligned}
Y_{2} & =Y_{1}+X L * \operatorname{tg} T \\
Z_{2} & =Z_{1}+\frac{X L}{\cos T} \operatorname{tg} P \\
S A R_{2} & =S A R_{1}+\frac{X L}{\cos T * \cos P}
\end{aligned}
\]


Figure 25: Transfer of particles in a drift space.

\section*{EBMULT : Electro-magnetic multipole}

EBMULT simulates an electro-magnetic multipole, by addition of electric \((\vec{E})\) and magnetic \((\vec{B})\) multipole components (dipole to 20-pole). \(\vec{E}\) and its derivatives \(\frac{\partial^{i+j+k} \vec{E}}{\partial X^{i} \partial Y^{j} \partial Z^{k}}(i+j+k \leq 4)\) are derived from the general expression of the multipole scalar potential (eq. 1.3.5), followed by a \(\frac{\pi}{2 n}\) rotation ( \(n=1,2,3, \ldots\) ) (see also ELMULT). \(\vec{B}\) and its derivatives are derived from the same general potential, as described in section 1.3.7 (see also MULTIPOL).

The entrance and exit fringe fields of the \(\vec{E}\) and \(\vec{B}\) components are treated separately, in the same way as described under ELMULT and MULTIPOL, for each one of these two fields. Wedge angle correction is applied in sharp edge field model if \(\vec{B} 1\) is non zero, as in MULTIPOL. Any of the \(\vec{E}\) or \(\vec{B}\) multipole field component can be \(X\)-rotated independently of the others.

Use PARTICUL prior to EBMULT, for the definition of particle mass and charge.


Figure 26: An example of \(\vec{E}, \vec{B}\) multipole : the achromatic quadrupole (known for its allowing null second order chromatic aberrations [45]).

\section*{EL2TUB : Two-tube electrostatic lens}

The lens is cylindrically symmetric about the \(X\)-axis.
The length and potential of the first (resp. second) electrode are \(X 1\) and \(V 1\) ( \(X 2\) and \(V 2\) ). The distance between the two electrodes is \(D\), and their inner radius is \(R_{0}\) (Fig. 27). The model for the electrostatic potential along the axis is [46]
\[
\begin{array}{ll}
V(X)=\frac{V_{2}-V_{1}}{2} \operatorname{th} \frac{\omega x}{R_{0}}\left[+\frac{V_{1}+V_{2}}{2}\right] & \text { if } D=0 \\
V(X)=\frac{V_{2}-V_{1}}{2} \frac{1}{2 \omega D / R_{0}} \ln \frac{\operatorname{ch} \omega \frac{x+D}{R_{0}}}{\operatorname{ch} \omega \frac{x-D}{R_{0}}}\left[+\frac{V_{1}+V_{2}}{2}\right] & \text { if } D \neq 0
\end{array}
\]
( \(x=\) distance from half-way between the electrodes ; \(\omega=1.318\); th \(=\) hyperbolic tangent ; ch = hyperbolic cosine) from which the field \(\vec{E}(X, Y, Z)\) and its derivatives are derived following the procedure described in section 1.3.1 (note that they don't depend on the constant term \(\left[\frac{V_{1}+V_{2}}{2}\right]\) which disappears when differentiating).

Use PARTICUL prior to EL2TUB, for the definition of particle mass and charge.


Figure 27: Two-electrode cylindrical electric lens.

\section*{ELMIR : Electrostatic N-electrode mirror/lens, straight slits}

The device works as mirror or lens, horizontal or vertical. It is made of \(N\) 2-plate electrodes and has mid-plane symmetry.

Electrode lengths are \(L 1, L 2, \ldots, L N . D\) is the mirror/lens gap. The model for the \(Y\)-independent electrostatic potential is (after Ref. [47, p.412])
\[
V(X, Z)=\sum_{i=2}^{N} \frac{V i-V i-1}{\pi} \arctan \frac{\sinh (\pi(X-X i-1) / D)}{\cos (\pi Z / D)}
\]
where \(V i\) are the potential at the \(N\) electrodes (and normally \(V 1=0\) refers to the incident beam energy), \(X i\) are the locations of the zero-length slits, \(X\) is the distance from the origin taken at the first slit (located at \(X 1 \equiv 0\) between the first and second electrodes). From \(V(X, Z)\) the field \(\vec{E}(X, Y, Z)\) and derivatives are deduced following the procedure described in section 1.3.7 (page 27).
The total X-extent of the mirror/lens is \(L=\sum_{i=1}^{N} L i\).
In the mirror mode (option \(M T=11\) for vertical mid-plane or \(M T=12\) for horizontal mid-plane) stepwise integration starts at \(X=-L 1\) (entrance of the first electrode) and terminates either when back to \(X=-L 1\) or when reaching \(X=L-L 1\) (end of the \(N-t h\) electrode). In the latter case particles are stopped with their index \(I E X\) set to -8 (see section 5.6 .11 on page 184). Normally \(X 1\) should exceed \(3 D\) (enough that \(V(X<X 1)\) have negligible effect in terms of trajectory behavior).
In the lens mode (option flag \(M T=21\) for vertical mid-plane or \(M T=22\) for horizontal mid-plane) stepwise integration starts at \(X=-L 1\) (entrance of the first electrode) and terminates either when reaching \(X=L-L 1\) (end of the \(N-t h\) electrode) or when the particle deflection exceeds \(\pi / 2\). In the latter case the particle is stopped with their index \(I E X\) set to -3 .
Use PARTICUL prior to ELMIR, for the definition of particle mass and charge.


Figure 28: Electrostatic N-electrode mirror/lens, straight slits, in the case \(N=3\), in horizontal mirror mode ( \(M T=11\) ).
Possible non-zero entrance quantities \(Y C E, A L E\) should be specified using CHANGREF, or using KPOS=3 with YCE and \(A L E=\) half-deviation matched to the reference trajectory.

\section*{ELMIRC : Electrostatic N-electrode mirror/lens, circular slits [47]}

The device works as mirror or lens, horizontal or vertical. It is made of \(N\) 2-plate electrodes and has mid-plane symmetry \({ }^{6}\).

Electrode slits are circular, concentric with radii \(R 1, R 2, \ldots, R \mathrm{~N}-1, D\) is the mirror/lens gap. The model for the mid-plane ( \(Z=0\) ) radial electrostatic potential is (after Ref. [47, p.443])
\[
V(r)=\sum_{i=2}^{N} \frac{V i-V i-1}{\pi} \arctan \left(\sinh \frac{\pi(r-R i-1)}{D}\right)
\]
where \(V i\) are the potential at the \(N\) electrodes (and normally \(V 1=0\) refers to the incident beam energy). \(r\) is the current radius.
The mid-plane field \(\vec{E}(r)\) and its \(r\)-derivatives are first derived by differentiation, then \(\vec{E}(r, Z)\) and derivatives are obtained from Taylor expansions and Maxwell relations. Eventually a transformation to the rotating frame provides \(\vec{E}(X, Y, Z)\) and derivatives as involved in eq. 1.2.15.
Stepwise integration starts at entrance (defined by \(R E, T E\) ) of the first electrode and terminates when rotation of the reference rotating frame ( \(R M, X, Y\) ) has reached the value AT. Normally, \(R 1-R E\) and \(R 1-R S\) should both exceed \(3 D\) (so that potential tails have negligible effect in terms of trajectory behavior).
Positioning of the element is performed by means of KPOS (see section 5.6.8).
Use PARTICUL prior to ELMIRC, for the definition of particle mass and charge.


Figure 29: Electrostatic N -electrode mirror/lens, circular slits, in the case \(N=3\), in horizontal mirror mode.

\section*{ELMULT : Electric multipole}

The simulation of multipolar electric field \(\vec{M}_{E}\) proceeds by addition of the dipolar ( \(\vec{E} 1\) ), quadrupolar \((\vec{E} 2)\), sextupolar ( \(\vec{E} 3\) ), etc., up to 20-polar ( \(\vec{E} 10\) ) components, and of their derivatives up to fourth order, following
\[
\begin{aligned}
& \vec{M}_{E}=\vec{E} 1+\vec{E} 2+\vec{E} 3+\ldots+\vec{E} 10 \\
& \frac{\partial \vec{M}_{E}}{\partial X}=\frac{\partial \vec{E} 1}{\partial X}+\frac{\partial \vec{E} 2}{\partial X}+\frac{\partial \vec{E} 3}{\partial X}+\ldots+\frac{\partial \vec{E} 10}{\partial X} \\
& \frac{\partial^{2} M_{E}}{\partial X \partial Z}=\frac{\partial^{2} \vec{E} 1}{\partial X \partial Z}+\frac{\partial^{2} \vec{E} 2}{\partial X \partial Z}+\frac{\partial^{2} \vec{E} 3}{\partial X \partial Z}+\ldots+\frac{\partial^{2} \vec{E} 10}{\partial X \partial Z} \\
& \text { etc. }
\end{aligned}
\]

The independent components \(\vec{E} 1\) to \(\vec{E} 10\) and their derivatives up to the fourth order are calculated by differentiating the general multipole potential given in eq. 1.3.5 (page 28), followed by a \(\frac{\pi}{2 n}\) rotation about the \(X\)-axis, so that the so defined right electric multipole of order \(n\), and of strength [45, 48]
\[
K_{n}=\frac{1}{2} \frac{\gamma}{\gamma^{2}-1} \frac{V_{n}}{R_{0}^{n}}
\]
( \(V_{n}=\) potential at the electrode, \(R_{0}=\) radius at pole tip, \(\gamma=\) relativistic Lorentz factor of the particle) has the same focusing effect as the right magnetic multipole of order \(n\) and strength \(K_{n}=\frac{B_{n}}{R_{0}^{n-1} B \rho}\left(B_{n}=\right.\) field at pole tip, \(B \rho=\) particle rigidity, see MULTIPOL).

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone \(X_{E}\) at entrance and \(X_{S}\) at exit, as for QUADRUPO, and by the extent \(\lambda_{E}\) at entrance, \(\lambda_{S}\) at exit. The fringe field extents for the dipole component are \(\lambda_{E}\) and \(\lambda_{S}\). The fringe field extent for the quadrupolar (sextupolar, ..., 20-polar) component is given by a coefficient \(E_{2}\left(E_{3}, \ldots, E_{10}\right)\) at entrance, and \(S_{2}\left(S_{3}, \ldots, S_{10}\right)\) at exit, such that the fringe field extent is \(\lambda_{E} * E_{2}\left(\lambda_{E} * E_{3}, \ldots, \lambda_{E} * E_{10}\right)\) at entrance and \(\lambda_{S} * S_{2}\left(\lambda_{S} * S_{3}, \ldots, \lambda_{S} * S_{10}\right)\) at exit.

If \(\lambda_{E}=0\left(\lambda_{S}=0\right)\) the multipole lens is considered to have a sharp edge field at entrance (exit), and then, \(X_{E}\left(X_{S}\right)\) is forced to zero (for the mere purpose of saving computing time).

If \(E_{i}=0\left(S_{i}=0\right)(i=2,10)\), the entrance (exit) fringe field for multipole component \(i\) is considered as a sharp edge field.

Any multipole component \(\vec{E} i\) can be rotated independently by an angle \(R X i\) around the longitudinal \(X\) axis, for the simulation of positioning defects, as well as skew lenses.
Use PARTICUL prior to ELMULT, for the definition of particle mass and charge.


Figure 30: An electric multipole combining skew-quadrupole \((\vec{E} 2 \neq\) \(\overrightarrow{0}, \vec{R} 2=\pi / 4)\) and skew-octupole \((\vec{E} 4 \neq \overrightarrow{0}, \vec{R} 4=\pi / 8)\) components \((\vec{E} 1=\vec{E} 3=\vec{E} 5=\ldots=\vec{E} 10=\overrightarrow{0})[48]\).

\section*{ELREVOL : 1-D uniform mesh electric field map}

ELREVOL reads a 1-D axial field map from a storage data file, whose content must fit the following FORTRAN reading sequence
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
DO 1 I=1, IX
IF (BINARY) THEN
READ(NL) X(I), EX(I)
ELSE
READ(NL,*) X(I), EX(I)
ENDIF
1 CONTINUE

```
where \(I X\) is the number of nodes along the (symmetry) \(X\)-axis, \(X(I)\) their coordinates, and \(E X(I)\) are the values of the \(X\) component of the field. \(E X\) is normalized with ENORM prior to ray-tracing. As well the longitudinal coordinate X is normalized with a XNORM coefficient (useful to convert to centimeters, the working units in zgoubi).
\(X\)-cylindrical symmetry is assumed, resulting in \(E Y\) and \(E Z\) taken to be zero on axis. \(\vec{E}(X, Y, Z)\) and its derivatives along a particle trajectory are calculated by means of a 5 -points polynomial interpolation followed by second order off-axis extrapolation (see sections 1.3.1 and 1.4.1).
Entrance and/or exit integration boundaries may be defined in the same way as in CARTEMES by means of the flag \(I D\) and coefficients \(A, B, C, A^{\prime}, B^{\prime}, C^{\prime}\).
Use PARTICUL prior to ELREVOL, for the definition of particle mass and charge.

\section*{EMMA : 2-D Cartesian or cylindrical mesh field map for EMMA FFAG}

EMMA is dedicated to the reading and treatment of 2-D or 3-D Cartesian mesh field maps representing the EMMA FFAG cell quadrupole doublet \({ }^{7}\) [51,52].

EMMA can sum up independent field maps of each of the two quadrupoles, with each its scaling coefficient. The two maps can be radially positioned independently of one another at \(Y_{F}, Y_{D}\) respectively, just like the actual EMMA quadrupoles. In particular,
\(M O D\) : operational and map FORMAT reading mode ;
\(M O D \leq 19\) : Cartesian mesh ;
\(M O D \geq 20\) : cylindrical mesh.
\(M O D=0\) : two 2D maps, one representing QF , one reprensenting QD . A single map, superimposition of both, is built prior to tracking and used for tracking.
\(M O D=1\) : two 2D maps, one representing QF , one reprensenting QD , a resulting single map is devised in the following way : QF_new is interpolated from QF with \(\mathrm{dr}=\mathrm{xF}\), QD_new is interpolated from QD with \(\mathrm{dr}=\mathrm{xD}\). A single map, superimposition of both, is built prior to tracking and used for tracking.

The parameters that move/position the maps, as \(\left(Y_{F}, Y_{D}\right)\), are accessible from the FIT, allowing to adjust the cell tunes.

EMMA works much like TOSCA. Refer to that keyword, and to the FORTRAN file emmac.f, for details.

\footnotetext{
\({ }^{7}\) The stepwise ray-tracing code Zgoubi is the on-line model code for the worlds first non-scaling FFAG experiment.
}

FFAG : FFAG magnet, \(N\)-tuple \([42,43]\)
FFAG works much like DIPOLES as to the field modelling, apart from the radial dependence of the field, \(B=B_{0}\left(r / r_{0}\right)^{k}\), so-called "scaling". Note that DIPOLES does similar job by using a Taylor \(r\)-expansion of \(B_{0}\left(r / r_{0}\right)^{k}\).

The FFAG procedure allows overlapping of fringe fields of neighboring dipoles, thus simulating in some sort the field in a dipole \(N\)-tuple - as for instance in an FFAG doublet or triplet. A detailed application, with five dipoles, can be found in Ref. [42]. This is done in the way described below.
The dimensioning of the magnet is defined by
\(A T\) : total angular aperture
\(R M\) : mean radius used for the positioning of field boundaries
For each one of the \(N=1\) to (maximum) 5 dipoles of the \(N\)-tuple, the two effective field boundaries (entrance and exit EFBs) from which the dipole field is drawn are defined from geometric boundaries, the shape and position of which are determined by the following parameters (in the same manner as in DIPOLE, DIPOLE-M) (see Fig. 11-A page 92, and Fig. 31)
\(A C N_{i}\) : arbitrary inner angle, used for EFBs positioning
\(\omega \quad\) : azimuth of an EFB with respect to \(A C N\)
\(\theta \quad:\) angle of an EFB with respect to its azimuth (wedge angle)
\(R_{1}, R_{2}\) : radius of curvature of an EFB
\(U_{1}, U_{2}\) : extent of the linear part of an EFB


Figure 31: Definition of a dipole \(N\)-tuple ( \(N=3\), a triplet here) using the DIPOLES or \(F F A G\) procedures.

\section*{Calculation of the Field From a Single Dipole}

The magnetic field is calculated in polar coordinates. At all \((R, \theta)\) in the median plane \((z=0)\), the magnetic field due a single one (index \(i\) ) of the dipoles of a \(N\)-tuple FFAG magnet is written
\[
B_{Z_{i}}(R, \theta)=B_{Z_{0, i}} \mathcal{F}_{i}(R, \theta)\left(R / R_{M}\right)^{K_{i}}
\]
wherein \(B_{Z 0, i}\) is a reference field, at reference radius \(R M_{i}\), whereas \(\mathcal{F}(R, \theta)\) is calculated as described below.

\section*{Calculation of \(\mathcal{F}_{i}(R, \theta)\)}

The fringe field coefficient \(\mathcal{F}_{i}(R, \theta)\) associated with a dipole is computed as in the procedure DIPOLES (eq. 5.4.16), including (rigorously if the interpolation method is used, see page 119, or to order zero if the analytic method is used, see page 120) radial dependence of the gap size
\[
\begin{equation*}
g(R)=g_{0}(R M / R)^{\kappa} \tag{5.4.19}
\end{equation*}
\]
so to simulate the effect of gap shaping on \(\left.B_{Z i}(R, \theta)\right|_{R}\) field fall-off, over the all radial extent of a scaling FFAG dipole (with normally - but not necessarily in practice - \(\kappa \approx K_{i}\) ).

\section*{Calculation of the Field Resulting From All \(N\) Dipoles}

For the rest, namely, calculation of the full field at particle position from the \(N\) dipoles, analytical calculation or numerical interpolation of the mid-plane field derivatives, extrapolation off median plane, etc., things are performed exactly as in the case of the DIPOLES procedure (see page 119).

\section*{Sharp Edge}

Sharp edge field fall-off at a field boundary can only be simulated if the following conditions are fulfilled :
- entrance (resp. exit) field boundary coincides with entrance (resp. exit) dipole limit (it means in particular, see Fig. 11, \(\omega^{+}=A C E N T\) (resp. \(\omega^{-}=-(A T-A C E N T)\) ), together with \(\theta=0\) at entrance (resp. exit) EFBs),
- analytical method for calculation of the mid-plane field derivatives is used.

FFAG-SPI : Spiral FFAG magnet, \(N\)-tuple [43, 49]

FFAG-SPI works much like FFAG as to the field modelling, with essentially a different axial dependence.
The FFAG-SPI procedure allows overlapping of fringe fields of neighboring dipoles, thus simulating in some sort the field in a dipole \(N\)-tuple (similar to Fig. 31, page 132). This allows for instance accounting for fringe field effects, or clamps, as schemed in Fig. 32.

The dimensioning of the magnet is defined by
```

AT : total angular aperture
RM : mean radius used for the positioning of field boundaries

```

For each one of the \(N=1\) to (maximum) 5 dipoles of the \(N\)-tuple, the two effective field boundaries (entrance and exit EFBs) from which the dipole field is drawn are defined from geometric boundaries, the shape and position of which are determined by the following parameters
\(A C N_{i}\) : arbitrary inner angle, used for EFBs positioning
\(\omega \quad\) : azimuth of an EFB with respect to \(A C N\)
\(\xi \quad:\) spiral angle
with \(A C N_{i}\) and \(\omega\) as defined in Fig. 32 (similar to what can be found in Figs. 31 and 11-A).


Figure 32: A \(N\)-tuple spiral sector FFAG magnet ( \(N=3\) here, simulating active field clamps at entrance and exit side of a central dipole).

\section*{Calculation of the Field From a Single Dipole}

The magnetic field is calculated in polar coordinates. At all \((R, \theta)\) in the median plane \((Z=0)\), the magnetic field due a single one (index \(i\) ) of the dipoles of a \(N\)-tuple spiral FFAG magnet is written
\[
B_{Z i}(R, \theta)=B_{Z 0, i} \mathcal{F}_{i}(R, \theta)\left(R / R_{M}\right)^{K_{i}}
\]
wherein \(B_{Z 0, i}\) is a reference field, at reference radius \(R M_{i}\), whereas \(\mathcal{F}(R, \theta)\) is calculated as described below.

\section*{Calculation of \(\mathcal{F}_{i}(R, \theta)\)}

The fringe field coefficient \(\mathcal{F}_{i}(R, \theta)\) associated with a dipole is computed as in the procedure DIPOLES (eq. 5.4.16), including radial dependence of the gap size
\[
\begin{equation*}
g(R)=g_{0}(R M / R)^{\kappa} \tag{5.4.20}
\end{equation*}
\]
so to simulate the effect of gap shaping on \(\left.B_{Z_{i}}(R, \theta)\right|_{R}\) field fall-off, over the all radial extent of the dipole (with normally - yet not necessarily in practice \(-\kappa \approx K_{i}\) ).

\section*{Calculation of the Full Field From All \(N\) Dipoles}

For the rest, namely calculation of the full field at particle position, as resulting from the \(N\) dipoles, calculation of the mid-plane field derivatives, extrapolation off median plane, etc., things are performed in the same manner as for the DIPOLES procedure (see page 119).

\section*{GOTO : Branching statement [53]}
******** To be completed \({ }^{* * * * * * * * * * * * * ~}\)
GOTO is a conditional goto, working much like the fortran branching statement. It sends the execution pointer to some keyword (e.g., "MARKER") in the optical sequence, characterized by one or two specific labels.

Available options:
- pass number

GOTO accepts GOBACK as an argument, this sends the execution pointer back to the next keyword immediately following the calling GOTO.

GOTO/GOBACK for instance can be used in RLA type of structures, to direct the zgoubi amongst the series of spreaders of mergers. A example is given in ********. \(^{\text {. }}\)
An example of an input data file of a recirculator ring, structured with GOTO statements, can be found in page 243.

\section*{INCLUDE : File include statement}

INCLUDE works much like the fortran "include" statement : it allows a fragment of an input data list to be taken from a separate file ; when INCLUDE is met in the input data file, the content of the separate file, or part of it, is inserted in the data sequence.
The INCLUDE statement takes the following arguments :
- the number of input files to be included,
- their names, in as many lines, one name per line.

The file name may be followed by '[LBL_1A,LBL_2A:LBL_1B,LBL_2B]', with any of these four labels optional, as follows :
- LBL_1A [LBL_2A] identify to the first (and possibly second) label of some keyword in the include file, from which the include process will start (whatever precedes will be ignored). If none of 'LBL_1A, \(\ldots 2\) ' is declared, the include process starts from the begining of the include file. Declaring the second label only takes the form '[,LBL_2A:LBL_1B,LBL_2B]'.
- LBL_1B [LBL_2B] identify to the first (and second) label of some keyword in the include file, at which the include process will end (whatever follows will be ignored). If none of ' \(L B L_{-} 1 B, \ldots 2\) ' is declared, the include file will be included down to its end. Declaring the second label only takes the form '[LBL_1A,LBL_2A: ,LBL_2B]'.
Because zgoubi uses the reserved name zgoubi.dat as its standard working data file name, and as the presence of INCLUDE will cause the input data list to be changed (it is expanded to include the content of all included files), the user's input data file is no longer allowed the name zgoubi.dat if it contains INCLUDE keyword(s) (zgoubi.dat is reserved as the name of the expanded input file to zgoubi). This is overcome by using the command 'zgoubi -fileIn myFile' instead, with myFile \(\neq\) zgoubi.dat (see Sec. 1.2 in PART D of the guide, page 321).

An INCLUDE file may contain one or more INCLUDE. There is a limit in the allowed depth of INCLUDE statements within INCLUDE files, however high. zgoubi will warn the user when it is exceeded. It can be changed in prdata.f.
By contrast with other keywords, INCLUDE is not part on the LSTKEY.H keyword list (found in the 'include' folder). Instead, possible presence of INCLUDE in the input data file is dealt with by prdata program (prdata.f source file) in a simple way : the input data file is expanded so eliminating all INCLUDE occurences, and the expanded, complete, data list is stored in the standard zgoubi input data file zgoubi.dat. Thus zgoubi eventually actually works using a regular, complete, data list in a single input file, zgoubi.dat.
An example of an input data file of a recirculating ring, structured with INCLUDE statements, can be found in page 243.

\section*{MAP2D : 2-D Cartesian uniform mesh field map - arbitrary magnetic field [53]}

MAP2D reads a 2-D field map that provides the three components \(B_{X}, B_{Y}, B_{Z}\) of the magnetic field at all nodes of a 2-D Cartesian uniform mesh in an \((X, Y)\) plane. No particular symmetry is assumed, which allows the treatment of any type of field (e.g., solenoidal, or dipole, helical dipole, at arbitrary \(Z\) elevation - the map needs not be a mid-plane map).

The field map data file has to be be filled with a format that satisfies the FORTRAN reading sequence below (in principle compatible with TOSCA code outputs), details and possible updates are to be found in the source file'fmapw.f' :
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
DO 1 J=1,JY
DO 1 I=1,IX
IF (BINARY) THEN
READ (NL) Y(J), Z, X(I), BY(I,J), BZ(I,J), BX(I,J)
ELSE
READ (NL, 100) Y(J), Z, X(I), BY(I,J), BZ(I,J), BX(I,J)
FORMAT (1X, 6E11.4)
ENDIF
CONTINUE

```
\(I X(J Y)\) is the number of longitudinal (transverse horizontal) nodes of the 2-D uniform mesh, \(Z\) is the considered \(Z\)-elevation of the map. For binary files, FNAME must begin with 'B_' or 'b_', a flag 'BINARY' will thus be set to '.TRUE.'. The field \(\vec{B}=\left(B_{X}, B_{Y}, B_{Z}\right)\) is next normalized with BNORM, prior to raytracing. As well the coordinates \(\mathrm{X}, \mathrm{Y}\) are normalized with \(X\)-, \(Y\)-NORM coefficients (useful to convert to centimeters, the working units in zgoubi).
At each step of the trajectory of a particle, the field and its derivatives are calculated using a second or fourth degree polynomial interpolation followed by a \(Z\) extrapolation (see sections 1.3.4 page 27, 1.4.3 page 31 ). The interpolation grid is \(3 * 3\)-node for 2 nd order (option IORDRE \(=2\) ) or \(5 * 5\) for 4 th order (option IORDRE = 4).

Entrance and/or exit integration boundaries may be defined, in the same way as for CARTEMES.

\section*{MAP2D-E : 2-D Cartesian uniform mesh field map - arbitrary electric field}

MAP2D-E reads a 2-D field map that provides the three components \(E_{X}, E_{Y}, E_{Z}\) of the electric field at all nodes of a 2-D Cartesian uniform mesh in an \((X, Y)\) plane. No particular symmetry is assumed, which allows the treatment of any type of field (e.g., field of a parallel-plate mirror with arbitrary \(Z\) elevation - the map needs not be a mid-plane map).

The field map data file has to be be filled with a format that satisfies the FORTRAN reading sequence below (in principle compatible with TOSCA code outputs), details and possible updates are to be found in the source file 'fmapw.f' :
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
DO 1 J=1,JY
DO 1 I=1,IX
IF (BINARY) THEN
READ (NL) Y(J), Z, X(I), EY(I,J), EZ(I,J), EX(I,J)
ELSE
READ (NL,100) Y(J), Z, X(I), EY(I,J), EZ(I,J), EX(I,J)
FORMAT (1X, 6E11.4)
ENDIF
1
CONTINUE

```
\(I X(J Y)\) is the number of longitudinal (transverse horizontal) nodes of the 2-D uniform mesh, \(Z\) is the considered \(Z\)-elevation of the map. For binary files, FNAME must begin with 'E_' or 'b_', a flag 'BINARY' will thus be set to '.TRUE.'. The field \(\vec{E}=\left(E_{X}, E_{Y}, E_{Z}\right)\) is next normalized with ENORM, prior to raytracing. As well the coordinates \(\mathrm{X}, \mathrm{Y}\) are normalized with \(X-, Y-N O R M\) coefficients (useful to convert to centimeters, the working units in zgoubi.
At each step of the trajectory of a particle, the field and its derivatives are calculated using a second or fourth degree polynomial interpolation followed by a \(Z\) extrapolation (see sections 1.3.4 page 27, 1.4.3 page 31 ). The interpolation grid is \(3 * 3\)-node for 2 nd order (option IORDRE \(=2\) ) or \(5^{*} 5\) for 4 th order (option IORDRE = 4).

Entrance and/or exit integration boundaries may be defined, in the same way as for CARTEMES.

\section*{MARKER : Marker}

MARKER does nothing. Just a marker. No data.
As any other keyword, MARKER is allowed two LABELs. Using '.plt' as a second LABEL will cause storage of current coordinates into zgoubi.plt.

\section*{MULTIPOL : Magnetic multipole}

The simulation of multipolar magnetic field \(\vec{M}\) by MULTIPOL proceeds by addition of the dipolar \((\vec{B} 1)\), quadrupolar \((\vec{B} 2)\), sextupolar \((\vec{B} 3)\), etc., up to 20-polar \((\vec{B} 10)\) components, and of their derivatives up to fourth order, following
\[
\begin{aligned}
& \vec{M}=\vec{B} 1+\vec{B} 2+\vec{B} 3+\ldots+\vec{B} 10 \\
& \frac{\partial \vec{M}}{\partial X}=\frac{\partial \vec{B} 1}{\partial X}+\frac{\partial \vec{B} 2}{\partial X}+\frac{\partial \vec{B} 3}{\partial X}+\ldots+\frac{\partial \vec{B} 10}{\partial X} \\
& \frac{\partial^{2} \vec{M}}{\partial X \partial Z}=\frac{\partial^{2} \vec{B} 1}{\partial X \partial Z}+\frac{\partial^{2} \vec{B} 2}{\partial X \partial Z}+\frac{\partial^{2} \vec{B} 3}{\partial X \partial Z}+\ldots+\frac{\partial^{2} \vec{B} 10}{\partial X \partial Z} \\
& \text { etc. }
\end{aligned}
\]

The independent components \(\vec{B} 1, \vec{B} 2, \vec{B} 3, \ldots, \vec{B} 10\) and their derivatives up to the fourth order are calculated as described in section 1.3.7.

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone \(X_{E}\) at entrance and \(X_{S}\) at exit, as for QUADRUPO, and by the extent \(\lambda_{E}\) at entrance, \(\lambda_{S}\) at exit. The fringe field extents for the dipole component are \(\lambda_{E}\) and \(\lambda_{S}\). The fringe field for the quadrupolar (sextupolar, ..., 20-polar) component is given by a coefficient \(E_{2}\left(E_{3}, \ldots, E_{10}\right)\) at entrance, and \(S_{2}\left(S_{3}, \ldots, S_{10}\right)\) at exit, such that the extent is \(\lambda_{E} * E_{2}\left(\lambda_{E} * E_{3}, \ldots, \lambda_{E} * E_{10}\right)\) at entrance and \(\lambda_{S} * S_{2}\left(\lambda_{S} * S_{3}, \ldots, \lambda_{S} * S_{10}\right)\) at exit.

If \(\lambda_{E}=0\left(\lambda_{S}=0\right)\) the multipole lens is considered to have a sharp edge field at entrance (exit), and then, \(X_{E}\left(X_{S}\right)\) is forced to zero (for the mere purpose of saving computing time). If \(E_{i}=0\left(S_{i}=0\right)(i=2,10)\), the entrance (exit) fringe field for the multipole component \(i\) is considered as a sharp edge field. In sharp edge field model, the wedge angle vertical first order focusing effect (if \(\vec{B} 1\) is non zero) is simulated at magnet entrance and exit by a kick \(P_{2}=P_{1}-Z_{1} \tan (\epsilon / \rho)\) applied to each particle ( \(P_{1}, P_{2}\) are the vertical angles upstream and downstream of the EFB, \(Z_{1}\) is the vertical particle position at the EFB, \(\rho\) the local horizontal bending radius and \(\epsilon\) the wedge angle experienced by the particle ; \(\epsilon\) depends on the horizontal angle T).
Any multipole component \(\overrightarrow{B i}\) can be rotated independently by an angle \(R X i\) around the longitudinal \(X\) axis, for the simulation of positioning defects, as well as skew lenses.
Magnet (mis-)alignment is assured by KPOS. KPOS also allows some degrees of automatic alignment useful for periodic structures (section 5.6.8).

\section*{OCTUPOLE : Octupole magnet (Fig. 33)}

The meaning of parameters for OCTUPOLE is the same as for QUADRUPO. In fringe field regions the magnetic field \(\vec{B}(X, Y, Z)\) and its derivatives up to fourth order are derived from the scalar potential approximated to the 8-th order in \(Y\) and \(Z\)
\[
\begin{aligned}
V(X, Y, Z) & =\left(G(X)-\frac{G^{\prime \prime}(X)}{20}\left(Y^{2}+Z^{2}\right)+\frac{G^{\prime \prime \prime \prime}(X)}{960}\left(Y^{2}+Z^{2}\right)^{2}\right)\left(Y^{3} Z-Y Z^{3}\right) \\
\text { with } G_{0} & =\frac{B_{0}}{R_{0}^{3}}
\end{aligned}
\]

The modelling of the fringe field form factor \(G(X)\) is described under QUADRUPO, p. 147.
Outside fringe field regions, or everywhere in sharp edge dodecapole ( \(\lambda_{E}=\lambda_{S}=0\) ), \(\vec{B}(X, Y, Z)\) in the magnet is given by
\[
\begin{aligned}
& B_{X}=0 \\
& B_{Y}=G_{0}\left(3 Y^{2}-Z^{2}\right) Z \\
& B_{Z}=G_{0}\left(Y^{2}-3 Z^{2}\right) Y
\end{aligned}
\]


Figure 33: Octupole magnet

\section*{POISSON : Read magnetic field data from POISSON output}

This keyword allows reading a field profile \(B(X)\) from POISSON output. Let FNAME be the name of this output file (normally, FNAME = outpoi.lis) ; the data are read following the FORTRAN statements here under
```

I = 0
11 CONTINUE
I = I + 1
READ (LUN, 101,ERR=10,END=10) K, K, K, R, X(I), R, R, B(I)
FORMAT(I1, I3, I4, E15.6, 2F11.5, 2F12.3)
GOTO 11
CONTINUE
. . .

```
where \(\mathrm{X}(\mathrm{I})\) is the longitudinal coordinate, and \(\mathrm{B}(\mathrm{I})\) is the Z component of the field at a node (I) of the mesh. Ks and Rs are dummy variables appearing in the POISSON output file outpoi.lis but not used here.
From this field profile, a 2-D median plane map is built, with a rectangular and uniform mesh ; mid-plane symmetry is assumed. The field at each node \(\left(X_{i}, Y_{j}\right)\) of the map is \(B\left(X_{i}\right)\), independent of \(Y_{j}\) (i.e., the distribution is uniform in the \(Y\) direction).

For the rest, POISSON works in a way similar to CARTEMES.

\section*{POLARMES : 2-D polar mesh magnetic field map}

Similar to CARTEMES, apart from the polar mesh frame : \(I X\) is the number of angular nodes, \(J Y\) the number of radial nodes; \(X(I)\) and \(Y(J)\) are respectively the angle and radius of a node (these parameters are similar to those entering in the definition of the field map in DIPOLE-M).

\section*{PS170 : Simulation of a round shape dipole magnet}

PS170 is dedicated to a 'rough' simulation of CERN PS170 spectrometer dipole.
The field \(B_{0}\) is constant inside the magnet, and zero outside. The pole is a circle of radius \(R_{0}\), centered on the \(X\) axis. The output coordinates are generated at the distance \(X L\) from the entrance (Fig. 34).


Figure 34: Scheme of the PS170 magnet simulation.

\section*{QUADISEX, SEXQUAD : Sharp edge magnetic multipoles}

SEXQUAD defines in a simple way a sharp edge field with quadrupolar, sextupolar and octupolar components. QUADISEX adds a dipole component. The length of the element is XL. The vertical component \(B \equiv B_{Z}(X, Y, Z=0)\) of the field and its derivatives in median plane are calculated at each step using the following expressions
\[
\begin{aligned}
B & =B_{0}\left(U+\frac{N}{R_{0}} Y+\frac{B}{R_{0}^{2}} Y^{2}+\frac{G}{R_{0}^{3}} Y^{3}\right) \\
\frac{\partial B}{\partial Y} & =B_{0}\left(\frac{N}{R_{0}}+2 \frac{B}{R_{0}^{2}} Y+3 \frac{G}{R_{0}^{3}} Y^{2}\right) \\
\frac{\partial^{2} B}{\partial Y^{2}} & =B_{0}\left(2 \frac{B}{R_{0}^{2}}+6 \frac{G}{R_{0}^{3}} Y\right) \\
\frac{\partial^{3} B}{\partial Y^{3}} & =6 B_{0} \frac{G}{R_{0}^{3}}
\end{aligned}
\]
and then extrapolated out of the median plane by Taylor expansion in \(Z\) (see section 1.3.3).
With option SEXQUAD, \(U=0\), while with QUADISEX, \(U=1\).

\section*{QUADRUPO : Quadrupole magnet (Fig. 35)}

The length of the magnet \(X L\) is the distance between the effective field boundaries (EFB), Fig. 36. The field at the pole tip \(R_{0}\) is \(B_{0}\).
The extent of the entrance (exit) fringe field is characterized by \(\lambda_{E}\left(\lambda_{S}\right)\). The distance of ray-tracing on both sides of the EFBs, in the field fall off regions, will be \(\pm X_{E}\) at the entrance, and \(\pm X_{S}\) at the exit (Fig. 36), by prior and further automatic change of frame.
In the fringe field regions \(\left[-X_{E}, X_{E}\right]\) and \(\left[-X_{S}, X_{S}\right]\) on both sides of the EFBs, \(\vec{B}(X, Y, Z)\) and its derivatives up to fourth order are calculated at each step of the trajectory from the analytical expressions of the three components \(B_{X}, B_{Y}, B_{Z}\) obtained by differentiation of the scalar potential (see section 1.3.7) expressed to the 8th order in \(Y\) and \(Z\).
\[
\begin{gathered}
V(X, Y, Z)=\left(G(X)-\frac{G^{\prime \prime}(X)}{12}\left(Y^{2}+Z^{2}\right)+\frac{G^{\prime \prime \prime \prime}(X)}{384}\left(Y^{2}+Z^{2}\right)^{2}-\frac{G^{\prime \prime \prime \prime \prime \prime}(X)}{23040}\left(Y^{2}+Z^{2}\right)^{3}\right) Y Z \\
\left(\quad G^{(n)}(X)=d^{n} G(X) / d X^{n}, \text { etc. }\right)
\end{gathered}
\]
where \(G(X)\) is the gradient on axis [37] :
\[
G(X)=\frac{G_{0}}{1+\exp P(d(X))} \quad \text { with } \quad G_{0}=\frac{B_{0}}{R_{0}}
\]
and,
\[
P(d)=C_{0}+C_{1}\left(\frac{d}{\lambda}\right)+C_{2}\left(\frac{d}{\lambda}\right)^{2}+C_{3}\left(\frac{d}{\lambda}\right)^{3}+C_{4}\left(\frac{d}{\lambda}\right)^{4}+C_{5}\left(\frac{d}{\lambda}\right)^{5}
\]
where \(d(X)\) is the distance to the field boundary and \(\lambda\) stands for \(\lambda_{E}\) or \(\lambda_{S}\) (normally, \(\lambda \simeq 2 * R_{0}\) ). When fringe fields overlap inside the magnet ( \(X L \leq X_{E}+X_{S}\) ), the gradient \(G\) is expressed as
\[
G=G_{E}+G_{S}-1
\]
where, \(G_{E}\) is the entrance gradient and \(G_{S}\) is the exit gradient.
If \(\lambda_{E}=0\left(\lambda_{S}=0\right)\), the field at entrance (exit) is considered as sharp edged, and then \(X_{E}\left(X_{S}\right)\) is forced to zero (for the mere purpose of saving computing time).
Outside of the fringe field regions (or everywhere when \(\left.\lambda_{E}=\lambda_{S}=0\right) \vec{B}(X, Y, Z)\) in the magnet is given by
\[
\begin{aligned}
& B_{X}=0 \\
& B_{Y}=G_{0} Z \\
& B_{Z}=G_{0} Y
\end{aligned}
\]


Figure 35: Quadrupole magnet


Figure 36: Scheme of the longitudinal field gradient \(G(X)\).
\((O X)\) is the longitudinal axis of the reference frame \((0, X, Y, Z)\) of zgoubi. The length of the element is XL. Trajectories are ray-traced from \(-X_{E}\) to \(X L+X_{S}\), by means of respectively prior and final automatic change of frame.

\section*{SEPARA : Wien Filter - analytical simulation}

Note : simulation by stepwise integration can be found in WIENFILTER.
SEPARA provides an analytic simulation of an electrostatic separator. Input data are the length \(L\) of the element, the electric field \(E\) and the magnetic field \(B\). The mass \(m\) and charge \(q\) of the particles are entered by means of the keyword PARTICUL.
The subroutines involved in SEPARA solve the following system of three equations with three unknown variables \(S, Y, Z\) (while \(X \equiv L\) ), that describe the cycloidal motion of a particle in \(\vec{E}, \vec{B}\) static fields (Fig. 37).
\[
\begin{aligned}
X & =-R \cos \left(\frac{\omega S}{\beta c}+\epsilon\right)-\frac{\alpha S}{\omega \beta c}+\frac{C_{1}}{\omega} \\
Y & =R \sin \left(\frac{\omega S}{\beta c}+\epsilon\right)-\frac{\alpha}{\omega^{2}}-\frac{C_{2}}{\omega}+Y_{0} \\
Z & =S \sin \left(P_{0}\right)+Z_{0}
\end{aligned}
\]
where, \(S\) is the path length in the separator, \(\alpha=-\frac{E c^{2}}{\gamma}, \omega=-\frac{B c^{2}}{m \gamma}, C_{1}=\beta \sin \left(T_{0}\right) \cos \left(P_{0}\right)\) and \(C_{2}=\) \(\beta c \cos \left(T_{0}\right) \cos \left(P_{0}\right)\) are initial conditions. \(c=\) velocity of light, \(\beta c=\) velocity of the particle, \(\gamma=\left(1-\beta^{2}\right)^{-\frac{1}{2}}\) and \(\tan \epsilon=\left(C_{2}+\frac{\alpha}{\omega}\right) / C_{1} . Y_{0}, T_{0}, Z_{0}, P_{0}\) are the initial coordinates of the particle in the zgoubi reference frame. Here \(\beta c\) and \(\gamma\) are assumed constant, which is true as long as the change of momentum due to the electric field remains negligible all along the separator.
The option index \(I A\) in the input data allows switching to inactive element (thus equivalent to \(E S L\) ), horizontal or vertical separator. Normally, \(E, B\) and the value of \(\beta_{W}\) for wanted particles are related by
\[
B(T)=-\frac{E\left(\frac{V}{m}\right)}{\beta_{W} \cdot c\left(\frac{m}{s}\right)}
\]


Figure 37: Horizontal separation between a wanted particle, \((W)\), and an unwanted particle, \((U)\). ( \(W\) ) undergoes a linear motion while \((U)\) undergoes a cycloidal motion.

\section*{SEXTUPOL : Sextupole magnet (Fig. 38)}

The meaning of parameters for SEXTUPOL is the same as for QUADRUPO.
In fringe field regions the magnetic field \(\vec{B}(X, Y, Z)\) and its derivatives up to fourth order are derived from the scalar potential approximated to 7th order in \(Y\) and \(Z\)
\[
\begin{aligned}
V(X, Y, Z) & =\left(G(X)-\frac{G^{\prime \prime}(X)}{16}\left(Y^{2}+Z^{2}\right)+\frac{G^{\prime \prime \prime \prime}(X)}{640}\left(Y^{2}+Z^{2}\right)^{2}\right)\left(Y^{2} Z-\frac{Z^{3}}{3}\right) \\
\text { with } G_{0} & =\frac{B_{0}}{R_{0}^{2}}
\end{aligned}
\]

The modelling of the fringe field form factor \(G(X)\) is described under QUADRUPO, p. 147.
Outside fringe field regions, or everywhere in sharp edge sextupole ( \(\lambda_{E}=\lambda_{S}=0\) ), \(\vec{B}(X, Y, Z)\) in the magnet is given by
\[
\begin{aligned}
& B_{X}=0 \\
& B_{Y}=2 G_{0} Y Z \\
& B_{Z}=G_{0}\left(Y^{2}-Z^{2}\right)
\end{aligned}
\]


Figure 38: Sextupole magnet

\section*{SOLENOID : Solenoid (Fig. 39)}

The solenoidal magnet has an effective length \(X L\), a mean radius \(R_{0}\) and an asymptotic field \(B_{0}=\) \(\mu_{0} N I / X L\) (i.e., \(\int_{-\infty}^{\infty} B_{X}(X, r) d X=\mu_{0} N I, \forall r<R_{0}\) ), wherein \(B_{X}=\) longitudinal field component, \(N I\) \(=\) number of ampere-Turns, \(\mu_{0}=4 \pi 10^{-7}\).

The distance of ray-tracing beyond the effective length \(X L\), is \(X_{E}\) at the entrance, and \(X_{S}\) at the exit (Fig. 39).
Two methods are available for the computation of the field \(\vec{B}(X, r)\) and its derivatives.
Method 1 : uses the on-axis field model
\[
\begin{equation*}
B_{X}(X, r=0)=\frac{\mu_{0} N I}{2 X L}\left[\frac{X L / 2-X}{\sqrt{(X L / 2-X)^{2}+R_{0}^{2}}}+\frac{X L / 2+X}{\sqrt{(X L / 2+X)^{2}+R_{0}^{2}}}\right] \tag{5.4.21}
\end{equation*}
\]
with \(X=r=0\) taken at the center of the solenoid. This model assumes that the coil thickness is small compared to the mean radius \(R_{0}\). In this model, the magnetic length is
\[
\begin{equation*}
L_{\text {mag }} \equiv \frac{\int_{-\infty}^{\infty} B_{X}\left(X, r<R_{0}\right) d X}{B_{X}(X=r=0)}=X L \sqrt{1+\frac{4 R_{0}^{2}}{X L^{2}}}>X L \tag{5.4.22}
\end{equation*}
\]
with in addition
\[
B_{X}(\text { center }) \equiv B_{X}(X=r=0)=\frac{\mu_{0} N I}{X L \sqrt{1+\frac{4 R_{0}^{2}}{X L^{2}}}}
\]

From eq. 5.4.21, the field and its derivatives at all \((X, Y, Z)\) are extrapolated, following the method described in section 1.3.1.

Method 2 : computes \(\vec{B}(X, r)\) (with \(r=\left(Y^{2}+Z^{2}\right)^{1 / 2}\) ) and its derivatives up to second order at all \((X, Y, Z)\) following the technique in Ref. [54], based on the three complete elliptic integrals \(K, E\) and \(\Pi\). The latter are calculated with the algorithm proposed in the same reference, their derivatives are calculated by means of recursive relations [55].


Figure 39: Solenoidal magnet.

\section*{For software developers}

Solenoid parameters are read from zgoubi.dat by rsolen.f. Initializations prior to tracking done in soleno.f. Field computation during tracking is in solenf.f.

\section*{SPINR : Spin rotation [56]}

SPINR causes spin precession, a local transformation on the spin vector of the particles, as, e.g., in a local helical spin rotator. Two options are available, as follows.

IOPT \(=0\) inhibits the keyword.
If IOPT \(=\mathbf{1}\) : the precession is defined by its axis, at angle \(\phi\) with respect to zgoubi's X -axis and assumed in the horizontal plane, and by its value, \(\mu\).

If IOPT \(=\mathbf{2}\) : given the spin precession axis direction \(\phi\) in the \((\mathrm{X}, \mathrm{Y})\) plane, the spin precession angle follows a function of the reference Lorentz factor :
\[
\mu(\gamma)=\left(\frac{B}{B_{0}}\right)^{2} \times\left(C_{0}+\frac{C_{1}}{\gamma}+\frac{C_{2}}{\gamma^{2}}+\frac{C_{3}}{\gamma^{3}}\right)
\]
with \(B\) and \(B_{0}\) normally a nominal and a reference magnetic field value, and \(C_{i}\) empirical coefficients. The reference Lorentz factor corresponds to the reference rigidity BORO, as defined for instance with [MC]OBJET, possibly updated in the presence of acceleration (see section 5.6.2, page 179).

TOSCA : 2-D and 3-D Cartesian or cylindrical mesh field map (page 287 in PART B)
TOSCA is dedicated to the reading and treatment of
- 2-D Cartesian or cylindrical mesh mid-plane field maps (mid-plane is assumed anti-symmetry plane, as in an upright multipole),
- 3-D Cartesian or cylindrical mesh field maps.

TOSCA was first installed to read TOSCA magnet computer code style of fieldmap output and formatting, hence the name. However the actual origin of the fieldmap, TOSCA or other computer code, does not matter.

TOSCA has been developed over the years to allow reading many different input formats, including 3-D maps given under the form of a series of files, partial 3-D maps with particular symmetry plane(s), etc. In order to select between the many possibilities, two input data, IZ and MOD.MOD2, are used. This is addressed in the following, and table 1, page 154, lists all possibilities as a function of the values given to IZ and MOD.MOD2.
A double-flag, MOD[.MOD2], determines whether Cartesian or Z-axis cylindrical mesh is used, and the nature and/or form of the field map data set.
The total number of field data files to be read is determined by the MOD[.MOD2] flag (see below) and by the parameter \(I Z\) that appears in the data list following the keyword. Each of these files contains the field components \(B_{X}, B_{Y}, B_{Z}\) on an ( \(X, Y\) ) mesh. \(I Z=1\) for a 2-D map, and in this case \(B_{X}\) and \(B_{Y}\) are assumed zero all over the map \({ }^{8}\). For a 3-D map with mid-plane symmetry, described with a set of 2-D maps at various \(Z\), then \(M O D=0\) and \(I Z \geq 2\), and thus, the first data file whose name follows in the data list is supposed to contain the median plane field (assuming \(Z=0\) and \(B_{X}=B_{Y}=0\) ), while the remaining \(I Z-1\) file(s) contain the \(I Z-1\) additional planes in increasing \(Z\) order. For arbitrary 3-D maps, no symmetry assumed, then \(M O D=1\) and the total number of maps (whose names follow in the data list) is \(I Z\), such that map number \([I Z / 2]+1\) is the \(Z=0\) elevation one.
The field map data file has to be be filled with a format that fits the FORTRAN reading sequence. The following is an instance, details and possible updates are to be found in the source file 'fmapw. \(\mathrm{f}^{\prime}\) :
```

DO 1 K = 1, KZ
OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
DO 1 J = 1, JY
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I)
ELSE
READ (NL,100) Y(J), Z(K), X(I), BY(J,K,I), BZ(J,K,I), BX(J,K,I)
FORMAT (1X, 6E11.2)
ENDIF
1 CONTINUE

```
\(I X(J Y, K Z)\) is the number of longitudinal (transverse horizontal, vertical) nodes of the 3-D uniform mesh. For letting zgoubi know in case these are binary files, FNAME must begin with ' \(\mathrm{B}_{-}\)' or ' \(\mathrm{b}_{-}\)'.

Other MOD[.MOD2] cases in addition to the above, are listed in table 1. The FORTRAN subroutine fmapw.f and its entries FMAPR, FMAPR2 can be looked up for more details, in particular regarding the formatting of the field map data file(s).

Once the field map(s) reading is completed, the field \(\vec{B}=\left(B_{X}, B_{Y}, B_{Z}\right)\) is normalized by means of BNORM in a similar way as in CARTEMES. As well the coordinates X and Y (and Z in the case of 3-D field maps) are normalized by the \(X-[, Y-, Z-] N O R M\) coefficient (useful to convert to centimeters, the working units in zgoubi).

At each step of the trajectory of a particle inside the map, the field and its derivatives are calculated as follows :

\footnotetext{
\({ }^{8}\) Use MAP2D in case non-zero \(B_{X}, B_{Y}\) are to be taken into account in a 2-D map.
}

\section*{Table 1: The various \(I Z, M O D\) and MOD2 possibilities, when using TOSCA.}

IZ : number of nodes of the complete field map along the Z direction ( \(\mathrm{IZ}=1\) for 2D)
MOD, MOD2 : determine the coordinate system, symmetries, reading format and column sequence, etc.
NF : number of field map input data files to be declared. Always include mid-plane map.
Expected columns : formatting of the coordinates and field data columns in the field map data file(s)
'Exemple' example folder : examples of zgoubi runs using field maps can be found in the subfolders of zgoubi-code/exemples/KEYWORDS/TOSCA/cartesian (case MOD \(\leq 19\) ) or
zgoubi-code/exemples/KEYWORDS/TOSCA/cylindrical (case MOD \(\geq 20\) ). The rightmost column below indicates the subfolder of concern, following (IZ, MOD, MOD2) options.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline IZ & MOD & .MOD2 & & NF & Expected columns & Example folder \\
\hline 1 & 0, 1 & none or
\[
.1, .2, .3
\] & 2-D map. File contains \(\left.B_{Z}(X, Y)\right|_{Z=0}\), mid-plane antisymmetry assumed. Several different reading formats (see fmapw.f/fmapr3). & 1 & Y, Z, X, BY, BZ, BX & IZ-MOD-.MOD2_1-0-none/ (GSI KAOS spectrometer) \\
\hline 1 & 3 & none or . 1 & 2-D map. Used for AGS main magnet. If MOD2=1, \(B_{Z}(X, Y, Z=0)\) field is perturbed by \(\left(1+n_{1} Y+n_{2} Y^{2}+n_{3} Y^{3}\right)\) factor. & 1 & Special - see example & \begin{tabular}{l}
AGS/usingMainMagnetsMaps \\
(AGS with main magnet maps)
\end{tabular} \\
\hline 1 & 15 & . \(1-.4\) & 2-D map. Up to 4 files to be combined linearly into a new map : field at all node of new map is \(\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}\). Mid-plane antisymmetry is assumed : each file has to contain \(B_{Z}(X, Y, Z=0)\). & \(1-4\) & Y, Z, X, BY, BZ, BX & IZ-MOD-.MOD2_1-15-.1-. 4 (EMMA FFAG cell) \\
\hline \(>1\) & 0 & none & 3-D map. Files span upper half of magnet, one per \(\left.(\mathrm{X}, \mathrm{Y})\right|_{0 \leq Z \leq Z_{\text {max }}}\) plane including median plane, mid-plane antisymmetry assumed. & 1+IZ/2 & Y, Z, X, BY, BZ, BX & IZ-MOD-.MOD2_gt1-0-none/ (GSI KAOS spectrometer) \\
\hline \[
\begin{aligned}
& 2 \mathrm{p}+1 \\
& p \geq 1
\end{aligned}
\] & 1 & none & 3-D map. Files span full magnet volume, one file per (X,Y) plane, no symmetry assumed. & IZ & Y, Z, X, BY, BZ, BX & \begin{tabular}{l}
IZ-MOD-.MOD2_gt1-1-none/ \\
(AGS warm helix snake)
\end{tabular} \\
\hline \(>1\) & 12 & none & 3-D map. Single file, upper half of magnet, mid-plane antisymmetry assumed. & 1 & & \\
\hline \(>1\) & 12 & . 1 & 3-D map. Single file, whole magnet volume, no symmetry assumed. & 1 & Y, Z, X, BY, BZ, BX & \begin{tabular}{l}
IZ-MOD-.MOD2_gt1-12-.1/ \\
(AGS warm helix snake)
\end{tabular} \\
\hline >1 & 12 & . 2 & 3-D map. Single file, \(1 / 8\) th of the magnet, symmetry wrt. \((X, Y)_{Z=0},(X, Z)_{Y=0},(Y, Z)_{X=0}\) planes. & 1 & & \\
\hline \[
\begin{aligned}
& 2 \mathrm{p}+1 \\
& p \geq 1
\end{aligned}
\] & 15 & . \(1-.4\) & 3-D map. Up to 4 files to be combined linearly into a new map, field at all node of new map is \(\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}\). Each file has to contain \(B_{X, Y, Z}(X, Y, Z)\) data over IZ equally \(Z\)-spaced \((X, Y)\) planes (no symmetry assumed). & \(1-4\) & & \\
\hline \[
\begin{aligned}
& 2 \mathrm{p}+1 \\
& p \geq 1
\end{aligned}
\] & 16 & . \(1-.4\) & 3-D map. Fields from up to 4 maps to be combined linearly into a new field value at particle location, \(\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}\). Each file has to contain \(B_{X, Y, Z}(X, Y, Z)\) data over \(I Z\) equally \(Z\)-spaced \((X, Y)\) planes. & \(1-4\) & UNDER DEVELOPMENT & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(\underline{\text { MOD } \geq 20: \text { Cylindrical mesh }}\)} & & & & \\
\hline IZ & MOD & .MOD2 & & & & \\
\hline 1 & 25 & . 1 - . 4 & 2-D map. Up to 4 files to be combined linearly into a new map : at all node of new map \(\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}\). Each file contains mid-plane \(B_{Z}(X, Y, Z=0)\) data, mid-plane antisymmetry is assumed. & 1-4 & Y, Z, X, BY, BZ, BX & \[
\begin{aligned}
& \text { IZ-MOD-.MOD2_1-15-.1-. } 4 \\
& \text { (EMMA FFAG cell) }
\end{aligned}
\] \\
\hline \(>1\) & 20, 21 & & 3-D map. Single file. MOD=20:1/4 magnet, cylindrical symmetry with respect to ( \(\mathrm{Y}, \mathrm{Z}\) ) plane and antisymmetry wrt ( \(\mathrm{X}, \mathrm{Y}\) ) plane. MOD=21 : another type of symmetry (to be documented - see fmapw.f). & 1 & \[
\begin{aligned}
& \mathrm{Y}(r, \theta), \mathrm{Z}, \mathrm{X}(r, \theta), \\
& \mathrm{BY}, \mathrm{BZ}, \mathrm{BX}
\end{aligned}
\] & \begin{tabular}{l}
IZ-MOD-.MOD2_gt1-20 \\
(KEK 150 MeV FFAG)
\end{tabular} \\
\hline \[
\begin{aligned}
& 2 \mathrm{p}+1 \\
& p \geq 0
\end{aligned}
\] & 22, 23 & . \(1-.4\) & 2D or 3-D map. Mid-plane antisymmetry assumed. Up to 4 files can be combined linearly into a new one, \(Z \geq 0\) half-magnet volume each : field at all node of new map is \(\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}\). Each file has to contain \(B_{X, Y, Z}(X, Y, Z)\) data over \(I Z\) equally \(Z\)-spaced \((X, Y)\) planes. MOD \(=23\) : special, test code (see fmapw.f). & 1-4 & \[
\begin{aligned}
& \mathrm{Y}(r, \theta), \mathrm{Z}, \mathrm{X}(r, \theta), \\
& \mathrm{BY}, \mathrm{BZ}, \mathrm{BX}
\end{aligned}
\] & \\
\hline \[
\begin{aligned}
& 2 \mathrm{p}+1 \\
& p \geq 1
\end{aligned}
\] & 24 & & 3-D map, full volume. No symmetry assumed. & 1 & \(\theta, R, Z, B_{\theta}, B R, B Z\) & \\
\hline
\end{tabular}
- in the case of a 2-D map, by means of a second or fourth order polynomial interpolation, depending on IORDRE (IORDRE \(=2,25\) or 4 ), as for CARTEMES,
- in the case of a 3-D map, by means of a second order polynomial interpolation with a \(3 \times 3 \times 3\)-point parallelepipedic grid, as described in section 1.4.4.

In the Cartesian mesh case, entrance and/or exit integration boundaries between which the trajectories are integrated in the field may be defined, in the same way as in CARTEMES.
A 'TITL' (a line of comments) is part of the arguments of the keyword TOSCA. It allows introducing options, for instance :
\(\diamond\) including 'HEADER n' allows specifying the number of header lines ('n' non-data lines) at the top of the field map file,
\(\diamond\) including 'FLIP' in TITL causes the field map to be X-flipped,
\(\diamond\) including 'ZroBXY' forces \(B_{X}=B_{Y}=0\) at all \(\mathrm{Z}=0\) nodes of the field map mesh (only applies with \(M O D=15\) and \(M O D=24\) ),
\(\diamond\) including 'RHIC_helix' will normalize BNORM to measured B field value versus helix current (measured B(I) data are hard-coded in program toscac.f). In that case, BNORM may be given the current value, in Amps, while a(1) in mode MOD.MOD2=15.1 is used to normalize the field map (namely, \(a(1)=\) \(1 / B_{\text {max }}\) with \(B_{\text {max }}\) the maximum field value on helix axis).

\section*{TRANSMAT : Matrix transfer}

TRANSMAT performs a second order transport of the particle coordinates in the following way
\[
X_{i}=\sum_{j} R_{i j} X_{j}^{0}+\sum_{j, k} T_{i j k} X_{j}^{0} X_{k}^{0}
\]
where, \(X_{i}\) stands for any of the current coordinates \(Y, T, Z, P\), path length and momentum dispersion, and \(X_{i}^{0}\) stands for any of the initial coordinates. \(\left[R_{i j}\right]\) ( \(\left[T_{i j k}\right]\) ) is the first order (second order) transfer matrix as usually involved in second order beam optics [31]. Second order transfer is optional. The length of the element represented by the matrix may be introduced for the purpose of path length updating.

Note : MATRIX delivers \(\left[R_{i j}\right]\) and \(\left[T_{i j k}\right]\) matrices in a format suitable for straightforward use with TRANSMAT.

TRAROT : Translation-Rotation of the reference frame
UNDER DEVELOPMENT. Check before use.

This procedure performs translation and rotation of the local zgoubi frame. It can be used for instance for skewing multipoles.

Relationship to spin tracking, particle decay or gas-scattering may not be fully installed, to be checked before use.

\section*{UNDULATOR : Undulator magnet}

UNDULATOR magnet. UNDER DEVELOPMENT.

\section*{UNIPOT : Unipotential cylindrical electrostatic lens}

The lens is cylindrically symmetric about the \(X\)-axis.
The length of the first (resp. second, third) electrode is \(X 1\) (resp. X2, X3). The distance between the electrodes is \(D\). The potentials are \(V 1\) and \(V 2\). The inner radius is \(R_{0}\) (Fig. 40). The model for the electrostatic potential along the axis is [57]
\[
V(x)=\frac{V 2-V 1}{2 \omega D}\left[\ln \frac{\cosh \frac{\omega\left(x+\frac{X 2}{2}+D\right)}{R_{0}}}{\cosh \frac{\omega\left(x+\frac{X 2}{2}\right)}{R_{0}}}+\ln \frac{\cosh \frac{\omega\left(x-\frac{X 2}{2}-D\right)}{R_{0}}}{\cosh \frac{\omega\left(x-\frac{X 2}{2}\right)}{R_{0}}}\right]
\]
( \(x=\) distance from the center of the central electrode ; \(\omega=1,318\); cosh \(=\) hyperbolic cosine), from which the field \(\vec{E}(X, Y, Z)\) and its derivatives are deduced following the procedure described in section 1.3.1.
Use PARTICUL prior to UNIPOT, for the definition of particle mass and charge.
The total length of the lens is \(X 1+X 2+X 3+2 D\); stepwise integration starts at entrance of the first electrode and terminates at exit of the third one.


Figure 40: Three-electrode cylindrical unipotential lens.

\section*{VENUS : Simulation of a rectangular shape dipole magnet}

VENUS is dedicated to a 'rough' simulation of SATURNE Laboratory's VENUS dipole. The field \(B_{0}\) is constant inside the magnet, with longitudinal extent \(X L\) and transverse extent \(\pm Y L\); outside these limits, \(B_{0}=0\) (Fig. 41).


Figure 41: Scheme of VENUS rectangular dipole.

\section*{WIENFILT : Wien filter}

WIENFILT simulates a Wien filter, with transverse and orthogonal electric and magnetic fields \(\vec{E}_{Y}, \vec{B}_{Z}\) or \(\vec{E}_{Z}, \vec{B}_{Y}\) (Fig. 37). It must be preceded by PARTICUL for the definition of particle mass and charge.
The length \(X L\) of the element is the distance between its entrance and exit EFBs. The electric and magnetic field intensities \(E_{0}\) and \(B_{0}\) in the central, uniform field region, normally satisfy the relation
\[
B_{0}=-\frac{E_{0}}{\beta_{W} c}
\]
for the selection of " wanted" particles of velocity \(\beta_{W} c\). Ray-tracing in field fall-off regions extends over a distance \(X_{E}\left(X_{S}\right)\) beyond the entrance (exit) EFB by means of prior and further automatic change of frame. Four sets of coefficients \(\lambda, C_{0}-C_{5}\) allow the description of the entrance and exit fringe fields outside the uniform field region, following the model [37]
\[
F=\frac{1}{1+\exp (P(s))}
\]
where \(P(s)\) is of the term
\[
P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+C_{3}\left(\frac{s}{\lambda}\right)^{3}+C_{4}\left(\frac{s}{\lambda}\right)^{4}+C_{5}\left(\frac{s}{\lambda}\right)^{5}
\]
and \(s\) is the distance to the EFB. When fringe fields overlap inside the element (i.e., \(X L \leq X_{E}+X_{S}\) ), the field fall-off is expressed as
\[
F=F_{E}+F_{S}-1
\]
where \(F_{E}\left(F_{S}\right)\) is the value of the coefficient respective to the entrance (exit) EFB.
If \(\lambda_{E}=0\left(\lambda_{S}=0\right)\) for either the electric or magnetic component, then both are considered as sharp edge fields and \(X_{E}\left(X_{S}\right)\) is forced to zero (for the purpose of saving computing time). In this case, the magnetic wedge angle vertical first order focusing effect is simulated at entrance and exit by a kick \(P_{2}=\) \(P_{1}-Z_{1} \tan (\epsilon / \rho)\) applied to each particle ( \(P_{1}, P_{2}\) are the vertical angles upstream and downstream the \(\mathrm{EFB}, Z_{1}\) the vertical particle position at the EFB, \(\rho\) the local horizontal bending radius and \(\epsilon\) the wedge angle experienced by the particle ; \(\epsilon\) depends on the horizontal angle T). This is not done for the electric field, however it is advised not to use a sharp edge electric dipole model since this entails non symplectic mapping, and in particular precludes accounting for momentum effects of the non zero longitudinal electric field component.

\section*{YMY: Reverse signs of \(Y\) and \(Z\) reference axes}

YMY performs a \(180^{\circ}\) rotation of particle coordinates with respect to the \(X\)-axis, as shown in Fig. 42. This is done by means of a change of sign of \(Y\) and \(Z\) axes, and therefore coordinates, as follows
\[
Y 2=-Y 1, \quad T 2=-T 1, \quad Z 2=-Z 1 \quad \text { and } \quad P 2=-P 1
\]


Figure 42: The use of \(Y M Y\) in a sequence of two identical dipoles of opposite signs.

\subsection*{5.5 Output Procedures}

These procedures are dedicated to the storage or printing of particle coordinates, histograms, spin coordinates, etc. They may be called for at any spot in the data pile.

\subsection*{5.5.1 FAISCEAU, FAISCNL, FAISTORE : Print/Store particle coordinates}
- FAISCEAU can be introduced anywhere in a structure data list (zgoubi.dat). It produces a print (into zgoubi.res) of initial and actual coordinates of the IMAX particles at the location where it stands, together tagging indices and letters, etc.
- FAISCNL produces a lot more information on particles at current location, including spin components, decay distance, mass, charge, etc. (see list below), and stores it in a dedicated file FNAME (advised name is \(F N A M E=\) 'zgoubi.fai' (formatted write) or 'b zgoubi.fai' (binary write) if post-processing with zpop should follow). This file may further on be read by means of OBJET, option \(K O B J=3\), or used for other purposes such as graphics (see Part D of the Guide).
The data written to that file are formatted and ordered according to the FORTRAN sequence in the subroutine impfai.f, where details and possible updates are to found. The following is an instance:
```

 OPEN (UNIT = NL, FILE = FNAME, STATUS = `NEW')
 IF (BINARY) THEN
 DO 2 I=1,IMAX
 P = BORO*CL9 *F (1,I) * AMQ (2,I)
 ENERG = SQRT (P*P + AMQ (1,I)*AMQ (1,I))
 ENEKI = ENERG - AMQ (1,I)
 WRITE (NFAI)
 IEX(I),-1.D0+FO(1,I),(FO(J,I),J=2,MXJ),
 -1.D0+F(1,I),F(2,I),F(3,I), (F (J,I),J=4,MXJ),
 (SI (J,I),J=1,4),(SF (J,I),J=1,4),
 ENEKI,ENERG,
 I,IREP(I), SORT(I),(AMQ(J,I),J=1,5),RET(I),DPR(I),PS,
 BORO, IPASS, NOEL, KLEY,LBL1,LBL2,LET(I)
 CONTINUE
 ELSE
 DO 1 I=1,IMAX
 P = BORO*CL9 *F (1,I) * AMQ (2,I)
 ENERG = SQRT (P*P + AMQ (1,I)*AMQ (1,I))
 ENEKI = ENERG - AMQ (1,I)
 WRITE (NFAI,110)
 IEX(I),-1.D0+FO(1,I),(FO(J,I),J=2,MXJ),
 -1.D0+F(1,I),F(2,I),F(3,I),
 (F (J,I), J=4,MXJ),
 (SI (J,I),J=1,4),(SF (J,I),J=1, 4),
 ENEKI,ENERG,
 I,IREP(I), SORT(I),(AMQ(J,I),J=1,5),RET(I),DPR(I),PS,
 BORO, IPASS, NOEL,
 TX1,KLEY,TX1,TX1,LBL1,TX1,TX1,LBL2,TX1,TX1,LET (I),TX1
 INCLUDE "FRMFAI.H"
 CONTINUE
 ENDIF
 110 FORMAT (1X,

```

```

 XXX,Y,T*1.D3,
 > ,3(1X,E24.16)
 Z,P*1.D3,SAR,TAR
 ,4(1X,E24.16)
 SXo, SYo, SZo, So, SX, SY, SZ, S
 > ,8(1X,E15.7)
 ENEKI,ENERG
 ,2(1X,E16.8)
 IT,IREP(IT), SORT(IT), (AMQ(J,I),J=1,5), RET(IT), DPR(IT), PS
 > ,2(1X,I6), 9(1X,E16.8)
 BORO, IPASS, NOEL,
 > ,1X,E16.8, 2(1X,I6)
 'KLEY', ('LABEL (NOEL,I)',I=1,2), 'LET(IT)'
 ,1X,A1,A10,A1, 2(1X,A1,A ,A1),
 1X,3A1)
    ```

The meaning of the main data is the following (see the keyword OBJET)
\begin{tabular}{ll}
\(L E T(I)\) & : one-character string, for tagging particle number \(I\) \\
\(I E X, I, I R E P(I)\) & : flag, particle number, index \\
\(F O(1-6, I)\) & \(:\) coordinates \(D, Y, T, Z, P\) and path length at the origin of the structure \\
\(F(1-6, I)\) & : idem at the current position \\
\(S O R T(I)\) & path length at which the particle has possibly been stopped \\
& (see CHAMBR or COLLIMA) \\
\(R E T(I), D P R(I)\) & \(:\) synchrotron phase space coordinates; RET = phase (radian), \\
& \(\quad\) DPR = momentum dispersion (MeV/c) (see CAVITE) \\
\(I P A S S\) & \(:\) turn number (see REBELOTE) \\
etc. & \(:\)
\end{tabular}
- FAISTORE has an effect similar to FAISCNL, with two more features.
- On the first data line, FNAME may be followed by a series of up to 10 LABELs. If there is no label, the print occurs by default at the location of FAISTORE ; if there are labels the print occurs right downstream of all optical elements wearing those labels (and no longer at the FAISTORE location).
- The next data line gives a parameter, \(I P\) : printing will occur at pass 1 and then at every \(I P\) other pass, if using REBELOTE with NPASS \(\geq I P-1\).

For instance the following data input in zgoubi.dat :
FAISTORE
zgoubi.fai HPCKUP VPCKUP 12
will result in output prints into zgoubi.fai, at pass 1 and then at every 12 other pass, each time elements of the zgoubi.dat data list labeled either HPCKUP or VPCKUP are encountered.

\section*{Note}

Binary storage can be obtained from FAISCNL and FAISTORE. This is for the sake of compactness and access speed, for instance in case voluminous amounts of data would have to be manipulated using zpop.
This is achieved by giving the storage file a name of the form b_FNAME or B_FNAME (e.g., 'b_zgoubi.fai'). The FORTRAN WRITE list is the same as in the FORMATTED case above.

This is compatible with the READ statements in zpop that will recognize binary storage from that very radical 'b_' or 'B_'.

\subsection*{5.5.2 FOCALE, IMAGE[S]: Particle coordinates and beam size ; localization and size of horizontal waist}

FOCALE calculates the dimensions of the beam and its mean transverse position, at a longitudinal distance XL from the position corresponding to the keyword FOCALE.
IMAGE computes the location and size of the closest horizontal waist.
IMAGES has the same effect as IMAGE, but, in addition, for a non-monochromatic beam it calculates as many waists as there are distinct momenta in the beam, provided that the object has been defined with a classification of momenta (see OBJET, KOBJ= 1, 2 for instance).
Optionally, for each of these three procedures, zgoubi can list a trace of the coordinates in the \(X, Y\) and in the \(Y, Z\) planes.
The following quantities are calculated for the \(N\) particles of the beam (IMAGE, FOCALE) or of each group of momenta (IMAGES)
- Longitudinal position :
\[
\begin{aligned}
& \text { FOCALE: } \quad X=X L \\
& \begin{aligned}
\text { IMAGE[S] : } & X=-\frac{\sum_{i=1}^{N} Y_{i} * \operatorname{tg} T_{i}-\left(\sum_{i=1}^{N} Y_{i} * \sum_{i=1}^{N} \operatorname{tg} T_{i}\right) / N}{\sum_{i=1}^{N} \operatorname{tg}^{2} T_{i}-\left(\sum_{i=1}^{N} \operatorname{tg} T_{i}\right)^{2} / N} \\
Y & =Y_{1}+X * \operatorname{tg} T_{1}
\end{aligned}
\end{aligned}
\]
where \(Y_{1}\) and \(T_{1}\) are the coordinates of the first particle of the beam (IMAGE, FOCALE) or the first particle of each group of momenta (IMAGES).
- Transverse position of the center of mass of the waist (IMAGE[S]) or of the beam (FOCALE), with respect to the reference trajectory
\[
Y M=\frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}+X \operatorname{tg} T_{i}\right)-Y=\frac{1}{N} \sum_{i=1}^{N} Y M_{i}
\]
- FWHM of the image (IMAGE[S]) or of the beam (FOCALE), and total width, respectively, \(W\) and WT
\[
\begin{aligned}
W & =2.35\left(\frac{1}{N} \sum_{i=1}^{N} Y M_{i}^{2}-Y M^{2}\right)^{\frac{1}{2}} \\
W T & =\max \left(Y M_{i}\right)-\min \left(Y M_{i}\right)
\end{aligned}
\]

\subsection*{5.5.3 FOCALEZ, IMAGE[S]Z : Particle coordinates and beam size ; localization and size of vertical waist}

Similar to FOCALE and IMAGE[S], but the calculations are performed with respect to the vertical coordinates \(Z_{i}\) and \(P_{i}\), in place of \(Y_{i}\) and \(T_{i}\).

\subsection*{5.5.4 HISTO : 1-D histogram}

Any of the coordinates used in zgoubi may be histogrammed, namely initial \(Y_{0}, T_{0}, Z_{0}, P_{0}, S_{0}, D_{0}\) or current \(Y, T, Z, P, S, D\) particle coordinates ( \(S=\) path length; \(D\) may change in decay process simulation with MCDESINT, or when ray-tracing in \(\vec{E}\) fields), and also spin coordinates and modulus \(S_{X}, S_{Y}, S_{Z}\) and \(\|\vec{S}\|\).
HISTO can be used in conjunction with MCDESINT, for statistics on the decay process, by means of TYP. \(T Y P\) is a one-character string. If it is set equal to ' S ', only secondary particles (they are tagged with an ' S ') will be histogrammed. If it is set equal to ' \(P\) ', then only parent particles (non-' \(S\) ') will be histogrammed. For no discrimination between S-econdary and P-arent particles, TYP = 'Q' must be used.
The dimensions of the histogram (number of lines and columns) may be modified. It can be normalized with \(\operatorname{NORM}=1\), to avoid saturation.

Histograms are indexed with the parameter NH. This allows making independent histograms of the same coordinate at several locations in a structure. This is also useful when piling up problems in a single input data file (see also RESET). NH is in the range 1-5.

If REBELOTE is used, the statistics on the \(1+\) NPASS runs in the structure will add up.

\subsection*{5.5.5 IMAGE[S][Z] : Localization and size of vertical waists}

See FOCALE[Z].

\subsection*{5.5.6 MATRIX : Calculation of transfer coefficients, periodic parameters}

MATRIX causes the calculation of the transfer coefficients through the optical structure, from the OBJET down to the location where MATRIX is introduced in the structure, or, upon option, down to the horizontal focus closest to that location. In this last case the position of the focus is calculated automatically in the same way as the position of the waist in IMAGE. Depending on OBJET and on option IFOC, MATRIX also delivers the beam matrix and betatron phase advances or (case of a periodic structure) periodic beam matrix and tunes, chromaticities and other global parameters.
Depending on the value of option IORD, different procedures follow
- If IORD \(=0\), MATRIX is inhibited (equivalent to FAISCEAU, whatever IFOC).
- If \(\operatorname{IORD}=1\), using \(O B J E T, K O B J=5[. \mathrm{N}]\), the first order transfer matrix \(\left[R_{i j}\right]\) is calculated, from a third order approximation of the coordinates. For instance
\[
Y^{+}=\left(\frac{Y}{T_{0}}\right) T_{0}+\left(\frac{Y}{T_{0}^{2}}\right) T_{0}^{2}+\left(\frac{Y}{T_{0}^{3}}\right) T_{0}^{3}, \quad Y^{-}=-\left(\frac{Y}{T_{0}}\right) T_{0}+\left(\frac{Y}{T_{0}^{2}}\right) T_{0}^{2}-\left(\frac{Y}{T_{0}^{3}}\right) T_{0}^{3}
\]
will yield, neglecting third order terms,
\[
R_{11}=\left(\frac{Y}{T_{0}}\right)=\frac{Y^{+}-Y^{-}}{2 T_{0}}
\]

This is repeated \(N\) times if \(O B J E T, K O B J=5 . \mathrm{N}(2 \leq N \leq 99)\) is used, so delivering first order data for each 11-particle set, with for each set the reference trajectory being trajectory number \(1+(\mathrm{N}-1) \times 11\) in the \(\mathrm{N} \times 11\)-particle list (keyword FAISCEAU will print out that list in zgoubi.res, if desired).
If \(O B J E T, K O B J=5.1\) is used instead (hence introducing initial optical function values, \(\alpha_{Y, Z}, \alpha_{Y, Z}\), \(D_{Y, Z}, D_{Y, Z}^{\prime}\) ), then, using the \(R_{i j}\) above, MATRIX will transport the optical functions and phase advances \(\phi_{Y}, \phi_{Z}\), following
\[
\begin{array}{r}
\left(\begin{array}{c}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{\text {at MATRIX }}=\left(\begin{array}{ccc}
R_{11}^{2} & -2 R_{11} R_{12} & R_{12}^{2} \\
-R_{11} R_{21} & R_{12} R_{21} & R_{11} R_{12} \\
R_{21}^{2} & -2 R_{21} R_{22} & R_{22}^{2}
\end{array}\right)\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{\text {at oBJET }} \\
\Delta \phi_{Y}=\operatorname{Atan} \frac{R_{12}}{\left(R_{11} \beta_{Y, \text { objet }}-R_{12} \alpha_{Y, \text { objet })}\right.}, \Delta \phi_{Z}=A \tan \frac{R_{34}}{\left(R_{33} \beta_{Z, \text { objet }}-R_{34} \alpha_{Z, o b j e t}\right)},  \tag{5.5.1}\\
\phi_{Y, Z} \rightarrow \phi_{Y, Z}+2 \pi \text { if } \phi_{Y, Z}<0, \text { given }[0, \pi] \text { Atan determination }
\end{array}
\]
and print these out.
- If \(\operatorname{IORD}=2\), using \(O B J E T, K O B J=6\), fifth order Taylor expansions are used for the calculation of the first order transfer matrix \(\left[R_{i j}\right]\) and of the second order matrix \(\left[T_{i j k}\right]\). Other higher order coefficients are also calculated.
- If \(\operatorname{IORD}=3\), using \(O B J E T, K O B J=6.1\), transport coefficients up to 3rd order are computed using 102 rays (after routines developed for RAYTRACE [58, 59]).

An automatic generation of an appropriate object for the use of MATRIX can be obtained using the procedure OBJET (pages 53, 253), as follows
- if \(\operatorname{IORD}=1\), use \(\operatorname{OBJET}(\mathrm{KOBJ}=5[. \mathrm{N}, 2 \leq N \leq 99]\) ), that generates up to \(99 * 11\) initial coordinates. In this case, up to 99 matrices may be calculated, each one wrt. to the reference trajectory of concern (trajectory number \(1,12,23, \ldots 1+(\mathrm{N}-1) \times 11\) respectively).
- if \(\operatorname{IORD}=2\), use \(\operatorname{OBJET}(\mathrm{KOBJ}=6)\) that generates 61 initial coordinates.
- if \(\operatorname{IORD}=3\), use \(\operatorname{OBJET}(\mathrm{KOBJ}=6.1)\) that generates 102 initial coordinates.

The next option, IFOC, acts as follows
- If \(\operatorname{IFOC}=0\), the transfer coefficients are calculated at the location of MATRIX, and with respect to the reference trajectory. For instance, \(Y^{+}\)and \(T^{+}\)above are defined for particle number \(i\) as \(Y^{+}=\) \(Y^{+}(i)-Y(R e f)\), and \(T^{+}=T^{+}(i)-T(\) ref. \()\).
- If \(\operatorname{IFOC}=1\), the transfer coefficients are calculated at the horizontal focus closest to MATRIX (determined automatically), while the reference direction is that of the reference particle. For instance, \(Y^{+}\) is defined for particle number \(i\) as \(Y^{+}=Y^{+}(i)-Y_{\text {focus }}\), while \(T^{+}\)is defined as \(T^{+}=T^{+}(i)-T\) (ref.)).
- If \(I F O C=2\), no change of reference frame is performed : the coordinates refer to the current frame. Namely, \(Y^{+}=Y^{+}(i), T^{+}=T^{+}(i)\), etc.

\section*{Periodic Structures}
- If \(I F O C=10+N P e r i o d\), then, from the 1 -turn transport matrix as obtained in the way described above, MATRIX calculates periodic parameters characteristic of the structure such as optical functions and tune numbers, assuming that it is NPeriod-periodic, and in the coupled hypothesis, based on the Edwards-Teng method [33]. This only makes senss when met at the end of the zgoubi.dat sequence.
This is repeated \(N\) times if \(O B J E T, K O B J=5 . \mathrm{N}(2 \leq N \leq 99)\) is used, so delivering first order data for each 11-particle set.

If \(I O R D=2\) (using \(O B J E T, K O B J=6\) ) additional periodic parameters are computed such as chromaticities, beta-function momentum dependence, etc.

PRINT : Addition of "PRINT" following IORD, IFOC [, coupled] will cause stacking of MATRIX output data into zgoubi.MATRIX.out file (convenient for use with e.g. gnuplot type of data treatment software).

Addition of "coupled" next to IORD, IFOC [, PRINT], in the case of periodic beam matrix request (i.e., IFOC \(=10+\) NPeriod) will cause use of coupled formalism.

\section*{About the source code :}

The program matric computes the transport matrix coefficients, it is called by zgoubi when the keyword MATRIX is met along the zgoubi.dat sequence. matimp, called by matric, ensures the print out of the matrix (and possibly the beam matrix) in zgoubi.res, and upon 'PRINT' option in zgoubi.MATRIX.out as well.

\subsection*{5.5.7 PICKUPS : Bunch centroid path; orbit}

PICKUPS computes the average values of the coordinates of the particles in a bunch (coordinates of the bunch centroid) at one or more keywords specified by their LABELs. The list of \(\operatorname{LABEL}(\mathrm{s})\) concerned is specified by the user, as part of the arguments under the keyword PICKUPS.
In conjunction with REBELOTE in the case of a periodic structure, with REBELOTE thus being used to cause multi-turn tracking, PICKUPS are zeroed at start of each turn.
Pickup data computed during zgoubi execution are stored in the file zgoubi.PICKUP.out, usable for further analysis, or for plotting (for instance, using gnuplot).
A summary of the list of pickups and their individual bunch data is listed in the result file zgoubi.res (below the END keyword) at the end of zgoubi execution. It is concluded with statistics as the rms, minimum and maximum values of the bunch centroid data over the ensemble of pickups.

\subsection*{5.5.8 PLOTDATA : Intermediate output for the PLOTDATA graphic software}

PLOTDATA was at the origin implemented for the purpose of plotting particle coordinates using the TRIUMF PLOTDATA package [60]. However nothing precludes using it with a different aim.

The PLOTDATA keyword can be introduced at up to 20 locations in zgoubi.dat. There, particle coordinates will be stored in a local array, FF. They are overwritten at each pass. Usage of FF is left to the user, see FORTRAN subroutine pltdat.f.

\subsection*{5.5.9 SPNPRNL, SPNSTORE : Print/Store spin coordinates}
- SPNPRNL has similar effect to SPNPRT (page 175), except that the information is stored in a dedicated file FNAME (should post-processing with zpop follow, advised name is FNAME = 'zgoubi.spn' (formatted write) or 'b_zgoubi.spn' (binary write) ). The data are formatted and ordered according to the FORTRAN sequence found in the subroutine spnprn.f, with meaning of printed quantities as follows :

LET(I),IEX(I) : tagging character and flag (see OBJET)
\(S I(1-4, I) \quad:\) spin components \(S X, S Y, S Z\) and modulus, at the origin
\(S F(1-4, I) \quad:\) idem at the current position
GAMMA : Lorentz relativistic factor
\(I \quad:\) particle number
IMAX : total number of particles ray-traced (see OBJET)
IPASS : turn number (see REBELOTE)
- SPNSTORE has an effect similar to SPNPRNL, with two more features.
- On the first data line, FNAME may be followed by a series of up to 10 LABELs proper to the elements of the zgoubi.dat data file at the exit of which the print should occur ; if no label is given, the print occurs by default at the very location of SPNSTORE ; if labels are given, then print occurs right downstream of all optical elements wearing those labels (and no longer at the SPNSTORE location).
- The next data line gives a parameter, \(I P\) : printing will occur every \(I P\) other pass, when using REBELOTE with NPASS \(\geq I P-1\).

For instance the following data input in zgoubi.dat :
SPNSTORE
zgoubi.spn HPCKUP VPCKUP
12
will result in output prints into zgoubi.spn, every 12 other pass, each time elements of the zgoubi.dat data list labeled either HPCKUP or VPCKUP are encountered.

\section*{Note}

Binary storage can be obtained from SPNPRNL and SPNSTORE. This is for the sake of compactness and I/O access speed by zgoubi or zpop, for instance in case voluminous amounts of data should be manipulated. This is achieved by giving the storage file a name of the form b_FNAME or B_FNAME (e.g., 'b_zgoubi.spn'). The FORTRAN WRITE output list is the same as in the FORMATTED case above.

\subsection*{5.5.10 SPNPRT : Print spin coordinates}

SPNPRT can be introduced anywhere in a structure. It produces a print out (to zgoubi.res) of various informations such as the initial and actual coordinates and modulus of the spin of the IMAX particles, their Lorentz factor \(\gamma\), the mean values of the spin components, etc., at the location where it is placed in the zgoubi.dat data list.

PRINT : If "PRINT" appears after SPNPRT, then spin data will be stored in zgoubi.SPNPRT.Out. The latter is opened at the first occurence of "PRINT". In particular, if REBELOTE is used then data will be stacked in zgoubi.SPNPRT.Out.

MATRIX : If "MATRIX" appears after SPNPRT, then spin rotation matrix (or matrices) will be computed. This is done assuming appropriate initial particle and spin sampling has been defined (by respectively OBJET and SPNTRK), as follows :
- three particles are needed for SPNPRT to compute a spin matrix. All three have identical initial coordinates (for instance, the local stable precession axis coordinates) and rigidity, and their spins are on a direct triedra, for instance, respectively,
\[
\left(S_{X}, S_{Y}, S_{Z}\right)=(1,0,0),(0,1,0),(0,0,1)
\]
- there may be several groups of three particles, each group with a particular rigidity (i.e., the three particles in a group have the same momentum). OBJET with \(K O B J=1\) or \(K O B J=2\) can be used for instance to generate these particles by groups of like rigidity. SPNPRT will thus compute as many matrices.

\subsection*{5.5.11 SRPRNT : Print SR loss statistics}

SRPRNT may be introduced anywhere in a structure. It allows switching on synchrotron radiation energy loss computation. It produces in addition a print out (to zgoubi.res) of current state of statistics on several parameters related to SR loss presumably activated beforehand with keyword SRLOSS.

\subsection*{5.5.12 TWISS : Calculation of periodic optical parameters. Log to zgoubi.TWISS.out}

TWISS causes the calculation of transport coefficients and various other global parameters, in particular periodical quantities as tunes and optical functions, in the coupled hypothesis. TWISS is normally placed at the end of the structure ; it causes a series of up to 5 successive passes in the structure (at the manner of REBELOTE).

The object necessary for these calculations will be generated automatically if one uses OBJET with option \(K O B J=5\).

TWISS works in a way similar to MATRIX, iterating the MATRIX process wherever necessary, changing for instance the reference trajectory in OBJET for \(\mathrm{dp} / \mathrm{p}\) related computations. In particular :
- It assumes that the reference particle (particle \#1 of 11, when using OBJET[KOBJ=5]) is located on the closed orbit. This condition has to be satisfied for TWISS to work consistently, because TWISS does not look for the closed orbit by itself (this is under installation).
- A first pass (the only one if \(K T W=1\) ) through the structure allows computing the periodic optical functions at the end of the structure, from the rays.
- The periodic dispersions are used to define chromatic closed orbits at \(\pm \delta p / p\). A second and a third pass (which terminate the process if \(K T W=2\) ) with chromatic objects centered respectively on \(\pm \delta p / p\) chromatic orbits will then compute the chromatic first order transport matrices. From these the chromaticities are deduced.
- Anharmonicities need two additional passes (which terminate the process if \(K T W=3\) ). They are deduced from the difference in tunes for particles tracked on different transverse invariants, horizontal or vertical.

The execution of TWISS will cause printout to the file zgoubi.TWISS.out, a MADX type "twiss" file, with similar formatting, including periodic optical data as a header (tunes, chromaticities, etc.) and, in sequence element by element : optical functions, element strength, first order transport coefficients, spin \(\vec{n}_{0}\) vector (requires 'SPNTRK' request).

\section*{About the source code :}

The program beamat ensures the transport of the beam matrix along the zgoubi.dat sequence. beamat is called by opticc, itself called after each optical element, in the program zgoubi.
The starting beam matrix value is in the array FI, initialized by the program twiss when met at the end of the zgoubi. dat sequence. The array FO contains the running beam matrix.
The program optimp, called from opticc, prints to zgoubi.TWISS.out after each optical element of the zgoubi.dat sequence.

\subsection*{5.6 Complements Regarding Various Functionalities}

\subsection*{5.6.1 Units in zgoubi}

Units to be employed in zgoubi input data list (in zgoubi.dat) are stated in Part B of this guide. Part B should be carefully referred to about units to be used, when setting up the data list, as some insight in the code indicates :

Working units in zgoubi numerical integrator, and as to the normalized fields delivered to the integrator, satisfy to the following (in particular, whatever the units in the input data file, as listed in Part B, quantities of concern end up manipulated as follows) :
- position coordinates ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{S}\) ) in centimeter,
- angle coordinates ( \(\mathrm{T}, \mathrm{P}\) ) in radian,
- time in \(\mu\) second,
- energy in MeV,
- magnetic field in kG
- electrostatic field in MV/cm
- rigidity \(B \rho\) in kG.cm,
- fields delivered to the integration procedure after convertion to strengths, units of \(m^{- \text {integer }}\), for instance,
- magnetic dipole strength \((B / B \rho=1 / \rho)\) is in \(m^{-1}\) (with \(B\) the field),
- \(2(\mathrm{n}+1)\) order magnetic multipol strengths \(\left(\left(B / R^{n}\right) / B \rho, \mathrm{n}=1\right.\) (quadrupole), \(\mathrm{n}=2\) (sextupole), etc.) are in \(m^{-(n+1)}\) (with \(B\) the field at pole tip radius \(R\) ),
- etc.,
- \(2(\mathrm{n}+1)\) order magnetic multipol strengths \(\left(\left(\Phi / R^{(n+1)}\right) / W, \mathrm{n}=1\right.\) (quadrupole), \(\mathrm{n}=2\) (sextupole), etc) are in \(m^{-(n+1)}\) (with \(\Phi\) the potential (in Volt) at pole tip radius \(R\) and \(W\) the kinetic energy of the particle (in electron-Volt)).

For historical reasons, since zgoubi was first developed in 1972, implementation of optical elements (as listed in Part B) has resulted in parameter definition resorting to a wide variety of units. For instance :
- element lengths in meter or centimeter,
- positioning angles in rad, mrad, degree,
- magnetic fields in Tesla or kGauss,
- electrostatic potentials in Volt, MVolt,
- electrostatic fields in Volt/m, V/cm, MVolt/m,
- etc.

\subsection*{5.6.2 Reference rigidity}
zgoubi computes the strengths of optical elements (they are usually defined by their field) from the reference rigidity BORO as defined in [MC]OBJET. However using CAVITE, and indirectly SCALING, may affect the reference rigidity, following
\[
B \rho_{r e f}=B O R O \longrightarrow B \rho_{r e f}=B O R O+\delta B \rho_{s}
\]
with \(\delta B \rho_{s}\) the synchronous rigidity increase (or decrease). A typical configuration where this would occur is that of multi-turn tracking in a pulsed synchrotron, where in general strengths have to follow the acceleration (see section 5.6.7).

\subsection*{5.6.3 Time Varying Fields}

Fields can be varied as a function of time (in some cases this may mean as a function of turn number, see section 5.6.7), by means of the SCALING keyword.

Eventually some families of magnets may be given a different timing law for the simulation of special processes (e.g., time varying orbit bump, fast crossing of spin resonances with families of jump quadrupoles).

\subsection*{5.6.4 Backward Ray-Tracing}

For the purpose of parameterization for instance, it may be interesting to ray-trace backward from the image toward the object. This can be performed by first reversing the position of optical elements in the structure, and then reversing the integration step sign in all the optical elements.

An illustration of this feature is given in the following Figure 43.


Figure 43: A. Regular forward ray-tracing, from object to image.
B. Same structure, with backward ray-tracing from image to object : negative integration step XPAS is used in the quadrupole.

\subsection*{5.6.5 Checking Fields and Trajectories Inside Optical Elements}
- In all optical elements, an option \(I L\) is available. It is normally set to \(I L=0\) and in this case has no effect. Other possibilities are as follows :
- \(I L=1\) causes a print in zgoubi.res of particle coordinates, fields and low-order derivatives, spin vector and other data, at each integration step along trajectories across the optical element. In the meantime, a calculation and summation of the values of \(\vec{\nabla} \cdot \vec{B}, \vec{\nabla} \times \vec{B}\) and \(\nabla^{2} \vec{B}\) (same for \(\vec{E}\) ) at all integration steps is performed, which allows a check of the behavior of \(\vec{B}\) (and/or \(\vec{E}\) ) in field maps (all these derivatives should normally be zero).
- IL \(=2\) causes a print of particle data (coordinates, \(\vec{B}\) and/or \(\vec{E}\) field(s) experienced, RF cavity related data, spin, etc.), particle status (e.g., decay status, whether it is still tracked, etc.), into the dedicated file zgoubi.plt, one line of data per article, at each integration step. This information can further be processed (using zpop \({ }^{9}\) or gnuplot, for instance). In order to minimize the volume of that storage file (when dealing with small step size, long optical elements, large number of particles, etc.) it is possible to print out every other \(10^{n}\) integration step by taking \(I L=2 \times 10^{n}\) instead (for instance, \(I L=200\) would cause output into zgoubi.plt every 100 other step).
- \(I L=7\) causes similar outputs to \(I L=1\), and more, in particular derivatives to higher order, yet into the dedicated file zgoubi.impdev.out, one line of data per particle, at each integration step. This information can be further plotted (e.g., using zpop, or gnuplot). An example is given in fig. 44, a plot of the quadrupole and sextupole field indices along the reference orbit in a combined function main dipole pertaining to the AGS lattice [61].


Figure 44: Typical field and derivatives - here, along the 10 GeV proton orbit across an AGS A-type main magnet. Derivatives are obtained from second degree polynomial interpolation from the magnet measured field map. Left : \(d B_{Z}(s) / d Y\) and \(d B_{Y}(s) / d Z\), right : \(d^{2} B_{Y}(s) / d Z d Y, d^{2} B_{Y}(s) / d Y d Z\). These data were stored in zgoubi.impdev.out during execution, by stating \(I L=7\) under TOSCA keyword.
- When dealing with field maps (e.g., CARTEMES, ELREVOL, TOSCA), an option index IC is available. It is normally set to \(I C=0\) and in this case has no effect. Other possibilities are as follows :
- IC = 1 causes a print of the field map in zgoubi.res.
- IC \(=2\) will cause a print of the field map into the file zgoubi.map which can further be processed with zpop for plotting, superimposing trajectories, and other data treatment purposes.

\subsection*{5.6.6 Labeling Keywords}

Keywords in zgoubi input data file zgoubi.dat can be LABEL'ed, for the purpose of the execution of such procedures as REBELOTE, PICKUPS, FAISCNL, FAISTORE, SCALING, and also for the purpose of particle coordinate storage into zgoubi.plt (see section 5.6.5, \(I L=2\) option).

\footnotetext{
\({ }^{9}\) See Part D of the Guide.
}

A keyword in zgoubi.dat accepts two LABELs. The first one is used for the above mentioned purposes. An instance of the use of the second one is with MARKER : it can be set to ".plt" for storage of current particle data into zgoubi.plt. The keyword and its LABEL[s] should fit within a 110-character long string on a single line (a quantity set in the FORTRAN file prdata.f).

\subsection*{5.6.7 Multi-turn Tracking in Circular Machines}

Multi-turn tracking in circular machines can be performed by means of the keyword REBELOTE. REBELOTE is introduced in the zgoubi.dat data list with its argument NPASS +1 being the number of turns to be performed. It will cause a jump of the "multi-turn pointer" back to (details on page 77), either the beginning of the data list (default case), or to a particular LABEL in that list. From then on, tracking resumes down to REBELOTE again, and so forth until the requested number of passes has been reached.
Possible magnet timing laws \(B(T)\) during the multi-turn process (with \(T=1\) to NPASS +1 counted in number of turns) can be introduced by means of SCALING.
In order that the IMAX particles of the beam start a new pass with the coordinates they had reached at the end of the previous one, the option \(K=99\) has to be specified in REBELOTE.
Synchrotron acceleration can be simulated, using following the procedure :
- CAVITE appears in the zgoubi.dat data list (normally before REBELOTE), with option IOPT \(\neq 0\),
- the RF frequency of the cavity may be given a timing law \(f_{R F}(T)\) by means of SCALING, family CAVITE,
- the magnets are given a field timing law \(B(T)\), (with \(T=1\) to NPASS +1 counted in number of turns) by means of SCALING.

Eventually some families of magnets may be given a different timing law for the simulation of special processes (e.g., time varying orbit bump, fast crossing of spin resonances with families of jump quadrupoles).

\subsection*{5.6.8 Positioning, (Mis-)Alignment, of Optical Elements and Field Maps}

The last record in most optical elements and field maps is the positioning option KPOS. KPOS is followed by the positioning parameters, e.g., XCE, YCE for translation and ALE for rotation. The positioning works in two different ways, depending whether the element is defined in Cartesian ( \(X, Y, Z\) ) coordinates (e.g., QUADRUPO, TOSCA), or polar ( \(R, \theta, Z\) ) coordinates (DIPOLE).

\section*{Cartesian Coordinates :}

If \(K P O S=1\), the optical element is moved (shifted by XCE, YCE and Z-rotated by ALE) with respect to the incoming reference frame. Trajectory coordinates after traversal of the element refer the element frame.
If \(K P O S=2\), the shifts \(X C E\) and \(Y C E\), and the tilt angle \(A L E\) are taken into account, for mis-aligning the element with respect to the incoming reference, as shown in Fig. 45. The effect is equivalent to a \(C H A N G R E F(X C E, Y C E, A L E)\) upstream of the optical element, followed by \(C H A N G R E F(X C S, Y C S, A L S=\) \(-A L E)\) downstream of it, with computed XCS, YCS values as schemed in Fig. 45.
\(K P O S=3\) option is available for some optical elements (e.g., BEND, MULTIPOL, AGSMM) ; it is effective only if a non zero dipole component \(B 1\) is present, or if \(A L E\) is non-zero. It positions automatically the magnet in a symmetric manner with respect to the incoming and outgoing reference axis, convenient for periodic structures, as follows (Fig 46).
Both incoming and outgoing reference frames are tilted w.r.t. the magnet,
- either, by an angle \(A L E\) if ALE \(\neq 0\),
- or, if ALE \(=0\) by half the \(Z\)-rotation \(\alpha_{Z} / 2\) such that \(L=2 \frac{B O R O}{B 1} \sin \left(\alpha_{Z} / 2\right)\), wherein \(L=\) geometrical length, \(B O R O=\) reference rigidity as defined in OBJET.


Figure 45: Case of Cartesian frame optical element. Left : positioning an optical element using \(K P O S=1\). Right : Mis-aligning an optical element using \(K P O S=2 .\left(X_{E}, Y_{E}\right)\) and \(\left(X_{S}, Y_{S}\right)\) are respectively the incoming and outgoing reference frames.


Figure 46: Alignment in BEND by half the deviation, \(\alpha_{Z} / 2\), using \(K P O S=3\). \(\left(X_{E}, Y_{E}\right)\) and \(\left(X_{S}, Y_{S}\right)\) are respectively the incoming and outgoing reference frames. Trajectory coordinates inside the magnet are defined in the magnet frame, \(\left(X_{M E}, Y_{M E}\right)\).

Next, the optical element is Y-shifted by \(\delta Y=Y C E\) ( \(X C E\) is not used) in a direction orthogonal to the new magnet axis (i.e., at an angle \(A L E+\pi / 2\) wrt. the \(X\) axis of the incoming reference frame).
KPOS \(=4\) applies to AGSMM (AGS main magnet) and MULTIPOL. It orients the magnet in a way similar to \(K P O S=3\), with reference frame Z-rotated by \(\alpha_{Z} / 2\) as drawn from \(L=2 \frac{B O R O}{B 1} \sin \left(\alpha_{Z} / 2\right)\).
However additional magnet mis-alignments (alignment errors) are available (Fig. 47) : Z-rotation \(\theta_{Z}\), Zshift \(\delta Z\), Y-rotation \(\theta_{Y}\). Rotations apply at the center of the magnet.


Figure 47: Additional magnet mis-alignement with \(K P O S=4\).

\section*{Polar Coordinates}

If \(K P O S=1\), the element is positioned automatically in such a way that a particle entering with zero initial coordinates and \(1+D P=B \rho / B O R O\) relative rigidity will reach position \(\left(R M, \frac{A T}{2}\right)\) in the element with \(T=0\) angle with respect to the moving frame in the polar coordinates system of the element (Fig. ?? ; see DIPOLE-M and POLARMES).
If \(K P O S=2\), the map is positioned in such a way that the incoming reference frame is presented at radius \(R E\) with angle \(T E\). The exit reference frame is positioned in a similar way with respect to the map, by means of the two parameters \(R S\) (radius) and \(T S\) (angle) (see Fig. 11A page 92A).

\subsection*{5.6.9 Coded Integration Step}

In several optical elements (e.g., all multipoles, BEND) the integration step (in general noted XPAS) can be coded under the form XPAS \(=\# \mathrm{E}|\mathrm{C}| \mathrm{S}\), with \(\mathrm{E}, \mathrm{C}, \mathrm{S}\) integers, E is the number of steps in the entrance fringe field region, \(C\) is the number of steps in the magnet body, and \(S\) is the number of steps in the exit fringe field region.

\subsection*{5.6.10 Ray-tracing of an Arbitrarily Large Number of Particles}

Monte Carlo multi-particle simulations involving an arbitrarily large number of particles can be performed using MCOBJET together with REBELOTE, put at the end of the optical structure, with its argument NPASS being the number of passes through REBELOTE, and (NPASS +1) * IMAX the number of particles to be ray-traced. In order that new initial conditions \((D, Y, T, Z, P, X)\) be generated at each pass, \(K=0\) has to be specified in REBELOTE.
Statistics on coordinates, spins, and other histograms can be performed by means of such procedures as HISTO, SPNTRK, etc. that stack the information from pass to pass.

\subsection*{5.6.11 Stopped Particles : The IEX Flag}

As described in \(O B J E T\), each particle \(I=1, I M A X\) is attached a value \(\operatorname{IEX}(I)\) of the \(\operatorname{IEX}\) flag. Normally, \(\operatorname{IEX}(I)=1\). Under certain circumstances, IEX may be changed to a negative value by zgoubi, as follows.
-1 : the trajectory happened to wander outside the limits of a field map
\(-2:\) too many integration steps in an optical element (a quantity controlled in MXSTEP. H include file)
-3 : deviation happened to exceed \(\pi / 2\) in an optical element not designed to allow that
-4 : stopped by walls (procedures CHAMBR, COLLIMA)
\(-5:\) too many iterations in subroutine depla.f
-6 : energy loss exceeds particle energy
-7 : field discontinuities larger than \(50 \%\) within a field map
-8 : reached field limit in an optical element
Only in the case IEX \(=-1\) will the integration not be stopped since in this case the field outside the map is extrapolated from the map data, and the particle may possibly get back into the map (see section 1.4.2 on page 29). In all other cases the particle will be stopped.

\subsection*{5.6.12 Negative Rigidity}
zgoubi can handle negative rigidities \(B \rho=p / q\). This is equivalent to considering either particles with negative charge ( \(q<0\) ) or momentum ( \(p<0\) ), or reversed fields (wrt. the field sign that shows in the zgoubi.dat optical element data list).
Negative rigidities may be specified in terms of \(B O R O<0\) or \(D=B \rho / B O R O<0\) when defining the initial coordinates with OBJET or MCOBJET.

\section*{PART B}

Keywords and input data formatting

\section*{Glossary of Keywords, Part B}

\section*{Available keywords : how to format their input data list.}
AGSMM AGS main magnet ..... 193
AGSQUAD AGS quadrupole ..... 194
AIMANT Generation of dipole mid-plane 2-D map, polar frame ..... 195
AUTOREF Transport beam into a new reference frame ..... 199
BEAMBEAM Beam-beam lens ..... 200
BEND Bending magnet, Cartesian frame ..... 201
BINARY BINARY/FORMATTED data converter ..... 203
BREVOL 1-D uniform mesh magnetic field map ..... 204
CARTEMES 2-D Cartesian uniform mesh magnetic field map ..... 205
CAVITE Accelerating cavity ..... 207
CHAMBR Long transverse aperture limitation ..... 208
CHANGREF Transformation to a new reference frame ..... 209
CIBLE Generate a secondary beam following target interaction ..... 210
COLLIMA Collimator ..... 211
DECAPOLE Decapole magnet ..... 212
DIPOLE Dipole magnet, polar frame ..... 213
DIPOLE-M Generation of dipole mid-plane 2-D map, polar frame ..... 214
DIPOLES Dipole magnet \(N\)-tuple, polar frame ..... 216
DODECAPO Dodecapole magnet ..... 217
DRIFT Field free drift space ..... 218
EBMULT Electro-magnetic multipole ..... 219
EL2TUB Two-tube electrostatic lens ..... 221
ELMIR Electrostatic N-electrode mirror/lens, straight slits ..... 222
ELMIRC Electrostatic N-electrode mirror/lens, circular slits ..... 223
ELMULT Electric multipole ..... 224
ELREVOL 1-D uniform mesh electric field map ..... 225
EMMA 2-D Cartesian or cylindrical mesh field map for EMMA FFAG ..... 226
END End of input data list ..... 231
ESL Field free drift space ..... 218
ERRORS Injecting errors in optical elements ..... 227
FAISCEAU Print particle coordinates ..... 228
FAISCNL Store particle coordinates in file FNAME ..... 228
FAISTORE Store coordinates every IP other pass at labeled elements ..... 228
FFAG FFAG magnet, \(N\)-tuple ..... 229
FFAG-SPI \(\quad\) Spiral FFAG magnet, \(N\)-tuple ..... 230
FIN End of input data list ..... 231
FIT,FIT2 Fitting procedure ..... 232
FOCALE Particle coordinates and horizontal beam size at distance \(X L\) ..... 236
FOCALEZ Particle coordinates and vertical beam size at distance XL ..... 236
GASCAT Gas scattering ..... 237
GETFITVAL Get values of variables as saved from former FIT[2] run ..... 238
GOTO Branching statement ..... 239
HISTO 1-D histogram ..... 240
IMAGE Localization and size of horizontal waist ..... 241
IMAGES Localization and size of horizontal waists ..... 241
IMAGESZ Localization and size of vertical waists ..... 241
IMAGEZ Localization and size of vertical waist ..... 241
INCLUDE File include statement ..... 242
MAP2D 2-D Cartesian uniform mesh field map - arbitrary magnetic field ..... 244
MAP2D-E 2-D Cartesian uniform mesh field map - arbitrary electric field ..... 245
MARKER Marker ..... 246
MATRIX Calculation of transfer coefficients, periodic parameters ..... 247
MCDESINT Monte-Carlo simulation of in-flight decay ..... 248
MCOBJET Monte-Carlo generation of a 6-D object ..... 249
MULTIPOL Magnetic multipole ..... 252
OBJET Generation of an object ..... 253
OBJETA Object from Monte-Carlo simulation of decay reaction ..... 256
OCTUPOLE Octupole magnet ..... 257
OPTICS Write out optical functions. Log to zgoubi.OPTICS.out ..... 258
OPTIONS Global or special options ..... 259
ORDRE Taylor expansions order ..... 260
PARTICUL Particle characteristics ..... 261
PICKUPS Bunch centroid path; orbit ..... 262
PLOTDATA Intermediate output for the PLOTDATA graphic software ..... 263
POISSON Read magnetic field data from POISSON output ..... 264
POLARMES 2-D polar mesh magnetic field map ..... 265
PS170 Simulation of a round shape dipole magnet ..... 266
QUADISEX Sharp edge magnetic multipoles ..... 267
QUADRUPO Quadrupole magnet ..... 268
REBELOTE 'Do it again' ..... 270
RESET Reset counters and flags ..... 272
SCALING Power supplies and R.F. function generator ..... 273
SEPARA Wien Filter - analytical simulation ..... 274
SEXQUAD Sharp edge magnetic multipole ..... 275
SEXTUPOL Sextupole magnet ..... 276
SOLENOID Solenoid ..... 277
SPACECHARG Space charge ..... 278
SPINR Spin rotation ..... 279
SPNPRNL Store spin coordinates into file FNAME ..... 280
SPNSTORE Store spin coordinates every IP other pass at labeled elements ..... 280
SPNPRT Print spin coordinates ..... 280
SPNTRK Spin tracking ..... 281
SRLOSS Synchrotron radiation energy loss ..... 282
SRPRNT Print SR loss statistics ..... 283
SYNRAD Synchrotron radiation spectral-angular densities ..... 284
SYSTEM System call ..... 285
TARGET Generate a secondary beam following target interaction ..... 210
TOSCA 2-D and 3-D Cartesian or cylindrical mesh field map ..... 287
TRANSMAT Matrix transfer ..... 289
TRAROT Translation-Rotation of the reference frame ..... 290
TWISS Calculation of periodic optical parameters. Log to zgoubi.TWISS.out ..... 291
UNDULATOR Undulator magnet ..... 292
UNIPOT Unipotential cylindrical electrostatic lens ..... 293
VENUS Simulation of a rectangular shape dipole magnet ..... 294
WIENFILT Wien filter ..... 295
YMY Reverse signs of \(Y\) and \(Z\) reference axes ..... 296

\section*{Optical elements versus keywords}

\section*{What can be simulated What keyword(s) can be used for that}

This glossary gives a list of keywords suitable for the simulation of common optical elements. These are classified in three categories: magnetic, electric and combined electro-magnetic elements.

Field map procedures are also listed; they provide a means for ray-tracing through measured or simulated electric and/or magnetic fields.

\section*{MAGNETIC ELEMENTS}

AGS main magnet
Cyclotron magnet or sector
Decapole
Dipole[s], spectrometer dipole
Dodecapole
FFAG magnets
Helical dipole
Multipole
Octupole
Quadrupole
Sextupole
Skew multipoles
Solenoid
Undulator

\author{
AGSMM \\ DIPOLE[S], DIPOLE-M, FFAG, FFAG-SPI \\ DECAPOLE, MULTIPOL \\ AIMANT, BEND, DIPOLE[S][-M], MULTIPOL, QUADISEX \\ DODECAPO, MULTIPOL \\ DIPOLES, FFAG, FFAG-SPI, MULTIPOL \\ HELIX \\ MULTIPOL, QUADISEX, SEXQUAD \\ OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD \\ QUADRUPO, MULTIPOL, SEXQUAD, AGSQUAD \\ SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD \\ MULTIPOL \\ SOLENOID \\ UNDULATOR
}

\section*{Using field maps}
\begin{tabular}{ll} 
1-D, cylindrical symmetry & BREVOL \\
2-D, mid-plane symmetry & CARTEMES, POISSON, TOSCA \\
2-D, no symmetry & MAP2D \\
2-D, polar mesh, mid-plane symmetry & POLARMES \\
3-D, no symmetry & TOSCA \\
EMMA FFAG quadrupole doublet & EMMA \\
linear composition of field maps & TOSCA
\end{tabular}

\section*{ELECTRIC ELEMENTS}
\begin{tabular}{ll} 
2-tube (bipotential) lens & EL2TUB \\
3-tube (unipotential) lens & UNIPOT \\
Decapole & ELMULT \\
Dipole & ELMULT \\
Dodecapole & ELMULT \\
Multipole & ELMULT \\
N-electrode mirror/lens, straight slits & ELMIR \\
N-electrode mirror/lens, circular slits & ELMIRC \\
Octupole & ELMULT \\
Quadrupole & ELMULT \\
R.F. (kick) cavity & CAVITE \\
Sextupole & ELMULT \\
Skew multipoles & ELMULT
\end{tabular}

\section*{Using field maps}

\section*{ELECTRO-MAGNETIC ELEMENTS}
\begin{tabular}{ll} 
Decapole & EBMULT \\
Dipole & EBMULT \\
Dodecapole & EBMULT \\
Multipole & EBMULT \\
Octupole & EBMULT \\
Quadrupole & EBMULT \\
Sextupole & EBMULT \\
Skew multipoles & EBMULT \\
Wien filter & SEPARA, WIENFILT
\end{tabular}

\section*{INTRODUCTION}

Here after is given a detailed description of input data formatting and units. All available keywords appear in alphabetical order.
Keywords are read from the input data file by an unformatted FORTRAN READ statement. They be enclosed between quotes (e.g., 'DIPOLE').

Text string data such as comments or file names, are read by formatted READ statements, no quotes should be used in that case.
Numerical variables and indices are read by unformatted READ. It may therefore be necessary that integer variables be assigned an integer value.

In the following tables
- the first column shows the expected input parameters (actually, their values are expected), indices and text strings,
- the second column gives brief comments regarding their meaning and use,
- the third column gives the units or ranges,
- the fourth column indicates whether the expected parameter types are integer (I), real (E) or text string (A). For example, "I, \(3 * E\) " means that one integer followed by 3 reals is expected. "A80" means that a text string of maximum 80 characters is expected.
\begin{tabular}{|c|c|c|c|}
\hline AGSMM & AGS main magnet & & \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline \[
\begin{aligned}
& M O D, d L \\
& R_{0}, d B 1, d B 2, d B 3
\end{aligned}
\] & Type of magnet model \({ }^{1}\); unused ; pole tip radius, 10 cm if set to zero ; relative error on dipole, quadrupole, sextupole component. & \[
\begin{aligned}
& 2 * \text { no dim., cm, } \\
& 3 * \text { no dim. }
\end{aligned}
\] & \(\mathrm{I}[. \mathrm{I}], 5 * \mathrm{E}\) \\
\hline \begin{tabular}{l}
NBLW[.MOD], \\
NBLW times : NW, I
\end{tabular} & Number of back-leg windings [back-leg winding model \({ }^{2}\) ] ; for each back-leg winding : number of windings, current. & \[
\begin{aligned}
& \leq 2, \text { NBLW } \times \\
& \text { (any, Amp.) }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, N B L W \times \\
& (\mathrm{I}, \mathrm{E})
\end{aligned}
\] \\
\hline \(X_{E}, \lambda_{E}, E_{2}, E_{3}\) & \begin{tabular}{l}
Entrance face \\
Integration zone ; fringe field extent : dipole fringe field extent \(=\lambda_{E}\); quadrupole fringe field extent \(=\lambda_{E} * E_{2}\); sextuppole fringe field extent \(=\lambda_{E} * E_{3}\) (sharp edge if field extent is zero)
\end{tabular} & \(2 * \mathrm{~cm}, 2 *\) no dim. & 4*E \\
\hline NCE, \(C_{0}-C_{5}\) & same as QUADRUPO & 0-6, 6* no dim. & I, 6 *E \\
\hline \(X_{S}, \lambda_{S}, S_{2}, S_{3}\) & \begin{tabular}{l}
Exit face \\
Integration zone ; as for entrance
\end{tabular} & \(2 * \mathrm{~cm}, 2 *\) no dim. & 4*E \\
\hline NCS, \(C_{0}-C_{5}\) & & 0-6, 6* no dim. & I, \(6 *\) E \\
\hline \(R 1, R 2, R 3\) & Skew angles of field components & \(3 * \mathrm{rad}\) & 10*E \\
\hline XPAS & Integration step & cm & E \\
\hline \begin{tabular}{l}
If KPOS = 1-3 \\
KPOS, XCE, YCE, ALE
\end{tabular} & \begin{tabular}{l}
Positioning as follows : \\
\(K P O S=1\) : element aligned ; \(K P O S=2\) : misaligned ; shifts, tilt ; \\
\(K P O S=3\) : effective only if \(B 1 \neq 0\) : \\
entrance and exit frames are tilted wrt. the magnet by an angle of \\
- either ALE if ALE \(\neq 0\) \\
- or \(2 \operatorname{Arcsin}(B 1 X L / 2 B O R O)\) if \(\operatorname{ALE}=0\)
\end{tabular} & \(1-3,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3*E \\
\hline \begin{tabular}{l}
If KPOS = 4 \\
KPOS, XS, YS, ZR, ZS, YR
\end{tabular} & \begin{tabular}{l}
X-, Y-shift, Z-rotation, Z-shift, Y-rotation \\
Automatic ALE positioning as \(K P O S=3\), and in addition possible X- or Y- or Z-misalignment or Z-, Y-rotation. (under development).
\end{tabular} & \(4, \mathrm{~cm}, 2 *(\mathrm{~cm}, \mathrm{rad})\) & I, 5 *E \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1} M O D=1\) : centered multipole model ; \(M O D=2\) : long-shifted dipole model ; \(M O D=3\) : short-shifted dipole model.
\({ }^{2} M O D=0\) (default) : user defined back-leg windings (defined in routine agsblw.f); MOD =1: actual AGS data are taken, namely : MM_A16AD : NBLW \(=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=10 ;\) MM_A17CF \(: \mathrm{NBLW}=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=10 ;\) MM_A18CF : NBLW \(=1\), SIGN \(=-1 . \mathrm{D} 0\), NW \(=10 ;\) MM_A19BD : NBLW \(=1, \mathrm{SIGN}=-1 . \mathrm{D} 0, \mathrm{NW}=12 ; \mathrm{MM} \_A 20 B D: \mathrm{NBLW}=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=12 ;\) MM_B02BF \(: \mathrm{NBLW}=2\), SIGN \(=1 . \mathrm{D} 0\), NW1 \(=12\), SIGN \(=1 . \mathrm{D} 0\), NW2 \(=6 ;\) MM_B03CD \(:\) NBLW \(=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=10 ;\) MM_B04CD \(:\) NBLW \(=1, \mathrm{SIGN}=-1 . \mathrm{D} 0, \mathrm{NW}=10 ;\) MM_B05A : NBLW \(=1\), SIGN \(=-1 . \mathrm{D} 0\),
 NW = 5; MMLL14C : NBLW = 1, SIGN =-1.D0, NW =5; MM_A07CD : NBLW = 1, SIGN = -1.D0, NW = 5; MM_A08C : NBLW = 1, SIGN = -1.D0, NW \(=5 ;\) MM_B01B \(:\) NBLW \(=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=6 ;\) MM_L06A \(:\) NBLW \(=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=5 ;\) MM_L07C \(:\) NBLW \(=1, \mathrm{SIGN}=1 . \mathrm{D} 0\), NW \(=\) \(5 ;\) MM_A14C \(:\) NBLW \(=1, \mathrm{SIGN}=-1 . \mathrm{D} 0, \mathrm{NW}=5 ;\) MM_A15A : NBLW \(=1, \mathrm{SIGN}=-1 . \mathrm{D} 0\), NW \(=5\); MM_E06A : NBLW \(=1\), SIGN \(=-1 . \mathrm{D} 0\), NW \(=5\); MM_E07CD : NBLW \(=1, \mathrm{SIGN}=-1 . \mathrm{D} 0, \mathrm{NW}=5 ; \mathrm{MM} E 20 B D:\) NBLW \(=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=6 ;\) MM_F01BF: NBLW \(=1\), SIGN \(=1 . \mathrm{D} 0, \mathrm{NW}=6\); MM_F14CF : NBLW \(=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=5 ; \mathrm{MM} F 15 \mathrm{AD}:\) NBLW \(=1, \mathrm{SIGN}=1 . \mathrm{D} 0, \mathrm{NW}=5 ; \mathrm{MM}-\mathrm{G} 08 \mathrm{CD}:\) NBLW \(=1\), SIGN \(=-1 . \mathrm{D} 0, \mathrm{NW}=5\); MM_G09BF : NBLW \(=1\), SIGN \(=-1 . \mathrm{D} 0, \mathrm{NW}=6\).
}

\section*{AGSQUAD}
\begin{tabular}{|c|c|c|c|c|}
\hline & & dim. & data type & \[
\begin{gathered}
\text { FIT } \\
\text { numb. }
\end{gathered}
\] \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I & \\
\hline \[
\begin{aligned}
& X L, R_{0}, I_{W 1}, I_{W 2}, I_{W 3} \\
& d I_{W 1}, d I_{W 2}, d I_{W 3}
\end{aligned}
\] & Length of element ; radius at pole tip ; current in windings ; relative error on currents. & \[
\begin{aligned}
& 2 * \mathrm{~cm}, 3 * \mathrm{~A} \\
& 3 * \text { no dim }
\end{aligned}
\] & \[
\begin{aligned}
& 5^{*} \mathrm{E} \\
& 3 * \mathrm{E}
\end{aligned}
\] & 10-17 \\
\hline \(X_{E}, \lambda_{E}\) & \begin{tabular}{l}
Entrance face \\
Integration zone ; fringe field extent. (sharp edge if field extent is zero)
\end{tabular} & \(2 * \mathrm{~cm}\) & \(11 * \mathrm{E}\) & 20, 21 \\
\hline \(N C E, C_{0}-C_{5}\) & Same as QUADRUPO & 0-6, 6* no dim. & I, 6*E & 30-36 \\
\hline \(X_{S}, \lambda_{S}\) & \begin{tabular}{l}
Exit face \\
Integration zone ; as for entrance
\end{tabular} & \(2 * \mathrm{~cm}\) & \(11 * \mathrm{E}\) & 40, 41 \\
\hline \(N C S, C_{0}-C_{5}\) & & 0-6, 6* no dim. & I, 6 *E & 50-56 \\
\hline \(R 1\) & Roll angle & rad & E & 60 \\
\hline XPAS & Integration step & cm & E & 70 \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3 *E & 80-83 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline If \(\mathrm{NFACE}=3\) & LATERAL FIELD BOUNDARY (See ENTRANCE F Next 3 records only if NFACE \(=3\) & & \\
\hline \(\lambda, \xi\) & Fringe field parameters & cm, (cm) & 2*E \\
\hline NC, \(C_{0}-C_{5}\), shift & See above & 0-6, 6*no dim., cm & I, 7*E \\
\hline \begin{tabular}{l}
\[
\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}
\] \\
RM3
\end{tabular} & \begin{tabular}{l}
Positioning and shape of the lateral EFB ; \\
RM3 is the radial position on azimuth ACENT
\end{tabular} & \(2 * \mathrm{deg}, 5{ }^{*} \mathrm{~cm}\) & 7*E \\
\hline NBS & Option index for perturbations to the field map & \(-2-0\) or \(\geq 1\) & I \\
\hline If \(\mathrm{NBS}=0\) & Normal value. No other record required & & \\
\hline If \(\mathrm{NBS}=\mathbf{- 2}\) & The map is modified as follows : & & \\
\hline \(R_{0}, \Delta B / B_{0}\) & \(B\) transforms to \(B *\left(1+\frac{\Delta B}{B_{0}} \frac{R-R_{0}}{R M A X-R M I N}\right)\) & cm, no dim. & 2*E \\
\hline If \(\mathrm{NBS}=\mathbf{- 1}\) & the map is modified as follows : & & \\
\hline \(\theta_{0}, \Delta B / B_{0}\) & \(B\) transforms to \(B *\left(1+\frac{\Delta B}{B_{0}} \frac{\theta-\theta_{0}}{A T}\right)\) & deg, no dim. & 2*E \\
\hline If \(\mathbf{N B S} \geq 1\) & Introduction of NBS shims & & \\
\hline For \(\mathrm{I}=1\), NBS & The following 2 records must be repeated NBS times & & \\
\hline \(R_{1}, R_{2}, \theta_{1}, \theta_{2}, \lambda\) & Radial and angular limits of the shim ; \(\lambda\) is unused & \(2 * \mathrm{~cm}, 2 * \mathrm{deg}, \mathrm{cm}\) & 5*E \\
\hline \(\gamma, \alpha, \mu, \beta\) & geometrical parameters of the shim & \(2 * \operatorname{deg}, 2 *\) no dim. & 4*E \\
\hline IORDRE & \begin{tabular}{l}
Degree of interpolation polynomial : \\
2 = second degree, 9-point grid \\
\(25=\) second degree, 25 -point grid \\
4 = fourth degree, 25 -point grid
\end{tabular} & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS & Positioning of the map, normally 2. Two options : & 1-2 & I \\
\hline If KPOS = 2 & Positioning as follows : & & \\
\hline RE, TE, RS, TS & Radius and angle of reference, respectively, at entrance and exit of the map. & cm, rad, cm, rad & 4*E \\
\hline \[
\begin{aligned}
& \text { If KPOS = } \mathbf{1} \\
& D P
\end{aligned}
\] & Automatic positioning of the map, by means of reference relative momentum & no dim. & E \\
\hline
\end{tabular}


A : Parameters used to define the field map and geometrical boundaries.
B : Parameters used to define the field map and fringe fields.


Second order type fringe field.


Exponential type fringe field.
\begin{tabular}{|c|c|c|c|}
\hline AUTOREF & Transport beam into a new reference frame & & \\
\hline \multirow[t]{5}{*}{I} & 1: Equivalent to \(\operatorname{CHANGREF}(X C E=0, Y C E=Y(1), A L E=T(1))\), i.e., recentering of the beam on particle \#1. & \[
\begin{aligned}
& 1-2 \\
& 1-2
\end{aligned}
\] & I \\
\hline & 2 : Equivalent to CHANGREF( \(X W, Y W, T(1)\) ), with \((X W, Y W)\) the location of the intersection (waist) of particles 1, 4 and 5 (useful with MATRIX, for automatic positioning of the first order focus). & & \\
\hline & 3 : Equivalent to \(\operatorname{CHANGREF}(X W, Y W, T(I 1)\) ), with ( \(X W, Y W\) ) the location of the intersection (waist) of particles \(I 1, I 2\) and \(I 3\) (for instance : \(I 1=\) central trajectory, \(I 2\) and \(I 3=\) paraxial trajectories that intersect at the first order focus). & & \\
\hline & \begin{tabular}{l}
4 : Equivalent to CHANGREF (XCE, YCE, ALE). \\
4.1 : Equivalent to \(\operatorname{CHANGREF}(X C E, Y C E, A L E)\) with in addition centering of the beam on a new relative momentum \(D C E\).
\end{tabular} & & \\
\hline & 5 : The beam is centered vertically on ZCE, PLE. & & \\
\hline If \(I=3\) & Provide next record if \(I=3\) & & \\
\hline \(I 1, I 2, I 3\) & Three particle numbers & 3*(1-IMAX) & \(3 * \mathrm{I}\) \\
\hline If \(I=4\) & Provide next record if \(I=4\) & & \\
\hline XCE, YCE, ALE & \(X C E\) and beam centroid new coordinates YCE, ALE & \(2 * \mathrm{~cm}, \mathrm{mrad}\) & \(3 * \mathrm{E}\) \\
\hline If \(I=4.1\) & Provide next record if \(I=4.1\) & & \\
\hline XCE, YCE, ALE, DCE, TIME & XCE and beam centroid new coordinates YCE, ALE, DCE, TIME & \[
\begin{aligned}
& 2 * \mathrm{~cm}, \mathrm{mrad} \\
& -, \mu \mathrm{s}
\end{aligned}
\] & 6*E \\
\hline If \(I=4.2\) & Provide next record if \(I=4.2\) & & \\
\hline XCE, YCE, ALE, DCE, TIME & XCE and beam centroid new coordinates YCE, ALE, DCE, time setting TIME (same for all particles). & \[
\begin{aligned}
& 2 * \mathrm{~cm}, \mathrm{mrad} \\
& -, \mu \mathrm{s}
\end{aligned}
\] & 6*E \\
\hline If \(I=5\) & Provide next record if \(I=5\) & & \\
\hline ZCE, PLE & New vertical beam centroid coordinates ZCE, PLE & cm, mrad & \(2 * \mathrm{E}\) \\
\hline
\end{tabular}

\section*{BEAMBEAM}

Beam-beam lens
\begin{tabular}{lllc} 
SW, I & \(0 / 1:\) off/on ; beam intensity. & \(0-2, \mathrm{Amp}\) & \(\mathrm{I}, \mathrm{E}\) \\
& Use SPNTRK to activate spin kicks. & & \\
\(\alpha_{Y}, \beta_{Y}, \epsilon_{Y, \text { norm }} / \pi\) & Beam parameters, horizontal. & \(-, \mathrm{m}, \mathrm{m} . \mathrm{rad}\) & \(3 * \mathrm{E}\) \\
\(\alpha_{Z}, \beta_{Z}, \epsilon_{Z, \text { norm }} / \pi\) & Beam parameters, vertical. & \(-, \mathrm{m}, \mathrm{m} \cdot \mathrm{rad}\) & \(3 * \mathrm{E}\) \\
\(\sigma_{X}, \sigma_{d p / p}\) & rms bunch length ; rms momentum spread. & \(\mathrm{m},-\) & \(2 * \mathrm{E}\) \\
\(\mathcal{C}, \alpha\) & Ring circumference ; momentum compaction. & \(\mathrm{m},-\) & \(2 * \mathrm{E}\) \\
\(Q_{Y}, Q_{Z}, Q_{s}\) & Tunes, horizontal, vertical, synchrotron. &,,--- & \(3 * \mathrm{E}\) \\
\(A_{Y}, A_{Z}, A_{X}\) & Amplitudes, horizontal, vertical, longitudinal. &,,--- & \(3 * \mathrm{E}\)
\end{tabular}

\section*{BEND Bending magnet, Cartesian frame}

IL
\(X L, S k, B 1\)
\(X_{\mathrm{E}}, \lambda_{\mathrm{E}}, W_{\mathrm{E}}\)
\(N, C_{0}-C_{5}\)
\(X_{S}, \lambda_{S}, W_{S}\)
\(N, C_{0}-C_{5}\)
XPAS

KPOS, XCE, YCE, ALE
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length ; skew angle ; field (change ALE and wedge signs, if \(\mathrm{B}<0\) ).

\section*{Entrance face :}

Integration zone extent ; fringe field extent (normally \(\simeq\) gap height ; cm, \(\mathrm{cm}, \mathrm{rad}\) 3*E zero for sharp edge) ; wedge angle ( \(>0\) for rectangle magnet).

Unused ; fringe field coefficients : \(B(s)=B 1 F(s)\) with \(F(s)=1 /\left(1+\exp (P(s))\right.\) and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\)

\section*{Exit face :}

See entrance face

Integration step
cm
E
\(1-2,2 * \mathrm{~cm}, \mathrm{rad}\)
I, \(3^{*}\) E


Geometry and parameters of BEND : XL = length, \(\theta=\) deviation, \(W_{E}, W_{S}\) are the entrance and exit wedge angles. The motion is computed in the Cartesian frame \((O, X, Y, Z)\)
- Example : Positive or negative field BEND

The data list at left hand, below, simulates a case of positive field, followed by two different ways to simulate the same magnet with negative field. (This can be copy-pasted to zgoubi, as is, for execution.)
The right hand column shows the transport matrix in all three cases.
```

Test signs, with wedges.
! Magnet deviation is
! tta=11.25deg=2asin(L/2rho)=2asin(B.L/2.Brho) with L=247.30039, Brho=1000, B=1.57776
! 1/ Positive B, regular form of input data
1000.
1000
.01 .1 . 01 .1 0. . 001
0.0.0.0.0.1.
'BEND'
0
247.30039 0. 1.57776
20. 8. 0.04276056667 ! wedge is +2.45deg
20.8.0.04276056667 -.5572 . 3904 0.0.0. ! wedge is +2.45deg
4. .2401 1.8639 -.557
\#30|10|30
'FAISCEAU'
'mATRIX'
10
! 2/ Negative B. Compared to 1/: R11-R44 unchaged, R16, R26 change sign.
! 2-a/ By changing sign of B. Note : signs of ALE and wedges have to be reversed,
1000.
1000
.01.1. .01.1 0. . 001
'BEND'
247.30039 0. -1.57776
20. 8. -0.04276056667 ! wedge is +2.45deg
20.8.-0.04276056667 .3904 0.0.0.! ! wedge is +2.45deg
20.8. -0.0427605666
\#30|10|30.8639 -.
'FAISCEAU'
'MATRIX'
10
! 2-a/ Using YMY instead. All data in BEND remain unchanged.
1000.
L
.01 .1 . 01 .1 0. . }00
0.0.0.0.0.1.

$\begin{aligned} & \text { 'YMY' } \\ & \hline \text { BEND } \end{aligned}$			Reference particle (\#		1), path length :		248.88547			
			TRANSFER MATRIX		ORDRE 1 (MKSA units)					
247.30039 0. 1.57776			0.940559	2.42528		0.00000	0.00000	0.0	-0.482374	
20. 8. 0.04276056667		! wedge is +2.45 deg	-4.768802E-02	0.940229		0.00000	0.00000	0.0	-0.385904	
$\begin{array}{llll}4.2401 & 1.8639 & -.5572\end{array}$. 3904 0. 0. 0.		0.00000	0.00000		0.985447	2.48908	. 0	0.00000	
20. 8. 0.04276056667		! wedge is +2.45 deg	0.00000	0.00000		-1.163098E-02	0.985390	0.0	0.00000	
$\begin{array}{llll}4.2401 & 1.8639 & -.5572\end{array}$. 39040.0 .0.		-0.385970	-0.482384		0.00000	0.00000	1.0	$6.370064 \mathrm{E}-02$	
\#30\|10	30			0.00000	0.00000		0.00000	0.00000	0.0	1.00000

\#30|10|30
'YMY'
'FAISCEAU'
'MATRIX'
10
'END'

```

\section*{BINARY \\ BINARY/FORMATTED data converter}
\begin{tabular}{llc}
\(N F[. J], N C o l, N H D R\) & \begin{tabular}{l} 
Number of files to convert [READ format type, see below], \\
of data columns, of header lines.
\end{tabular} & \(\leq 20, \leq 7,0-9 \quad\) 3*I1 \\
\begin{tabular}{ll} 
The next \(N F\) lines : & \begin{tabular}{l} 
Name of the file to be converted. File content is assumed binary \\
FNAME \\
iff name begins with "B_" or "b_", assumed formatted otherwise.
\end{tabular}
\end{tabular} & A80
\end{tabular}

READ format, case of formatted input file :
If FRM not given Format is ' \({ }^{*}\) '
If \(\mathrm{FRM}=1\)
Format is '1X, 7E11.*'

READ format, case of binary input file :
Expected format is 7 column rows.

\section*{BREVOL}

\section*{1-D uniform mesh magnetic field map}
\(X\)-axis cylindrical symmetry is assumed
\begin{tabular}{|c|c|c|c|}
\hline \(I C, I L\) & \(I C=1,2:\) print the map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & 0-2; 0-2[×10 \(\left.{ }^{n}\right], 7\) & \(2 * I\) \\
\hline BNORM, XN & Field and X-coordinate normalization coeff. Convert values as read from map file, to kG and cm units. & 2*UnitConv. & \(2 * \mathrm{E}\) \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped. & & A80 \\
\hline \(I X\) & Number of longitudinal nodes of the map & \(\leq 400\) & I \\
\hline FNAME [, SUM] \({ }^{\text {1,2 }}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \(\geq-1,2 *\) no dim. \(\mathrm{cm}[, 2 *\) no dim., cm, etc.] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \mathrm{etc} .]}
\end{aligned}
\] \\
\hline IORDRE & Unused & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3^{*} \mathrm{E}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) FNAME (e.g., solenoid.map) contains the field data. These must be formatted according to the following FORTRAN sequence :
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED'])

```
DO 1 I = 1, IX
IF (BINARY) THEN
            READ(NL) X(I), BX(I)
ELSE
            \(\operatorname{READ}(\mathrm{NL}, *) \mathrm{X}(\mathrm{I}), \mathrm{BX}(\mathrm{I})\)
ENDIF
1 CONTINUE
}
where \(X(I)\) and \(B X(I)\) are the longitudinal coordinate and field component at node \((I)\) of the mesh. Binary file names must begin with FNAME 'B_' or 'b_'. 'Binary' will then automatically be set to '.TRUE.'.
\({ }^{2}\) Sumperimposing (summing up) field maps is possible. Up to 4 at most.
To do so, pile up file names with 'SUM' following each name but the last one.
In the following example e.g., 3 field maps are read and summed up :
myMapFile1 SUM
myMapFile2 SUM
myMapFile3
(all maps must all have their mesh defined in identical coordinate frame).

\section*{CARTEMES}
IC, IL
BNORM, XN,YN

TITL
\(I X, J Y\)

FNAME \({ }^{1}\)
\(I D, A, B, C\)
\(\left[, A^{\prime}, B^{\prime}, C^{\prime}, A^{\prime \prime}\right.\), \(B^{\prime \prime}\),etc., if \(I D \geq 2\) ]

IORDRE
XPAS
KPOS, XCE, YCE, ALE

2-D Cartesian uniform mesh magnetic field map
mid-plane symmetry is assumed
\(I C=1,2\) : print the map
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Field and X-,Y-coordinate normalization coeffs. Convert values as read from map file, to kG and cm units.

Title. Start with "FLIP" to get field map X-flipped.
Number of longitudinal ( \(I X\) ) and transverse ( \(J Y\) ) nodes of the map

File name
Integration boundary. Normally \(I D=0\).
\(I D=-1\) : integration in the map begins at entrance boundary defined by \(A X+B Y+C=0\). \(I D=1\) : integration in the map is terminated at exit boundary defined by \(A X+B Y+C=0\). \(I D \geq 2\) : entrance \((A, B, C)\) and up to \(I D-1\) exit \(\left(A^{\prime}, B^{\prime}, C^{\prime}, A^{\prime \prime}, B^{\prime \prime}\right.\), etc.) boundaries

Degree of interpolation polynomial (see DIPOLE-M)
Integration step
\(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt.
\(\leq 400, \leq 200\)
\[
0-2 ; 0-2\left[\times 10^{n}\right], 7 \quad 2 * I
\]

3*UnitConv. \(3 * \mathrm{E}\)
\(\geq-1,2 *\) no dim., \(\quad\) I, \(3 * E\) \(\mathrm{cm}[, 2 *\) no dim., \(\quad[3 *\) E,etc. \(]\) cm, etc.]

2,25 or 4
I
E
\(1-2,2 * \mathrm{~cm}, \mathrm{rad}\)
I, \(3^{*} \mathrm{E}\)
```

 2 FNAME (e.g., spes2.map) contains the field data. These must be formatted according to the following FORTRAN sequence :
 OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM=`UNFORMATTED'])
 IF (BINARY) THEN
 READ(NL) (Y(J), J=1, JY)
 ELSE
 READ(NL,100) (Y(J), J=1, JY)
 ENDIF
 100 FORMAT(10 F8.2)
 DO 1 I=1,IX
 IF (BINARY) THEN
 READ(NL) X(I), (BMES(I,J), J=1, JY)
 ELSE
 READ(NL,101) X(I), (BMES(I,J), J=1, JY)
 101 FORMAT(10 F8.2)
 ENDIF
 1 CONTINUE
    ```
where \(X(I)\) and \(Y(J)\) are the longitudinal and transverse coordinates and BMES is the \(Z\) field component at a node \((I, J)\) of the mesh. For binary files, FNAME must begin with 'B_' or 'b.'.
'Binary' will then automatically be set to '.TRUE.'

\(O X Y\) is the coordinate system of the mesh. Integration zone limits may be defined, using \(I D \neq 0\) : particle coordinates are extrapolated linearly from the entrance face of the map, into the plane \(A^{\prime} X+B^{\prime} Y+C^{\prime}=0\); after ray-tracing inside the map and terminating on the integration boundary \(A X+B Y+C=0\), coordinates are extrapolated linearly to the exit face of the map.

\section*{CAVITE \({ }^{1}\) Accelerating cavity}
\(\Delta W=q V \sin \left(2 \pi h f \Delta t+\varphi_{s}\right)\) and other voltage and frequency laws.

IOPT[.i] [,PRINT] [,Facility]

\section*{If \(\operatorname{IOPT}=0\)}

\section*{\(X, X\)}
\(X, X\)

\section*{If \(\operatorname{IOPT}=\mathbf{1}^{2}\)}

\section*{\(\mathcal{L}, h\)}
\(\hat{V}, X\)

\section*{If \(\mathbf{I O P T}=\mathbf{2}\)}
\(\mathcal{L}, h\) or \(\left\{h_{1}, h_{2}\right\}\)
\(\hat{V}\) or \(\left\{\hat{V}_{1}, \hat{V}_{2}\right\}, \phi_{s}\)

Option. \(i=1\) or 'PRINT' causes info output into zgoubi. CAVITE. Out 0-7
I[.I] [A, A]
'Facility' : 'CornellSynch' (used with IOPT=11) or 'eRHIC_RCS' (IOPT=11)
Element inactive
Unused.
Unused.
\(f_{R F}\) follows the timing law given by SCALING

\section*{If \(\mathrm{IOPT}=3\)}
\(X, X\)
\(\hat{V}, \phi_{s}\)

\section*{If \(\operatorname{IOPT}=6\)}
\(\mathcal{L}, E_{k}\)
Reference closed orbit length ; harmonic number.
R.F. peak voltage ; unused.
m, no dim. \(\quad 2 * \mathrm{E}\)
V, unused
2*E
\(f_{R F}\) follows \(\Delta W_{s}=q \hat{V} \sin \phi_{s}\). Handles SR loss, stationnary bucket. Handles double RF.
Reference closed orbit length ; harmonic number(s).
m, no dim. \(\quad 2 * \mathrm{E}\)
R.F. peak voltage(s) ; synchronous phase. V, rad
\(\hat{V}, \Phi_{s}\)
Orbit length and kinetic energy at start of acceleration.
m, MeV
2*E
R.F. peak voltage ; synchronous phase.

V , rad
2*E

\section*{If \(\mathbf{I O P T}=7\)}

Quasi- or isochronous acceleration.
\begin{tabular}{llll}
\(X, f_{R F}\) & Unused ; RF frequency. &,- Hz & \(2 * \mathrm{E}\) \\
\(\hat{V}, \Phi_{s}\) & R.F. peak voltage ; synchronous phase. & V, rad & \(2 * \mathrm{E}\)
\end{tabular}

\section*{If \(\operatorname{IOPT}=\mathbf{1 0}\)}
\(L, f_{R F},[, I D]\)
\(\hat{V}, \Phi_{s}\), IOPT
Chambers matrix method.
Cavity length ; RF frequency ; damp option, \(\mathrm{ID}=0\) (default : just a drift),
m, Hz
2*E[,I] or \(I D= \pm 1\) ( \(d E / E \ll 1\) hyp. and, resp \({ }^{\text {ly }}\) damped or determinant=1), or \(I D= \pm 2\) (no hyp. on \(d E / E\) and, resp \({ }^{\text {ly }}\) damped or determinant=1).
R.F. peak voltage ; synchronous phase ; matrix options.

V, rad, \(-2-+2 \quad 2 *\) E, I

\section*{If \(\operatorname{IOPT}=\mathbf{1 1}\)}

Acceleration in presence of SR loss.
\(\stackrel{\mathcal{L}}{\hat{V}}, E_{k}\)
\(\hat{V}, \Phi_{s}, U_{0}\)
Orbit length and kinetic energy at start of acceleration.
m, MeV
2*E
R.F. peak voltage ; synchronous phase ; SR loss at first pass \({ }^{3}\).

V , rad
\({ }^{2}\) For ramping the R.F. frequency following \(B \rho(t)\), use \(S C A L I N G\), with family CAVITE.
\({ }^{3}\) SR loss at subsequent turns is actualized using \(U \propto E^{4}\).
\begin{tabular}{|c|c|c|c|}
\hline CHAMBR & Long transverse aperture limitation \({ }^{1}\) & & \\
\hline \multirow[t]{3}{*}{\(I A\)} & 0 : element inactive & \multirow{3}{*}{0-2} & \multirow{3}{*}{I} \\
\hline & 1: (re)definition of the aperture & & \\
\hline & 2 : stop testing and reset counters, print information on stopped particles. & & \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { IFORM[.J], } C 1, C 2 \text {, } \\
& C 3, C 4
\end{aligned}
\]} & \(I F O R M=1:\) rectangular aperture ; & \multirow[t]{4}{*}{1-2[.0-1]} & \multirow[t]{4}{*}{I[.I], 4*E} \\
\hline & \(I F O R M=2\) : elliptical aperture. & & \\
\hline & \(J=0\), default : opening is \({ }^{2} \pm Y \mathrm{~L}= \pm C 1, \pm Z \mathrm{~L}= \pm C 2\), centered at \(Y C=C 3, Z C=C 4\). & & \\
\hline & \(J=1:\) opening is \({ }^{2}\), in \(\mathrm{Y}:[C 1, C 2]\), in \(\mathrm{Z}:[C 3, C 4]\) & & \\
\hline
\end{tabular}

\footnotetext{
1 Any particle out of limits is stopped.
2 When used with an optical element defined in polar coordinates (e.g., DIPOLE) YL is the radius and \(Y C\) stands for the reference radius (normally, \(Y C \simeq R M)\).
}

\section*{CHANGREF Transformation to a new reference frame}
"Old Style" (Figure below) :

XCE, YCE, ALE Longitudinal and transverse shifts, \(\quad 2 * \mathrm{~cm}, \operatorname{deg} \quad 3 * \mathrm{E}\) followed by \(Z\)-axis rotation

\section*{"New Style" (example below). In an arbitrary order, up to 9 occurrences of :}
XS 'val', YS 'val', \(Z S\) 'val',
cm or deg
up to \(9^{*}(\mathrm{~A} 2, \mathrm{E})\)
\(X R\) 'val', \(Y R\) 'val', \(Z R\) 'val'


Parameters in the CHANGREF procedure.

Example :
```

Using CHANGREF "New Style
'OBJET'
51.71103865921708 Electron, Ekin=15MeV.
2
1 1 ~ O n e ~ p a r t i c l e , ~ w i t h
2.0. 0.0 0.0 0.0 1. 'R' Y_0=2 cm, other coordinates zero.
1
'MARKER' BEG .plt -> list into zgoubi.plt.
'DRIFT' }10\textrm{cm}\mathrm{ drift.
10.
' CHANGREF'
ZR -6.34165 YS 1. First half Z-rotate, Next Y-shift.
'MULTIPOL' Combined function multipole, dipole + quadrupole.
2 -> list into zgoubi.plt.
5 10.2.064995867082342 2. 0.0.0.0.0.0.0.0.
0 0 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4.1455 2.2670 -. 6395 1.1558 0. 0. 0.
00 5. 1.1 1.00 1.00 1.00 1.00 1.00 1. 1. 1. 1.
4.1455 2.2670 -..6395 1.1558 0. 0. 0.
0
.1 step size
1 0.0. 0.
' CHANGREF'
YS -1. ZR -6.341 First Y-shift back, next half Z-rotate.
'DRIFT' }10\textrm{cm}\mathrm{ drift.
10.
' FAISCEAU'
'END'

```

CIBLE, TARGET
Generate a secondary beam following target interaction
\begin{tabular}{llll}
\(M_{1}, M_{2}, M_{3}, Q\) & \begin{tabular}{l} 
Target, incident and scattered particle masses ; \\
\(T_{2}, \theta, \beta\)
\end{tabular} & \begin{tabular}{l}
\(Q\) of the reaction ; incident particle kinetic \\
energy ; scattering angle ; angle of the target
\end{tabular} \\
\(N T, N P\) & \begin{tabular}{l} 
Number of samples in \(T\) and \(P\) coordinates \\
after \(C I B L E\)
\end{tabular} & \(2 * \mathrm{deg}\) & \(7 * \mathrm{E}\) \\
\(T S, P S, D T\) & Sampling size ; tilt angle & \(3 * \mathrm{mrad}\) & \(3 * \mathrm{E}\) \\
\(B O R O\) & New reference rigidity after CIBLE & \(\mathrm{kG} . \mathrm{cm}\) & E
\end{tabular}


Scheme of the principles of CIBLE (TARGET)
\(A, T=\) position, angle of incoming particle 2 in the entrance reference frame
\(P=\) position of the interaction
\(B, T=\) position, angle of the secondary particle in the exit reference frame
\(\theta=\) angle between entrance and exit frames
\(\beta=\) tilt angle of the target

\section*{COLLIMA \(\quad\) Collimator \({ }^{1}\)}
\begin{tabular}{ll}
\(I A\) & \(0:\) element inactive \\
\(1:\) element active \\
\(2:\) element active and print information on stopped & \(0-2\) \\
particles
\end{tabular}

Physical-space collimation
IFORM[.J], \(C 1, C 2, \quad\) IFORM \(=1:\) rectangular aperture ;
\(I F O R M=2\) : elliptical aperture.
\(J=0\), default : opening is \(\pm Y L= \pm C 1, \pm Z L= \pm C 2\),
centered at \(Y C=C 3, Z C=C 4\).
\(J=1\) : opening is, in \(\mathrm{Y}:[C 1, C 2]\), in \(\mathrm{Z}:[C 3, C 4]\)
Longitudinal collimation
IFORM.J, \(H_{\min }, H_{\max }, \quad\) IFORM \(=6\) or 7 for horizontal variable resp \({ }^{\text {ly }} \mathrm{S}\) or Time,
\(V_{\min }, V_{\max }\)
\(\mathrm{J}=1\) or 2 for vertical variable resp \({ }^{\text {ly }} 1+\mathrm{dp} / \mathrm{p}\), kinetic- \(\mathrm{E}(\mathrm{MeV})\); horizontal and vertical limits

Phase-space collimation
IFORM, \(\alpha, \beta, \epsilon / \pi, N_{\sigma} \quad \operatorname{IFORM}=11,14\) : horizontal collimation; horizontal ellipse parameters (unused if 14\()^{2}\), emittance, cut-off IFORM \(=12,15\) : vertical collimation ; vertical ellipse parameters (unused if 15\()^{2}\), emittance, cut-off IFORM \(=13,16\) : longitudinal collimation ; to be implemented
\(2 * \mathrm{~cm}\) or \(2 * \mathrm{~s}, \quad \mathrm{I}, 4 * \mathrm{E}\)
\(2 *\) no.dim or \(2 * \mathrm{MeV}\)

11-16, no.dim,
I, 4*E

\footnotetext{
1 Any particle out of limits is stopped.
}

2 The rejection boundary is the rms ellipse matched to the particle distribution.

\section*{DECAPOLE}
\begin{tabular}{|c|c|c|c|}
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline XL, \(R_{0}, B_{0}\) & Length ; radius and field at pole tip & \(2 * \mathrm{~cm}, \mathrm{kG}\) & \(3 * E\) \\
\hline \(X_{E}, \lambda_{E}\) & \begin{tabular}{l}
Entrance face : \\
Integration zone extent ; fringe field extent ( \(\lesssim 2 R_{0}, \lambda_{E}=0\) for sharp edge)
\end{tabular} & 2* cm & 2*E \\
\hline NCE, \(C_{0}-C_{5}\) & \begin{tabular}{l}
\(N C E=\) unused \\
\(C_{0}-C_{5}=\) Fringe field coefficients such that \(G(s)=G_{0} /(1+\exp P(s))\), with \(G_{0}=B_{0} / R_{0}^{4}\) and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\)
\end{tabular} & unused, 6*no dim. & I, 6*E \\
\hline \[
\begin{aligned}
& X_{S}, \lambda_{S} \\
& N C S, C_{0}-C_{5}
\end{aligned}
\] & Exit face : see entrance face & \[
\begin{aligned}
& 2 * \mathrm{~cm} \\
& 0-6,6 * \text { no dim. }
\end{aligned}
\] & \[
\begin{aligned}
& 2 * \mathrm{E} \\
& \mathrm{I}, 6 * \mathrm{E}
\end{aligned}
\] \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * \mathrm{E}\) \\
\hline
\end{tabular}


\section*{DIPOLE}

Dipole magnet, polar frame
\[
B_{Z}=\mathcal{F} B_{0}\left(1+N\left(\frac{R-R M}{R M}\right)+B\left(\frac{R-R M}{R M}\right)^{2}+G\left(\frac{R-R M}{R M}\right)^{3}\right)
\]
\begin{tabular}{|c|c|c|c|c|}
\hline & & dim. & data type & \[
\begin{gathered}
\text { FIT } \\
\text { numb. }
\end{gathered}
\] \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I & \\
\hline AT, RM & Total angular extent of the dipole ; reference radius & deg, cm & 2*E & 2, 3 \\
\hline \multirow[t]{2}{*}{ACENT, \(B_{0}, N, B, G\)} & Azimuth for positioning of EFBs ; field and field indices & deg., kG, 3 * no dim. & 5*E & 4-8 \\
\hline & ENTRANCE FIELD BOUNDARY & & & \\
\hline \(\lambda, \xi\) & \begin{tabular}{l}
Fringe field extent (normally \(\simeq\) gap size) ; unused. \\
Exponential type fringe field \(F=1 /(1+\exp (P(s)))\) with \(P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+\ldots+C_{5}\left(\frac{s}{\lambda}\right)^{5}\)
\end{tabular} & cm, unused & \(2 * \mathrm{E}\) & 9, 10 \\
\hline \(N C, C_{0}-C_{5}\), shift & Unused ; \(C_{0}\) to \(C_{5}\) : see above ; EFB shift & 0-6, 6*no dim., cm & I, 7*E & 11-18 \\
\hline \(\omega^{+}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\) & Azimuth of entrance EFB with respect to ACENT ; wedge angle of EFB; radii and linear extents of EFB (use \(U_{\frac{1}{2}}=\mp \infty\) when \(R_{1,2}=\infty\) ) & \(2 * \operatorname{deg}, 4 * \mathrm{~cm}\) & 6*E & 19-24 \\
\hline
\end{tabular}

\section*{EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)}
\begin{tabular}{llll}
\(\lambda, \xi\) & Fringe field parameters & cm, unused & \(2 * \mathrm{E}\) \\
\(N C, C_{0}-C_{5}\), shift & \(0-6,6 *\) no dim., cm & \(1,7 * \mathrm{E}\) & \(27-34\) \\
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\) & Positioning and shape of the exit EFB & \(2 * \mathrm{deg}, 4 * \mathrm{~cm}\) & \(6 * \mathrm{E}\) \\
\hline
\end{tabular}

\section*{LATERAL FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)}
\(\lambda, \xi\)
LATERAL EFB is inhibited if \(\xi=0\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\), Positioning and shape of the EFB
RM3

Degree of interpolation polynomial :
2 = second degree, 9-point grid
\(25=\) second degree, 25 -point grid
4 = fourth degree, 25 -point grid ;
resolution of flying mesh is XPAS/Resol
XPAS

KPOS
If \(\mathrm{KPOS}=\mathbf{2}\)
RE, TE, RS, TS

If \(\mathrm{KPOS}=1\)
DP

Integration step
Positioning of the map, normally 2. Two options :
Positioning as follows :
Radius and angle of reference, respectively, at entrance and exit of the map.

Automatic positioning of the map, by means of
\begin{tabular}{lll}
cm, unused & \(2 * \mathrm{E}\) & \(41-42\) \\
\(0-6,6 *\) no dim., cm & \(1,7 * \mathrm{E}\) & \(43-50\) \\
\(2 * \mathrm{deg}, 5 * \mathrm{~cm}\) & \(7 * \mathrm{E}\) & \(51-57\)
\end{tabular}

2,25 or 4 ; no dim. I, E
58, 59 reference relative momentum no dim.

E
60
\[
4 * \mathrm{E}
\]

E

DIPOLE-M

NFACE, IC, IL

IAMAX, IRMAX
\(B_{0}, N, B, G\)
AT, ACENT, RM, RMIN, RMAX
\(\lambda, \xi\)
Fringe field extent (normally \(\simeq\) gap size) ; unused.
Exponential type fringe field \(F=1 /(1+\exp (P(s)))\)
with \(P(s)=C_{0}+C_{1}\left(\frac{s}{\lambda}\right)+C_{2}\left(\frac{s}{\lambda}\right)^{2}+\ldots+C_{5}\left(\frac{s}{\lambda}\right)^{5}\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{+}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)
\(\lambda, \xi\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)

\section*{If NFACE \(=3\)}
\(\lambda, \xi\)
NC, \(C_{0}-C_{5}\), shift \(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\), RM3

NBS
If \(\mathbf{N B S}=\mathbf{0}\)
If NBS \(=\mathbf{- 2}\)
\(R_{0}, \Delta B / B_{0}\)

If \(\mathrm{NBS}=\mathbf{- 1}\)
Generation of dipole mid-plane 2-D map, polar frame
\(B_{Z}=\mathcal{F} B_{0}\left(1+N\left(\frac{R-R M}{R M}\right)+B\left(\frac{R-R M}{R M}\right)^{2}+G\left(\frac{R-R M}{R M}\right)^{3}\right)\)

Number of field boundaries
\(I C=1,2:\) print field map
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Azimuthal and radial number of nodes of the mesh
Field and field indices
Mesh parameters : total angle of the map ; azimuth for positioning of EFBs ; reference radius ; minimum and maximum radii

\section*{ENTRANCE FIELD BOUNDARY}

Unused ; \(C_{0}\) to \(C_{5}\) : see above ; EFB shift
Azimuth of entrance EFB with respect to ACENT ;
wedge angle of EFB ; radii and linear
extents of EFB (use \(U_{\frac{1}{2}}=\mp \infty\) when \(R_{1,2}=\infty\) )
(Note : \(\lambda=0, \omega^{+}=A C E N T\) and \(\theta=0\) for sharp edge)

\section*{EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)}

Fringe field parameters

Positioning and shape of the exit EFB
(Note : \(\lambda=0, \omega^{-}=-A T+A C E N T\) and \(\theta=0\) for sharp edge)

LATERAL FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)
Next 3 records only if NFACE \(=3\)
Fringe field parameters
Positioning and shape of the lateral EFB
RM3 is the radial position on azimuth \(A C E N T\)
Option index for perturbations to the field map
Normal value. No other record required
The map is modified as follows :
\(B\) transforms to \(B *\left(1+\frac{\Delta B}{B_{0}} \frac{R-R_{0}}{R M A X-R M I N}\right)\)
\begin{tabular}{ll}
cm, unused & \(2 * \mathrm{E}\) \\
\(0-6,6 *\) nodim., cm & \(1,7 * \mathrm{E}\) \\
\(2 * \mathrm{deg}, 4 * \mathrm{~cm}\) & \(6 * \mathrm{E}\)
\end{tabular}
\begin{tabular}{ll}
\(\mathrm{cm},(\mathrm{cm})\) & \(2 * \mathrm{E}\) \\
\(0-6,6 *\) no dim. cm & \(\mathrm{I}, 7 * \mathrm{E}\) \\
\(2 * \mathrm{deg}, 5 * \mathrm{~cm}\) & \(7 * \mathrm{E}\)
\end{tabular}
normally 0 cm , no dim. \(2 * E\)
\begin{tabular}{|c|c|c|c|}
\hline \(\theta_{0}, \Delta B / B_{0}\) & \(B\) transforms to \(B *\left(1+\frac{\Delta B}{B_{0}} \frac{\theta-\theta_{0}}{A T}\right)\) & deg, no dim. & 2*E \\
\hline If \(\mathbf{N B S} \geq 1\) & Introduction of NBS shims & & \\
\hline For \(\mathrm{I}=1, \mathrm{NBS}\) & The following 2 records must be repeated NBS times & & \\
\hline \(R_{1}, R_{2}, \theta_{1}, \theta_{2}, \lambda\) & Radial and angular limits of the shim ; \(\lambda\) is unused & \(2 * \mathrm{~cm}, 2 * \mathrm{deg}, \mathrm{cm}\) & 5*E \\
\hline \(\gamma, \alpha, \mu, \beta\) & geometrical parameters of the shim & \(2 * \mathrm{deg}, 2 *\) no dim. & 4*E \\
\hline IORDRE & \begin{tabular}{l}
Degree of interpolation polynomial : \\
\(2=\) second degree, 9 -point grid \\
\(25=\) second degree, 25 -point grid \\
4 = fourth degree, 25 -point grid
\end{tabular} & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS & Positioning of the map, normally 2. Two options : & 1-2 & I \\
\hline If KPOS \(=\mathbf{2}\) & Positioning as follows : & & \\
\hline RE, TE, RS, TS & Radius and angle of reference, respectively, at entrance and exit of the map. & cm, rad, cm, rad & 4*E \\
\hline \[
\begin{aligned}
& \text { If } \mathbf{K P O S}=\mathbf{1} \\
& D P
\end{aligned}
\] & Automatic positioning of the map, by means of reference relative momentum & no dim. & E \\
\hline
\end{tabular}

\section*{DIPOLES Dipole magnet \(N\)-tuple, polar frame}
(i) \(B_{Z}=\sum_{i=1}^{N} B_{Z_{0, i}} \mathcal{F}_{i}(R, \theta)\left(1+b_{1_{i}}\left(R-R M_{i}\right) / R M_{i}+b_{2_{i}}\left(R-R M_{i}\right)^{2} / R M_{i}^{2}+\ldots\right)\)
(ii) \(B_{Z}=B_{Z 0, i}+\sum_{i=1}^{N} \mathcal{F}_{i}(R, \theta)\left(b_{1_{i}}\left(R-R M_{i}\right)+b_{2_{i}}\left(R-R M_{i}\right)^{2}+\ldots\right)\)
\(I L \quad I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, \(\quad 0-2\left[\times 10^{n}\right], 7 \quad\) I in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).
\(N, A T, R M \quad\) Number of magnets in the \(N\)-tuple ; no dim., I, 2*E
total angular extent of the dipole ; reference radius deg, cm
Repeat \(N\) times the following sequence \(\qquad\)

ACN, \(\delta R M^{2}, B_{0}\),
ind, \(b_{i},(i=1\), ind \()\)
Positioning of EFBs : azimuth \({ }^{1}, R M_{i}=R M+\delta R M\); field; number of, and field coefficients.

\section*{ENTRANCE FIELD BOUNDARY}
\(g_{0}, \kappa \quad\) Fringe field extent \(\left(g=g_{0}(R M / R)^{\kappa}\right)(0,0 \text { for hard-edge })^{1}\)
Exponential type fringe field \(F=1 /(1+\exp (P(s)))\)
with \(P(s)=C_{0}+C_{1}\left(\frac{s}{g}\right)+C_{2}\left(\frac{s}{g}\right)^{2}+\ldots+C_{5}\left(\frac{s}{g}\right)^{5}\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{+}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)
Unused ; \(C_{0}\) to \(C_{5}\) : see above ; EFB shift
Azimuth of entrance EFB with respect to \(A C N\);
deg., cm, kG, \(\quad 3 * \mathrm{E}, \mathrm{I}\),
\((i n d+1) *\) no dim. \(\quad i n d^{*} \mathrm{E}\)
cm , no dim.
\(2 * \mathrm{E}\)
\(0-6,6 *\) no dim., cm
I, \(7 *\) E
wedge angle of EFB \({ }^{1}\); radii and linear
extents of EFB (use \(U_{\frac{1}{2}}=\mp \infty\) when \(R_{1,2}=\infty\) )
(Note : \(g_{0}=0, \omega^{+}=A C E N T, \theta=0\) and KIRD=0 for sharp edge)
EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)
\begin{tabular}{ll}
cm, no dim. & \(2 * \mathrm{E}\) \\
\(0-6,6 *\) no dim., cm & \(1,7 * \mathrm{E}\) \\
\(2 * \operatorname{deg}, 4 * \mathrm{~cm}\) & \(6 * \mathrm{E}\)
\end{tabular}
(Note : \(g_{0}=0, \omega^{-}=-A T+A C E N T, \theta=0\) and KIRD \(=0\) for sharp edge \()\)
LATERAL FIELD BOUNDARY to be implemented - following data not used
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}, R M 3\)
cm , no dim.
2*E
\(0-6,6 *\) no dim., cm \(\quad 1,7 * E\)
\(2 * \operatorname{deg}, 5 * \mathrm{~cm}\)
7*E
End of repeat

If KIRD \(=0\) : analytical computation of field derivatives ; \(\mathrm{n}=0\) : default, \(B_{Z}\) formula (i) above, \(\mathrm{n}=1: B_{Z}\) formula (ii).
Resol \(=2 / 4\) for 2 nd \(/ 4\) th order field derivatives computation
If KIRD=2, 25 or 4 : numerical interpolation of field derivatives ; size of flying interpolation mesh is XPAS/Resol

KIRD \(=2\) or 25 : second degree, 9 - or 25 -point grid
KIRD=4 : fourth degree, 25 -point grid

Integration step
cm
E
Positioning of the magnet, normally 2. Two options:
1-2
I
Positioning as follows :
Radius and angle of reference, respectively, \(\quad \mathrm{cm}, \mathrm{rad}, \mathrm{cm}, \mathrm{rad} \quad 4 * \mathrm{E}\) at entrance and exit of the magnet
Automatic positioning of the magnet, by means of reference relative momentum
no dim.
E

\footnotetext{
\({ }^{1}\) Hard-edge EFB model requires \(\omega^{+}=A C N\) (entrance EFB) or \(\omega^{-}=A C N-A T\) (exit) or and \(\theta=0\) wedge-angle.
2 Non-zero \(\delta R M\) requires KIRD \(=2,4\) or 25 .
}

\section*{DODECAPO}
\begin{tabular}{|c|c|c|c|}
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline XL, \(R_{0}, B_{0}\) & Length ; radius and field at pole tip & \(2 * \mathrm{~cm}, \mathrm{kG}\) & 3*E \\
\hline \(X_{E}, \lambda_{E}\) & \begin{tabular}{l}
Entrance face : \\
Integration zone extent ; fringe field extent ( \(\lesssim 2 R_{0}, \lambda_{E}=0\) for sharp edge)
\end{tabular} & \(2 * \mathrm{~cm}\) & 2*E \\
\hline \(N C E, C_{0}-C_{5}\) & \begin{tabular}{l}
\(N C E=\) unused \\
\(C_{0}-C_{5}=\) Fringe field coefficients such that \(G(s)=G_{0} /(1+\exp P(s))\), with \(G_{0}=B_{0} / R_{0}^{5}\) and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\)
\end{tabular} & unused, 6*no dim. & I, 6*E \\
\hline \(X_{S}, \lambda_{S}\) & Exit face : see entrance face & \(2 * \mathrm{~cm}\) & 2*E \\
\hline \(N C S, C_{0}-C_{5}\) & & 0-6, 6* no dim. & I, \(6^{*} \mathrm{E}\) \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3^{*} \mathrm{E}\) \\
\hline
\end{tabular}


DRIFT, ESL

XL
length
cm
E


\section*{EBMULT \({ }^{1}\)}
\begin{tabular}{|c|c|c|c|}
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline XL, \(R_{0}, E 1, E 2, \ldots, E 10\) & \begin{tabular}{l}
Electric poles \\
Length of element ; radius at pole tip ; field at pole tip for dipole, quadrupole, ..., 20-pole electric components
\end{tabular} & \(2 * \mathrm{~cm}, 10 * \mathrm{~V} / \mathrm{m}\) & 12*E \\
\hline \(X_{E}, \lambda_{E}, E_{2}, \ldots, E_{10}\) & \begin{tabular}{l}
Entrance face \\
Integration zone ; fringe field extent : dipole fringe field extent \(=\lambda_{E}\); quadrupole fringe field extent \(=\lambda_{E} * E_{2}\); ... \\
20-pole fringe field extent \(=\lambda_{E} * E_{10}\) (for any component : sharp edge if field extent is zero)
\end{tabular} & \(2 * \mathrm{~cm}, 9 *\) no dim. & 11*E \\
\hline \(N C E, C_{0}-C_{5}\) & same as QUADRUPO & 0-6, 6* no dim. & I,6*E \\
\hline \(X_{S}, \lambda_{S}, S_{2}, \ldots, S_{10}\) & \begin{tabular}{l}
Exit face \\
Integration zone ; as for entrance
\end{tabular} & \(2 * \mathrm{~cm}, 9 *\) no dim. & 11*E \\
\hline NCS, \(C_{0}-C_{5}\) & & 0-6, 6* no dim. & I, 6 *E \\
\hline \(R 1, R 2, R 3, \ldots, R 10\) & Skew angles of electric field components & \(10 * \mathrm{rad}\) & \(10 * \mathrm{E}\) \\
\hline XL, \(R_{0}, B 1, B 2, \ldots, B 10\) & \begin{tabular}{l}
Magnetic poles \\
Length of element ; radius at pole tip ; field at pole tip for dipole, quadrupole, ..., 20-pole magnetic components
\end{tabular} & \(2 * \mathrm{~cm}, 10 * \mathrm{kG}\) & \(12 * \mathrm{E}\) \\
\hline \(X_{E}, \lambda_{E}, E_{2}, \ldots, E_{10}\) & \begin{tabular}{l}
Entrance face \\
Integration zone ; fringe field extent : dipole fringe field extent \(=\lambda_{E}\); quadrupole fringe field extent \(=\lambda_{E} * E_{2}\); ... \\
20-pole fringe field extent \(=\lambda_{E} * E_{10}\) (for any component : sharp edge if field extent is zero)
\end{tabular} & \(2 * \mathrm{~cm}, 9 *\) no dim. & 11*E \\
\hline \(N C E, C_{0}-C_{5}\) & same as QUADRUPO & 0-6, 6*no dim. & I, * \(^{\text {E }}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Use PARTICUL to declare mass and charge.
}
\(X_{S}, \lambda_{S}, S_{2}, \ldots, S_{10}\)
\(N C S, C_{0}-C_{5}\)
\(R 1, R 2, R 3, \ldots, R 10\)
XPAS

KPOS, XCE, YCE, ALE

Exit face
Integration zone ; as for entrance

Skew angles of magnetic field components
Integration step
\(K P O S=1\) : element aligned, 2 : misaligned ; shifts, tilt.
\(2 * \mathrm{~cm}, 9 *\) no dim. \(\quad 11 * \mathrm{E}\) \(0-6,6 *\) no dim. I, \(6 * \mathrm{E}\) \(10 * \mathrm{rad}\) \(10 * E\)
cm
\(1-2,2 * \mathrm{~cm}, \mathrm{rad}\)
I, 3*E


\section*{EL2TUB \({ }^{1}\)}

IL
\(X_{1}, D, X_{2}, R_{0}\)
\(V_{1}, V_{2}\)

XPAS
KPOS, XCE, YCE, ALE

Two-tube electrostatic lens
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length of first tube ; distance between tubes ; length of second tube ; inner radius

Potentials
\(2 * \mathrm{~V}\)
cm
\(1-2,2 * \mathrm{~cm}\),
I, \(3^{*} \mathrm{E}\)


Two-electrode cylindrical electric lens.

\footnotetext{
\({ }^{1}\) Use PARTICUL to declare mass and charge.
}

\section*{ELMIR}

IL \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, \(\quad 0-2\left[\times 10^{n}\right], 7 \quad\) I
\(\mathrm{N}, L 1, \ldots, L N, D, M T \quad\) Number of electrodes ; electrode lengths ; gap ;
\(V 1, \ldots, V N\)

XPAS

KPOS, XCE,
YCE, ALE
in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). mode (11/H-mir, 12/V-mir, 21/V-lens, 22/H-lens)
Electrostatic N-electrode mirror/lens, straight slits

Electrode potentials (normally \(V 1=0\) )

Integration step
\(K P O S=1\) : element aligned; 2 : misaligned; shifts, tilt ; 3 : automatic positioning, \(Y C E=\) pitch, \(A L E=\) half-deviation
\(2-7, \mathrm{~N}^{*} \mathrm{~m}, \mathrm{~m}\) \(\mathrm{N} * \mathrm{~V}\) N*E
cm
\(1-2,2 * \mathrm{~cm}, \mathrm{rad}\)

I, N*E, E, I



Electrostatic N -electrode mirror/lens, straight slits, in the case \(N=3\), in horizontal mirror mode ( \(M T=11\) ).
Possible non-zero entrance quantities \(Y C E, A L E\) should be specified using \(C H A N G R E F\), or using \(K P O S=3\) with \(Y C E\) and \(A L E=\) half-deviation matched to the reference trajectory.
\begin{tabular}{|c|c|c|c|}
\hline ELMIRC & Electrostatic N-electrode mirror/lens, circular slits & & \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline R1, R2, AT, D & Radius of first and second slits ; total deviation angle ; gap & \[
\begin{aligned}
& 4 * \mathrm{~m} \\
& 2 * \mathrm{~m}, \mathrm{rad}, \mathrm{~m}
\end{aligned}
\] & \[
\begin{aligned}
& 4 * E \\
& 4 * E
\end{aligned}
\] \\
\hline \(V-V A, V B-V\) & Potential difference & \(2 * \mathrm{~V}\) & \(2 * \mathrm{E}\) \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS & Normally \(K P O S=2\) for positioning ; & 1-2 & I \\
\hline RE, TE, RS, TS & Radius and angle at respectively entrance and exit. & cm, rad, cm, rad & 4*E \\
\hline
\end{tabular}


Electrostatic N -electrode mirror/lens, circular slits, in the case \(N=3\), in horizontal mirror mode.

\section*{ELMULT \({ }^{1}\)}
\begin{tabular}{|c|c|c|c|}
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline XL, \(R_{0}, E 1, E 2, \ldots, E 10\) & Length of element ; radius at pole tip ; field at pole tip for dipole, quadrupole, ..., dodecapole components & \(2 * \mathrm{~cm}, 10 * \mathrm{~V} / \mathrm{m}\) & 12*E \\
\hline \(X_{E}, \lambda_{E}, E_{2}, \ldots, E_{10}\) & \begin{tabular}{l}
Entrance face \\
Integration zone ; fringe field extent : dipole fringe field extent \(=\lambda_{E}\); quadrupole fringe field extent \(=\lambda_{E} * E_{2}\); \\
20-pole fringe field extent \(=\lambda_{E} * E_{10}\) \\
(sharp edge if field extent is zero)
\end{tabular} & \(2 * \mathrm{~cm}, 9 *\) no dim. & 11*E \\
\hline \(N C E, C_{0}-C_{5}\) & same as QUADRUPO & 0-6, 6* no dim. & I, 6*E \\
\hline \(X_{S}, \lambda_{S}, S_{2}, \ldots, S_{10}\) & \begin{tabular}{l}
Exit face \\
Integration zone ; as for entrance
\end{tabular} & \(2 * \mathrm{~cm}, 9 *\) no dim. & \(11^{*} \mathrm{E}\) \\
\hline NCS, \(C_{0}-C_{5}\) & & 0-6, 6* no dim. & I, \(6^{*} \mathrm{E}\) \\
\hline \(R 1, R 2, R 3, \ldots, R 10\) & Skew angles of field components & \(10 * \mathrm{rad}\) & 10*E \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * \mathrm{E}\) \\
\hline
\end{tabular}


\footnotetext{
1 Use PARTICUL to declare mass and charge.
}
\begin{tabular}{|c|c|c|c|}
\hline ELREVOL \({ }^{1}\) & 1-D uniform mesh electric field map \(X\)-axis cylindrical symmetry is assumed & & \\
\hline IC, IL & \(I C=1,2:\) print the map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & 0-2; 0-2[×10 \(\left.{ }^{n}\right], 7\) & \(2 * I\) \\
\hline ENORM, X-NORM & Field and X-coordinate normalization coeff. Convert values as read from map file, to MV/cm and cm units. & 2*UnitConv. & \(2 * \mathrm{E}\) \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped. & & A80 \\
\hline \(I X\) & Number of longitudinal nodes of the map & \(\leq 400\) & I \\
\hline FNAME \({ }^{2}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \[
\begin{aligned}
& \geq-1,2 * \text { no dim. } \\
& \mathrm{cm}\left[, 2^{*}\right. \text { no dim. } \\
& \mathrm{cm}, \text { etc. }]
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \text { etc. }]}
\end{aligned}
\] \\
\hline IORDRE & Unused & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3 *E \\
\hline
\end{tabular}
```

1 Use PARTICUL to declare mass and charge.
2 FNAME (e.g., e-lens.map) contains the field data. These must be formatted according to the following FORTRAN sequence :
OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [FORM='UNFORMATTED'])
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) X(I), EX(I)
ELSE
READ(NL,*) X(I), EX(I)
ENDIF
1 CONTINUE

```
where \(X(I)\) and \(E X(I)\) are the longitudinal coordinate and field component at node \((I)\) of the mesh. Binary file names FNAME must begin with 'B_' or 'b_'. 'Binary' will then automatically be set to '.TRUE.'
\begin{tabular}{|c|c|c|c|}
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline BNORM, XN,YN, ZN & Field and X-,Y-,Z-coordinate normalization coefficients. Convert values as read from map file, to kG and cm or rad. & 4*UnitConv. & 4*E \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped & & A80 \\
\hline \(I X, I Y, I Z, M O D[. i]\) & \begin{tabular}{l}
Number of nodes of the mesh in the \(X, Y\) and \(Z\) directions, \(I Z=1\) for single 2-D map ; \\
\(M O D\) : operational and map FORMAT reading mode \({ }^{1}\) \\
\(M O D \leq 19\) : Cartesian mesh ; \\
\(M O D \geq 20\) : cylindrical mesh; \\
.i, optional, tells the reading FORMAT, default is '*'.
\end{tabular} & \[
\begin{aligned}
& \leq 400, \leq 200, \\
& 1, \geq 0[.1-9]
\end{aligned}
\] & 3*I \\
\hline \[
\begin{aligned}
& F N A M E^{1} \\
& (K=1, N F)
\end{aligned}
\] & \begin{tabular}{l}
Names of the \(N F\) files that contain the 2-D maps, ordered from \(Z(1)\) to \(Z(N F)\). \\
If \(M O D=0\) : a single map, superimposition of QF and QD ones, If \(M O D=1\) : a single map, interpolated from \(\mathrm{QF}\left[x_{F}\right]\) and \(\mathrm{QD}\left[x_{D}\right]\) If \(M O D=22\) : a single map, superimposition of QF and QD ones, If \(M O D=24\) : field at particle is interpolated from a ( \(\mathrm{QF}, \mathrm{QD}\) ) pair current \(\left(x_{F}, x_{D}\right)\) value, taken from of set of (QF,QD) pairs regist
\end{tabular} & it for tracking. es, is built for track uilt for tracking. maps, closest to in FNAME... & \begin{tabular}{l}
A80 \\
g.
\end{tabular} \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \[
\begin{aligned}
& \geq-1,2 * \text { no dim. } \\
& \mathrm{cm}[, 2 * \text { no dim. } \\
& \mathrm{cm}, \text { etc. }]
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \mathrm{etc} .]}
\end{aligned}
\] \\
\hline IORDRE & \begin{tabular}{l}
If \(I Z=1:\) as in CARTEMES \\
If \(I Z \neq 1\) : unused
\end{tabular} & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, \(2:\) misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * \mathrm{E}\) \\
\hline
\end{tabular}
\({ }^{1}\) FNAME normally contains the field map data. If \(M O D=24 \operatorname{FNAME}(K)\) contains the names of the QF maps and QD maps, as well as the QF-QD distance attached to each one of these pairs.

\section*{ERRORS}

\section*{Injecting errors in optical elements}
(UNDER DEVELOPMENT)
\begin{tabular}{ll} 
ONF, NBR, SEED [, PRINT] & \begin{tabular}{l} 
On/off switch \((0 / 1)\); number of error sets to be injected (i.e., „[,] I1, I, I [,A5] \\
\\
\\
\\
\\
\\
\\
\\
\\
Os well, number of lines following this one ; ; random seed. \\
zgoubi.ERRORS.out.
\end{tabular}
\end{tabular}

\section*{The next line depends on the optical element of concern, and is to be one of the following : (only limited possibilities at the moment, under development)}

MULTIPOL[\{LBL1 [,LBL2]\}], Keyword concerned [optionally, first and/or second label]

N, TYP, AR, UG,
VC, HW, CUTOFF
\(\mathrm{N}=1-10\) : pole concerned if TYP=BP, otherwise unused ; TYP = BP : field at pole (dipole to 20-pole), or XR : roll-angle ; \(A R=A\) or \(R\) : error value is absolute or relative (to current one) ; \(\mathrm{UG}=\mathrm{U}\) or G : uniform or Gaussian random law ; \(\mathrm{VC}=\) central value ; \(\mathrm{HW}=\) half-width (case \(\mathrm{UG}=\mathrm{U}\) ) or sigma (case \(\mathrm{UG}=\mathrm{G}\) ) ; cut-off value in units of sigma (unused if \(\mathrm{UG}=\mathrm{U}\) )

TOSCA[\{LBL1 [,LBL2]\}],
N, TYP, AR, UG,
VC, HW, CUTOFF

Keyword concerned [optionally, first and/or second label] ; N is unused ;
TYP= BP : field coefficient BNORM ;
AR, UG, etc. : see abov
\(,[],,,, 2 * \mathrm{kG}, \quad \mathrm{A} 8[, \mathrm{~A} 10[, \mathrm{~A} 10]]\), I, A2, A1, A1, 3*E

\section*{- Example}
```

'ERRORS'
1 123466 ! HW cut-off
MULTIPOL{KCV } 1 BP R U 0.d0 1e-3 0
MULTIPOL{B} 2 XR A U 0.d0 0.349e-3 0
TOSCA 1 BP A G -1.d-3 1.e-5 3

```

In this example the various attributes of the error keyword take the following values and meanings : \(\diamond 1\) st line :
- \(O N F=1\) : error setting is on ; \(N B R=3\) : three error setting lines follow ; seed \(=123456\)
\(\diamond\) 2nd line :
- all MULTIPOL keywords with first label "KCV" in the optical sequence are concerned ; multipole component \(\mathrm{ip}=1\) is affected, i.e., dipole component ; "BP, R, U, \(0 . d 0,1 \mathrm{e}-3,0\) " : a random relative defect \(d B / B(\mathrm{AR}=\mathrm{R})\) concerning the field \(B_{\mathrm{ip}}\) \((T Y P=B P)\) for that component, will be sorted in a uniform \((\mathrm{UG}=\mathrm{U})\) distribution centered on \(V_{\mathrm{ip}}=0(\mathrm{VC}=0 . \mathrm{d} 0)\) with half-width \(H W=10^{-3}\), CUTOFF at n-sigma ( \(\mathrm{n}=0\) here) is unused (only used for Gaussian distributions, case \(\mathrm{UG}=\mathrm{G}\) ) - \(B_{\mathrm{ip}}\) is changed to \(B_{\mathrm{ip}}+V_{\mathrm{ip}}+d B / B \times B_{\mathrm{ip}}\).
\(\diamond\) 3rd line:
- all MULTIPOL keywords with first label " \(B\) " in the optical sequence are concerned ; multipole component \(\mathrm{ip}=2\) is affected, i.e., quadrupole component ; " \(X R, A, U, 0 . d 0,0.349 \mathrm{e}-3,0:\) a random absolute defect \(d R_{\mathrm{ip}}(\mathrm{AR}=\mathrm{A})\) of the roll-angle \(R_{\mathrm{ip}}\) (TYP=XR) for that component, will be sorted in a uniform ( \(\mathrm{UG}=\mathrm{U}\) ) distribution centered on \(V_{\mathrm{ip}}=0(\mathrm{VC}=0 . \mathrm{d} 0)\) with halfwidth \(H W=0.349 \times 10^{-3}\) rad, CUTOFF at n -sigma ( \(\mathrm{n}=0\) here) is unused (only used for Gaussian distributions, case UG=G) - \(R_{\mathrm{ip}}\) is changed to \(R_{\mathrm{ip}}+V_{\mathrm{ip}}+d R_{\mathrm{ip}}\).
\(\diamond\) 4th line :
- all TOSCA keywords in the optical sequence are concerned ; field map field coefficient BNORM (see TOSCA keyword) is affected ; \(B P, A, G,-1 . d-3,1 . e-5,3\) : a random absolute defect \(d B N(\mathrm{AR}=\mathrm{A})\) concerning \(B N O R M\) (TYP=BP) will be sorted in a Gaussian ( \(\mathrm{UG}=\mathrm{G}\) ) distribution centered on \(B N C=-10^{-3}\) (VC=-1.d-3) with rms value \(H W=10^{-5}\), CUTOFF 3-sigma - BNORM is changed to \(B N C+d B N\) (not to \(B N O R M+B N C+d B N\) !). (If \(\mathrm{AR}=\mathrm{R}\) instead : random relative defect \(d B N / B N\) generated, and BNORM changed to \(V C+d B N / B N)\).

FAISCEAU Print particle coordinates

Print particle coordinates at the location where the keyword is introduced in the structure.
If frist label is 'FORCE', will force printout when normally inhibited (e.g., during FIT, or REBELOTE).

\section*{FAISCNL \\ Store particle coordinates in file FNAME}

FNAME \(^{1} \quad\) Name of storage file \(\quad\) A80
(e.g., zgoubi.fai, or b_zgoubi.fai for binary storage).

FAISTORE Store coordinates every \(I P\) other pass [, at elements with appropriate label]

FNAME \({ }^{1}\)
[,LABEL(s)]
\(I P\)
Name of storage file (e.g. zgoubi.fai). Optional : a series of up to 10 label(s),
(the first label of element(s) at the exit of which the store will occur) ;

\footnotetext{
1 Stored data can be read back from FNAME using \(O B J E T, K O B J=3\).
}
\begin{tabular}{|c|c|c|c|}
\hline FFAG & FFAG magnet, \(N\)-tuple UNDER DEVELOPMENT
\[
B_{Z}=\sum_{i=1}^{N} B_{Z_{0, i}} \mathcal{F}_{i}(R, \theta)\left(R / R_{M, i}\right)^{K_{i}}
\] & & \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline \(N, A T, R M\) & Number of dipoles in the FFAG \(N\)-tuple ; total angular extent of the dipole; reference radius & \begin{tabular}{l}
no dim., \\
deg, cm
\end{tabular} & I, 2 *E \\
\hline
\end{tabular}

Repeat \(N\) times the following sequence \(\qquad\)

ACN, \(\delta R M, \quad\) Azimuth for dipole positioning ; \(R_{M, i}=R M+\delta R M\);
deg, cm, kG, \(\quad 4 * \mathrm{E}\)
\(B_{Z 0}, K\)
field at \(R_{M, i}\); index no dim.

\section*{ENTRANCE FIELD BOUNDARY}
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift \(\omega^{+}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)

Fringe field extent \(\left(g=g_{0}(R M / R)^{\kappa}\right)\)
Unused ; \(C_{0}\) to \(C_{5}\) : fringe field coefficients; EFB shift
Azimuth of entrance EFB with respect to \(A C N\);
wedge angle of EFB ; radii and linear extents of EFB (use \(U_{\frac{1}{2}}=\mp \infty\) when \(R_{1,2}=\infty\) )
(Note : \(g_{0}=0, \omega^{+}=A C E N T, \theta=0\) and KIRD=0 for sharp edge)

\section*{EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)}

Fringe field parameters, see above
\begin{tabular}{ll}
cm, no \(\operatorname{dim}\) & \(2 * \mathrm{E}\) \\
\(0-6,6 *\) no \(\operatorname{dim}, \mathrm{cm}\) & \(1,7 * \mathrm{E}\) \\
\(2 * \operatorname{deg}, 4 * \mathrm{~cm}\) & \(6 * \mathrm{E}\)
\end{tabular}
(Note : \(g_{0}=0, \omega^{-}=-A T+A C E N T, \theta=0\) and KIRD=0 for sharp edge)

\section*{LATERAL FIELD BOUNDARY to be implemented - following data not used}

\section*{\(g_{0}, \kappa\)}
\(N C, C_{0}-C_{5}\), shift
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)
End of repeat
cm, no dim 2*E
\(0-6,6 *\) no dim, cm 1, 7*E
\(2 * \mathrm{deg}, 4 * \mathrm{~cm}\)
6*E
\(0,2,25\) or \(4 ; \quad\) I, E no dim.

If KIRD=0 : analytical computation of field derivatives ;
Resol \(=2 / 4\) for \(2 \mathrm{nd} / 4\) th order field derivatives computation If KIRD \(=2,4\) or 25 : numerical interpolation of field derivatives ; size of flying interpolation mesh is XPAS/Resol

KIRD=2 or \(25:\) second degree, 9 - or 25 -point grid KIRD=4 : fourth degree, 25 -point grid

XPAS

KPOS

If \(\mathrm{KPOS}=\mathbf{2}\)
RE, TE, RS, TS

If \(\mathrm{KPOS}=1\)
DP

Integration step

Positioning of the magnet, normally 2. Two options :

Positioning as follows :
Radius and angle of reference, respectively, \(\quad \mathrm{cm}, \mathrm{rad}, \mathrm{cm}, \mathrm{rad} \quad 4 * \mathrm{E}\) at entrance and exit of the magnet
Automatic positioning of the magnet, by means of reference relative momentum
cm
1-2
no dim.
E

\section*{FFAG-SPI \(\quad\) Spiral FFAG magnet, \(N\)-tuple \\ UNDER DEVELOPMENT}
\(B_{Z}=\sum_{i=1}^{N} B_{Z 0, i} \mathcal{F}_{i}(R, \theta)\left(R / R_{M, i}\right)^{K_{i}}\)
\begin{tabular}{llll}
\(I L\) & \begin{tabular}{l}
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates along trajectories, fields, etc., \\
into zgoubi.res (1) or zgoubi.plt \(\left(2\left[\times 10^{n}\right]\right)\) or zgoubi.impdev.out \((7)\).
\end{tabular} & \(0-2\left[\times 10^{n}\right], 7\)
\end{tabular}\(\quad\) I \begin{tabular}{ll} 
no dim., \\
\(N, A T, R M\) & \begin{tabular}{l} 
Number of dipoles in the FFAG \(N\)-tuple ; \\
total angular extent of the dipole \(;\) reference radius.
\end{tabular}
\end{tabular}

Repeat \(N\) times the following sequence \(\qquad\)

ACN, \(\delta R M\), \(B_{Z 0}, K\)
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{+}, \xi, 4\) dummies
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{-}, \xi, 4\) dummies

Azimuth for dipole positioning ; \(R_{M, i}=R M+\delta R M\); field at \(R_{M, i}\); index.

\section*{ENTRANCE FIELD BOUNDARY}

Fringe field extent \(\left(g=g_{0}(R M / R)^{\kappa}\right)\)
Unused ; \(C_{0}\) to \(C_{5}\) : fringe field coefficients; EFB shift Azimuth of entrance EFB with respect to \(A C N\); spiral angle ; \(4 \times\) unused.
deg, \(\mathrm{cm}, \mathrm{kG}, \quad 4 * \mathrm{E}\) no dim.
\begin{tabular}{ll}
cm, no dim. & \(2 * \mathrm{E}\) \\
\(0-6,6 *\) no dim, cm & \(\mathrm{I}, 7 * \mathrm{E}\) \\
\(2 * \operatorname{deg}, 4 *\) unused & \(6 * \mathrm{E}\)
\end{tabular}
cm, no dim \(\quad 2 * \mathrm{E}\)
\(0-6,6 *\) no dim, cm \(\quad 1,7 * \mathrm{E}\)
\(2 * \mathrm{deg}, 4 *\) unused
6*E
\(g_{0}, \kappa\)
\(N C, C_{0}-C_{5}\), shift
\(\omega^{-}, \theta, R_{1}, U_{1}, U_{2}, R_{2}\)
End of repeat

\section*{LATERAL FIELD BOUNDARY to be implemented - following data not used}

EXIT FIELD BOUNDARY (See ENTRANCE FIELD BOUNDARY)
Fringe field parameters, see above

Integration boundaries - next line is optional, starting with string IntLim :

IntLim, \(I D, A, B, C\)
\(\left[, A^{\prime}, B^{\prime}, C^{\prime}\right]\)

KIRD, Resol

XPAS
KPOS,
\(R E, T E, R S, T S\)
Integration boundary. Line has to start with 'IntLim'.
\(I D=-1\) : integration in the magnet begins at entrance boundary defined by A, B, C.
\(I D=1\) : integration is terminated at exit boundary defined by A', B', C'.
\(I D=2\) : both entrance and exit boundaries.

If KIRD=0 : analytical computation of field derivatives ;
Resol \(=2 / 4\) for \(2 \mathrm{nd} / 4\) th order field derivatives computation.
If KIRD \(=2,4\) or 25 : numerical interpolation of field derivatives; size of flying interpolation mesh is XPAS/Resol.

KIRD \(=2\) or 25 : second degree, 9 - or 25 -point grid KIRD=4 : fourth degree, 25 -point grid

Integration step

Positioning of the magnet, has to be 2 . As follows : radius and
cm
\(2,2 *(\mathrm{~cm}, \mathrm{rad})\)

I, 3 *E
[,3*E]

I, E
no dim.
\begin{tabular}{ll}
\(-1,1,2 ; \mathrm{deg} ; \mathrm{cm} ;\) & I, \(3 * \mathrm{E}\) \\
\(\operatorname{deg}\) [; id.] & {\([, 3 * \mathrm{E}]\)}
\end{tabular}

2*E 1, 7*E 6*E

E
I, \(4 * \mathrm{E}\)

\section*{FIN, END End of input data list}

Any information in zgoubi.dat following these keywords will be ignored

\section*{FIT, FIT2}

NV [, nofinal]
[, noSYSout]
[, save [, FileName]]

\section*{Fitting procedure}

NV : Number of physical parameters to be varied ; 'nofinal' avoids final run (default is : final run performed using

\section*{\(\leq 20\) [, nofinal] save [string]}

I [, A7]
[, A4 [, A80]]
fitted values, once fit is done) ; 'noSYSout' inhibits system output of variable and constraint status, except for start and end, and update of penalty value in between ; 'save' saves fit variables when fit is completed, either in 'FileName' if specified, or by default in zgoubi.FITVALS.out.

\section*{For \(\mathrm{I}=1, \mathrm{NV}\)}
either :
\(\leq \mathrm{MXL}^{1}, \leq \mathrm{MXD}^{1}\), \(\pm\) MXL.MXD \({ }^{2}\), relative see footnote \({ }^{3}\)

2*I, 3*E

NC [, Penalty [,ITER]] \({ }^{4}\)
For \(\mathrm{I}=1, \mathrm{NC}\)
\(I C, I, J, I R, V^{3}, W V\), \(N P\left[, p_{i}(i=1, N P)\right]\)
\(I R, I P, X C, D V\)
or :
IR, IP, XC, \(\left[V_{\min }, V_{\max }\right] \quad V_{\min }, V_{\max }:\) lower and upper limits of the variable.
Number of the element in the structure ; number of the physical parameter in the element ; coupling switch (off \(=0\) ) ; variation range \(( \pm)\).
repeat NV times the following sequence

Number of constraints [, penalty [, max. numb. of iterations]]. repeat NC times the following sequence :
\(I C, I\) and \(J\) define the type of constraint (see table below); \(0-5,3^{*}(>0)\), current unit, \(2 *\) no dim., curr. units
\(V\) : value ; \(W\) : weight (the stronger the lower \(W V\) ) \(N P\) : number of parameters ; if \(N P \geq 1, p_{i}(i=1, N P)\) : parameter values.
\({ }^{1}\) The values for the maximum number of elements (i.e., keywords in zgoubi.dat) that a sequence in zgoubi can contain, MXL, and for the maximum number of parameters under a keyword, MXD, are set in the include file MXLD. H.
\({ }^{2}\) The coupling input data \(X C\) is of the form "integer. ijk " with integer \(\leq \mathrm{MXD}\) and \(\mathrm{i}, \mathrm{j}, \mathrm{k} 1\)-digit integers and such that \(\mathrm{ijk} \leq \mathrm{MXD}\).
\({ }^{3} V\) is in current zgoubi units in the case of particle coordinates (i.e., \(\mathrm{cm}, \mathrm{mrad}, \mu \mathrm{s}\), momentum relative to BORO) and B field (kG). It is in MKSA units (m, rad ) in the case of matrix coefficients.
\({ }^{4}\) FIT[2] will stop when the sum of the squared residuals gets \(<\) penalty, or when the maximum allowed number of iterations is reached.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type of constraint} & \multicolumn{6}{|c|}{Parameters defining the constraints} & \multirow[t]{2}{*}{Recommended [MC]OBJET ; comments} \\
\hline & IC & I & J & Constraint & \multicolumn{2}{|l|}{Additional parameter(s)} & \\
\hline Transported \(\sigma\)-matrix
\[
(\sigma(s)=T \sigma(0) \tilde{T})
\] & 0 & 1-6 & 1-6 & \(\sigma_{I J} \quad\left(\sigma_{11}=\beta_{Y}, \sigma_{21,12}=\alpha_{Y}\right.\), etc. \()\) & & & OBJET/KOBJ=5.1 \\
\hline \begin{tabular}{l}
Periodic \(\sigma\)-matrix
\[
\begin{gathered}
(\sigma=I \cos \mu+J \sin \mu) \\
(\mathrm{N}=1-9 \text { for }
\end{gathered}
\] \\
MATRIX \\
block 1-9)
\end{tabular} & \[
\begin{gathered}
0 . \mathrm{N} \\
(N \leq 9)
\end{gathered}
\] & \[
\begin{gathered}
1-6 \\
7 \\
8 \\
9 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& 1-6 \\
& \text { any } \\
& \text { any } \\
& \text { any } \\
& \text { any }
\end{aligned}
\] & \[
\begin{gathered}
\sigma_{I J} \quad\left(\sigma_{11}=\cos \mu_{Y}+\alpha_{Y} \sin \mu_{Y}, \text { etc. }\right) \\
\mu_{Y} / 2 \pi \\
\mu_{Z} / 2 \pi \\
\cos \left(\mu_{Y}\right) \\
\cos \left(\mu_{Z}\right)
\end{gathered}
\] & & & OBJET/KOBJ=5.N \\
\hline First order transport coeffs. & 1 & \[
\begin{gathered}
1-6 \\
7 \\
8
\end{gathered}
\] & \[
\begin{gathered}
1-6 \\
\mathrm{i} \\
\mathrm{j}
\end{gathered}
\] & Transport coeff. \(R_{I J}\)
\[
\begin{aligned}
& i \neq 8: \text { YY-determinant } ; \mathrm{i}=8: \text { YZ-det. } \\
& j \neq 7: \text { ZZ-determinant } ; \mathrm{j}=7: \text { ZY-det. }
\end{aligned}
\] & & & OBJET/KOBJ \(=5\) \\
\hline Second order transport coeffs. & 2 & \(1-6\) & 11-66 & \[
\begin{gathered}
\text { Transport coeff. } T_{I, j, k} \\
(j=[J / 10], k=J-10[J / 10])
\end{gathered}
\] & & & OBJET/KOBJ=6 \\
\hline Trajectory coordinates ( \(\mathrm{I}=\) particle & 3 & \[
\begin{gathered}
1-I M A X \\
-1 \\
-2
\end{gathered}
\] & \[
\begin{aligned}
& 1-7 \\
& 1-7 \\
& 1-7
\end{aligned}
\] & \[
\begin{gathered}
F(J, I) \\
<F(J, i)>_{i=I 1, I 2} \\
\operatorname{Sup}(|F(J, i)|)_{i=1, \text { IMAX }}
\end{gathered}
\] & \(\left\{\begin{array}{l}0 \\ 2\end{array}\right.\) & \(I_{1}, \quad I_{2}\) & \[
\begin{aligned}
& {[\text { [MC]OBJET }} \\
& 1 \rightarrow \text { IMAX } \\
& 1 \leq I_{1} \leq I_{2} \leq \text { IMAX }
\end{aligned}
\] \\
\hline number; \(\mathrm{J}=1-7\) for D,Y,T,Z,P,S,time) & & \[
\begin{aligned}
& -3 \\
& -4
\end{aligned}
\] & \[
\begin{aligned}
& 1-7 \\
& 1-7
\end{aligned}
\] & \begin{tabular}{l}
Dist \(F(J, I)_{i=I 1, I 2}\) \\
\(\operatorname{Dist}\left[P U_{i}, i=1, N\right]\)
\end{tabular} & \[
\begin{aligned}
& 3 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& I_{1}, I_{2}, \Delta I \\
& \text { NOEL }_{A}, \text { NOEL }_{B}
\end{aligned}
\] & \begin{tabular}{l}
\[
1 \leq I_{1} \leq I_{2} \leq I M A X
\] \\
PU range
\end{tabular} \\
\hline & 3.1 & 1 - IMAX & 1-7 & \(|F(J, I)-F O(J, I)|\) & & & \\
\hline & 3.2 & 1 - IMAX & 1-7 & \(|F(J, I)+F O(J, I)|\) & & & \\
\hline & 3.4 & 1 - IMAX & 1-7 & \(\frac{|F(J, I)-F(J, K)|}{}\) & 1 & K & \(K \leq I M A X\) \\
\hline & 3.5 & 1 - IMAX & \(1-7\) & \((F(J, I)-F(J, K)) / F(J, K)\) & 1 & K & \(K \leq I M A X\) \\
\hline Ellipse parameters & 4 & \(1-6\) & \(1-6\) & \[
\begin{gathered}
\sigma_{I J} \quad\left(\sigma_{11}=\beta_{Y},\right. \\
\left.\sigma_{12}=\sigma_{21}=\alpha_{Y}, \text { etc. }\right)
\end{gathered}
\] & & & \begin{tabular}{l}
OBJET/KOBJ=8 ; \\
MCOBJET/KOBJ=3
\end{tabular} \\
\hline Number of particles & 5 & \[
\begin{gathered}
-1 \\
1-3 \\
4-6
\end{gathered}
\] & \begin{tabular}{l}
any \\
any \\
any
\end{tabular} & \[
\begin{gathered}
N_{\text {survived }} / \text { IMAX } \\
N_{\text {in } \epsilon_{Y, Z, X} / N_{\text {survived }}} / N_{\text {survived }}
\end{gathered}
\] & 1 & \(\epsilon_{Y, Z, X} / \pi\) & \begin{tabular}{l}
OBJET \\
MCOBJET \\
MCOBJET
\end{tabular} \\
\hline Coordinates \& fields, across optical elements & \[
\begin{aligned}
& 7.1 \\
& 7.2 \\
& 7.3
\end{aligned}
\] & \[
\begin{aligned}
& 1-I M A X \\
& 1-I M A X \\
& 1-I M A X
\end{aligned}
\] & \[
\begin{aligned}
& 1-7 \\
& 1-7 \\
& 1-7
\end{aligned}
\] & \(\min .\left(p r_{1}=1\right)\) or max. (2) of \(F(J, I)\) \(\max (F(J, I))-\min F(J, I))\) \(\min F(J, I))+\max (F(J, I))\) & 1 & 1-2 & [MC]OBJET \\
\hline \[
\begin{gathered}
(\mathrm{J}=1,2,3 \text { for } \\
\left.B_{X, Y}, Z\right)
\end{gathered}
\] & \[
\begin{aligned}
& 7.6 \\
& 7.7 \\
& 7.8 \\
& 7.9
\end{aligned}
\] & \[
\begin{aligned}
& 1-I M A X \\
& 1-I M A X \\
& 1-I M A X \\
& 1-I M A X
\end{aligned}
\] & \[
\begin{aligned}
& 1-3 \\
& 1-3 \\
& 1-3 \\
& 1-3
\end{aligned}
\] & \[
\begin{gathered}
\min .\left(p r_{1}=1\right) \text { or } \max .(2) \text { value of } B_{J} \\
\max \left(B_{J}\right)-\min \left(B_{J}\right) \\
\min \left(B_{J}\right)+\max \left(B_{J}\right) \\
\int B_{J} d s
\end{gathered}
\] & 1 & 1-2 & \\
\hline Spin & \[
\begin{gathered}
10 \\
10.1 \\
10.2 \\
10.3
\end{gathered}
\] & \[
\begin{gathered}
1 \text { - IMAX } \\
1 \text { - IMAX } \\
1 \text { - IDMAX } \\
1 \text { - IDMAX }
\end{gathered}
\] & \[
\begin{gathered}
1-4 \\
1-3 \\
\text { any } \\
1-3
\end{gathered}
\] & \[
\begin{gathered}
S_{X, Y, Z}(I),|\vec{S}(I)| \\
\left|S_{X, Y, Z}(I)-S O_{X, Y, Z}(I)\right| \\
\text { spin rotation angle (rad) } \\
\text { rotation axis, X-, Y- or Z-component }
\end{gathered}
\] & & & SPNTRK+ [MC]OBJET OBJET/KOBJ=2 OBJET/KOBJ=2 \\
\hline
\end{tabular}

IMAX: total number of particles tracked.
\(F(J, I)\) : particle coordinate array ; J : coordinate ( \(1-7\) for respectively D, Y, T, Z, P, S, time, resp. units : none, cm, mrad, cm, mrad, \(\mathrm{cm}, \mu \mathrm{s}\) ) ; I : particle number.
\(F O(J, I)\) : initial particle coordinates.
\(S(J, I)\) : spin coordinate array ; J : coordinate (1, 2, 3 for respectively X, Y, Z) ; I : particle number.
\(S O(J, I)\) : initial spin coordinates.

\section*{- Combining FIT and REBELOTE : An example}

In the example below, FIT requests that (i) the particle trajectory with initial coordinates defined by OBJET have identical horizontal coordinates at both ends of the snake (this is achieved by varying \(Y_{0}, T_{0}\) in OBJET), and that (ii) the trajectory across the snake - an helix - be \(Y\)-centered along the snake axis.

The way this works :
FIT is executed a first time for \(B \rho_{\text {ref }}=B O R O=7205.1782956 \mathrm{kG} . \mathrm{cm}\), namely the execution loops between OBJET and FIT until the constraints are best fulfilled. Once this is completed, the execution pointer then goes to the next instruction in the data list, namely 'SPNPRT', this is discussed below, and then points to REBELOTE, which will have the effect of sending it back to the begining of zgoubi.dat data list. However, prior to that, the " 1 " flag, fourth data in first row in REBELOTE, requests a change of, next line, parameter number 35 in element "OBJET" (that is, the relative regidity of the particle, \(D\) ). The list of values follows, namely, \(\{1.38727399732 .13682966744 .826119069411 .015241321\}\). The change occurs \(\mathbf{4}\) times, according to NRBLT=4, the first data in REBELOTE data list.
Note that, (i) spin data so computed (spin vector components, precession, etc) are stored/stacked in zgoubi.SPNPRT.Out by placing the keyword 'SPNPRT' with label "PRINT", between FIT and REBELOTE ; (ii) current updated FIT variables are saved in zgoubi.FITVALS.out using the 'save' command in FIT, and further stacked in zgoubi.FITVALS.out_cat for each REBELOTE case, using SYSTEM.
```

Centering 5 helical orbits in the AGS warm helical snake 3-D OPERA map.
'OBJET' ! This data list may be copy-pasted and run, as is.
7.2051782956D3 ! Reference rigidity of the problem
1 1 ~ ! ~ A ~ s i n g l e ~ p a r t i c l e . ~ I n i t i a l ~ c o o r d i n a t e s ~ : ~
-2.2 0. 0. 0. 0. 1. 'o' ! Yo, To, Zo, Po, So, p/po
1
'PARTICUL' ! proton data are necessary for spin tracking
938.27203 1.602176487E-19 1.7928474 0 0 ! M, Q, G factor
'SPNTRK'
4.1 ! Initial spin is positionned vertical
0. 0. 1.
' FAISCEAU'
'SPNPRT'
'TOSCA'
0 20
1.e1 100. 100. 100.
HEADER_0 wsnake
801 29 2912.1 ! The map is a }801\times29\times29 node 3-D mesh
warmSnake.map ! AGS warm snake 3-D OPERA map
0 0 0 0
2
.1
'FAISCEAU'
'FIT'
save ! Two variables. Save FIT variables (in zgoubi.FITVALS.out).
30 [-3,3] ! Vary initial coordinate Y_0 (horiz. position)
31 [-3,3] ! Vary initial coordinate T_0 (horiz. angle)
3 1E-2 ! Three constraints (penalty 2E-3 requested) :
3.1 1 2 6 0. 1. 0 ! Y_0=Y after at exit of the magnet
3.1 1 3 6 0. 1.0 ! T_0=T after at exit of the magnet
7.31260.1.0 ! Y_min+Y_max=0 inside the OPERA field map
'SPNPRT' PRINT ! Stack spin data (in zgoubi.SPNPRT.Out).
'SYSTEM' ! Save zgoubi.FITVALS.out data following from successive REBELOTE.
1
cat zgoubi.FITVALS.out >> zgoubi.FITVALS.out_cat
'REBELOTE' ! Will loop on re-doing the FIT for 4 additional particle rigidities
4 0.1 0 1 ! List of 4 successive values of D in OBJET follows
OBJET 35 1.3872739973 2.1368296674 4.8261190694 11.015241321
'SYSTEM' ! Save a copy of zgoubi.FITVALS.out_cat and of zgoubi.SPNPRT.Out_cat
2
\cp zgoubi.FITVALS.out_cat zgoubi.FITVALS.out_cat_copy
\cp zgoubi.SPNPRT.Out zgoubi.SPNPRT.Out_copy
'END'

```

\section*{- FIT[2] options : An example}

FIT[2] options, "nofinal", "save FileName", "penalty" and "ITER", are all specified in the example below.
```

An example with FIT options
'GETFITVAL'
zgoubi.FITVALS.In
'MCOBJET' 1
57.36635309 d 3 ! reference rigidity
3.1
1
$\begin{array}{llllll}2 & 2 & 2 & 2 & 1\end{array}$
0.0.0.0.0. $0.61943880 \mathrm{E}-01$
$2.703371 \quad 1.859656 \quad 1.48563786487 e-99 \quad 9$
$-2.592712 \quad 2.421706 \quad 1.48563786487 e-99 \quad 9$
0.1. 0. 9
123452345634567
'PARTICUL'
2
$0.510998921 .60217653 \mathrm{e}-191.15965218076 \mathrm{e}-3 \quad 0.0 \quad 0.0$
' PICKUPS'
2
\#StartRing MULT BD2S \#EndRing
'MRIFT' DRIF \quad HD 7497
14.38218115
'MARKER' \#SSMid 7498
'MARKER' \#EndRing 7500
'FIT2'
4 save zgoubifIT.result nofinal ! Variables saved in zgoubiFIT.result when FIT2 done. No final run.
!!! 4 save nofinal ! Would cause variables to be saved in default file zgoubi.fITVALS.out instead.
2400 [-1.e-2,1.e-2] ! The four variables are Yo, To, Zo, Po in MCOBJET
2410 [-1.e-2,1.e-2]
2420 [-1.e $-2,1 \cdot \mathrm{e}-2]$
2430 [-1.e-2,1.e-2]
4 le-10 90 ! penalty=1e-10. Maximum allowed calls to zgoubi is 90.
$3.11275000 .1 .0 \quad$! The four constraints are : initial Y, T, Z, P of
$3.11375000 .1 .0 \quad$! particle \#1 equal to its final Y, T, Z, P.
3.11475000 .1 .0
3.11575000 .1 .0

```

\section*{FOCALE Particle coordinates and horizontal beam size at distance XL}

\section*{XL}

Distance from the location of the keyword
cm
E

\section*{FOCALEZ Particle coordinates and vertical beam size at distance XL}

XL
Distance from the location of the keyword
cm
E

\section*{GASCAT \\ Gas scattering}
\begin{tabular}{llll}
\(K G A\) & Off/On switch & 0,1 & I \\
\(A I, D E N\) & Atomic number ; density & \(2 * \mathrm{E}\)
\end{tabular}

\section*{GETFITVAL Get values of variables as saved from former FIT[2] run}
\begin{tabular}{lll} 
FNAME & Name of storage file. Zgoubi will proceed silently if \\
FNAME='none' or FNAME='NONE', or if the file is not foumd. A
\end{tabular}

\section*{Under development}

OPTION
Can be 'PASS\#' or 'GOBACK'
String
If OPTION = PASS\#
One line needed :
LABEL_1, ..., LABEL_N List of labels (expected is label \#1 that follows a keyword) to go to, N strings pass after pass (passes are incremented, from 1 to N , by REBELOTE..
- Using GOTO : An example is given page 243

\section*{HISTO}

1-D histogram
\(J, X_{\min }, X_{\max }\),
NBK, NH

NBL, KAR,
NORM, TYP
\(J=\) type of coordinate to be histogrammed ; the following are available :
- current coordinates :
\(1(D), 2(Y), 3(T), 4(Z), 5(P), 6(S)\),
- initial coordinates :
\(11\left(D_{0}\right), 12\left(Y_{0}\right), 13\left(T_{0}\right), 14\left(Z_{0}\right), 15\left(P_{0}\right), 16\left(S_{0}\right)\), - spin :
\(21\left(S_{X}\right), 22\left(S_{Y}\right), 23\left(S_{Z}\right), 24(<S>)\);
\(X_{\min }, X_{\max }=\) limits of the histogram, in units of the coordinate of concern ; NBK = number of channels ; \(N H=\) number of the histogram (for independence of histograms of the same coordinate)

Number of lines (= vertical amplitude) ; alphanumeric character ; normalization if \(N O R M=1\), otherwise \(N O R M=0 ; T Y P=' \mathrm{P} ':\) primary particles are histogrammed, or ' S ' : secondary, or Q : all particles - for use with MCDESINT

1-24, 2*
I, \(2 * \mathrm{E}, 2 * \mathrm{I}\)
current units, \(<120,1-5\)
normally 10-40, I, A1, I, A1 char., 1-2, P-S-Q

\section*{IMAGE \\ Localization and size of horizontal waist}

IMAGES Localization and size of horizontal waists
For each momentum group, as classified by means of \(O B J E T, K O B J=1,2\) or 4

\section*{IMAGESZ}

\section*{Localization and size of vertical waists}

For each momentum group, as classified by means of \(O B J E T, K O B J=1,2\) or 4

IMAGEZ
Localization and size of vertical waist

NBF following lines (one file name per line) :
FNAME [, [LBL_1A [, LBL_2A]]: Name of input zgoubi.dat-style file to be included. LBL_A : A80 [,[A10], [A10]] [LBL_1B [, LBL_2B]] entrance branching tag, LBL_B : exit branching tag.
- Using INCLUDE : An example.

In this example of an energy-recovery electron recirculator [69], the linac, spreader and combiner data lists are given in separate files, declared as INCLUDEs. Using INCLUDE has a series of merits :
- it shortens the parent input data file, so making the optical structure more apparent,
- it allows picking optical spreader, combiner and ring sequences from files that may actually be set to - for instance compute optical parameters; in that case, LBL_A and LBL_B are used for this targetted picking : they define the ends of the sequence to be INCLUDE'd, ignoring the upper and lower parts in the INCLUDE'd file (which may be specific, for instance, to MATRIX computations).
Note the following : (i) juggling between linac, spreaders, combiners and recirculating ring, is handled using GOTO statement, (ii) the use of REBELOTE in this ERL context is discussed in an example page 271.
```

Cornell CBETA prototype (of an eRHIC) FFAG arc ERL
'mCOBJET'
19.9411300960454126 ! T.m E_tot=6MeV
5 . 0 1
.01 . 01 . 01 . 01 . 01 . 01
0. 0. 0. 0. 0. 1.
-0.8475 1.5739-0.8481 1.59 0. 1. 7.49E-03 4.12E-03 0. 0.
'PARTICUL'
0.51099892 1.60217653e-19 1.15965218076e-3 0.0 0.0
'ERRORS'
1 123466 dB(kG)
MULTIPOL{} 1 BP A U 0.do 0.0 9999
'SCALING'
1 2
2. 1.
19999
MULTIPOL SA1.1 SB1.1
2
1.9999
'OPTIONS'
l l l
!////// Racetrack sequence starts here, at linac entrance
! Linac,
'INCL
./LA/LA_Obj5.inc[LA.MAR.BEG\1:LA.MAR.END\1]
! Goto splitter line
',GOTO'
PASS\#
SA1 SA2 SA3 SA4 SA3 SA2 SA1
'MARKER' RT_SA
! Goto FFAG return loop : arc+(DS+straight+DS)+arc
PASS\#
PASS\#
FA FA FA FA FA FA FA FA
'MARKER' RT_FA
'GOTO'
x x x x x x x x
'MARKER' RT_X
'GOTO'
PASS\#
FB FB FB FB FB FB FB FB
'MARKER' RT_FB
! Goto combiner line

```

```

SB1 SB2 SB3 SB4 SB3 SB2 SB1
'MARKER' RT_SB
'MATRIX'
10
'MARKER' rebelote
'REBELOTE' ! send zgoubi pointer back to
70.1 99 ! the top (and linac entrance), }7\mathrm{ times
'MARKER' stop
'stop'
!//1////|//|///|//|/
!// job done, here //

```

\section*{MAP2D}
\begin{tabular}{|c|c|c|c|}
\hline \(I C, I L\) & \(I C=1,2:\) print the field map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2 ; 0-2\left[\times 10^{n}\right], 7\) & \(2 * \mathrm{I}\) \\
\hline BNORM, XN, YN & Field and X-,Y-coordinate normalization coeffs. Convert values as read from map file, to kG and cm units. & 3*UnitConv. & \(3 * \mathrm{E}\) \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped. & & A80 \\
\hline \(I X, J Y\) & Number of longitudinal and horizontal-transverse nodes of the mesh (the Z elevation is arbitrary) & \(\leq 400, \leq 200\) & \(2 * \mathrm{I}\) \\
\hline FNAME \({ }^{1}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \[
\begin{aligned}
& \geq-1,2 * \text { no dim. }, \\
& \mathrm{cm}[, 2 * \text { no dim. } \\
& \mathrm{cm}, \text { etc. }]
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \mathrm{etc} .]}
\end{aligned}
\] \\
\hline IORDRE & Degree of polynomial interpolation, 2nd or 4th order. & 2, 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3 *E \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) FNAME (e.g., magnet.map) contains the field map data.
These must be formatted according to the following FORTRAN read sequence (normally compatible with TOSCA code OUTPUTS - details and possible updates are to be found in the source file'fmapw.f') :
}
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD')
DO 1 J = 1, JY
DO 1 I = 1, IX
IF (BINARY) THEN
READ(NL) Y(J), Z(1), X(I), BY(I,J), BZ(I,J), BX(I,J)
ELSE
READ(NL,100) Y(J), Z(1), X(I), BY(I,J), BZ(I,J), BX(I,J)
FORMAT (1X, 6E11.4)
ENDIF
CONTINUE

```
where \(X(I), \quad Y(J)\) are the longitudinal, horizontal coordinates in the at nodes \((I, J)\) of the mesh, \(\$ \mathrm{Z}(1) \$\) is the vertical eleva-
tion of the map, and \(B X, B Y, B Z\) are the components of the field.

\section*{MAP2D-E}

IC, IL

ENORM, \(X\)-, Y-NORM

TITL
\(I X, J Y\)

FNAME \({ }^{1}\)
\(I D, A, B, C\)
\(\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.\),
\(B^{\prime \prime}\), etc., if \(\left.I D \geq 2\right]\)
IORDRE
XPAS
KPOS, XCE, YCE, ALE

2-D Cartesian uniform mesh field map - arbitrary electric field
\(I C=1,2:\) print the field map
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Field and X-,Y-coordinate normalization coeffs.
Convert values as read from map file, to \(\mathrm{MV} / \mathrm{cm}\) and cm units.
Title. Start with "FLIP" to get field map X-flipped.
Number of longitudinal and horizontal-transverse nodes of the mesh (the Z elevation is arbitrary)

File name

Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES

Degree of polynomial interpolation, 2nd or 4th order.
Integration step
\(K P O S=1\) : element aligned, 2 : misaligned ; shifts, tilt.

A80 A80
\(0-2 ; 0-2\left[\times 10^{n}\right], 7 \quad 2 * \mathrm{I}\)

3*UnitConv. \(\quad 3 * \mathrm{E}\)
\(\leq 400, \leq 200 \quad 2 * I\)
\(\geq-1,2 *\) no dim., \(\quad \mathrm{I}, 3 * \mathrm{E}\) \(\mathrm{cm}[, 2 *\) no dim., [,3*E,etc.] cm, etc.]

2, 4
cm
E
\(1-2,2 * \mathrm{~cm}, \mathrm{rad}\)
I, 3 *E
\({ }^{1}\) FNAME (e.g., 'mirror.map'’) contains the field map data.
These must be formatted according to the following FORTRAN read sequence - details and possible updates are to be found in the source file 'fmapw. \(\mathrm{f}^{\prime}\) :
```

 OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD')
 DO 1 J = 1, JY
 DO 1 I = 1, IX
 IF (BINARY) THEN
 READ(NL) Y(J), Z(1), X(I), EY(I,J), EZ(I,J), EX(I,J)
 ELSE
 READ(NL,100) Y(J), Z(1), X(I), EY(I,J), EZ(I,J), EX(I,J)
 FORMAT (1X, 6E11.4)
 ENDIF
 1 CONTINUE
    ```
where \(X(I), Y(J)\) are the longitudinal, horizontal coordinates in the at nodes \((I, J)\) of the mesh, \(\$ \mathrm{Z}(1) \$\) is the vertical elevation of the map, and \(E X, E Y, E Z\) are the components of the field.

For binary files, FNAME must begin with ' \(\mathrm{B}_{-}{ }^{\prime}\) or ' \(\mathrm{b}_{-}{ }^{\prime} \sim\); a logical flag 'Binary' will then automatically be set to '.TRUE.'

\section*{Marker}

Just a marker. No data
'.plt' as a second \(L A B E L\) will cause storage of current coordinates into zgoubi.plt

\section*{MATRIX}

IORD, IFOC [, PRINT] [, coupled]

\section*{Calculation of transfer coefficients, periodic parameters}

Options :
\(0-2,0-1\) or \(>10\)
2*I [,A]
IORD \(=0\) : Same effect as FAISCEAU
\(I O R D=1\), using OBJET, KOBJ \(=5[\cdot \mathrm{~N}]: 1\) st order transfer parameters,
- if \(K O B J=5.1\) : beam matrix, phase advance, otherwise
- 1st order data ( \(c f\). IFOC value) for N different cases of optical reference.

IORD \(=2\), using \(O B J E T, K O B J=6: 1\) st order transfer matrix \(\left[R_{i j}\right]\),
2nd order array \(\left[T_{i j k}\right]\) and a few higher order transfer coefficients ; some periodic parameters in addition if IFOC \(>10\);
\(I O R D=3\), using \(O B J E T, K O B J=6.1: 1\) st order transfer matrix \(\left[R_{i j}\right]\),
2nd and 3rd order arrays \(\left[T_{i j k}\right],\left[T_{i j k l}\right]\).
IFOC \(=0\) : matrix at actual location \({ }^{1}\);
IFOC = 1: matrix at the closest first order horizontal focus \({ }^{1}\);
IFOC \(=10+\) NPER : same as \(I F O C=0\), and also calculates 1 or N sets (case respectively of \(K O B J=5\) or \(K O B J=5 . \mathrm{N}, 2 \leq N \leq 99\) ) of Twiss parameters, tune numbers, etc., assuming zgoubi.dat file describes one period of a NPER-period structure \({ }^{1}\).

Occurence of "PRINT" will cause printout to zgoubi.MATRIX.out file.
Occurence of "coupled", in the periodic case (IFOC \(=10+\) NPER, above), will cause use of coupled formalism.

\footnotetext{
1 The reference in computing transport coefficients and other periodic parameters is particle \# 1 of the ray-traced set. If N 11-particle sets are ray-traced in order to get (in a single zgoubi run) transport coeeficients for N different cases of reference orbit (using OBJET, KOBJ \(=5 . \mathrm{N}, 2 \leq N \leq 99\) ), the reference particle for each 11-particle set is respectively particle \#1, \(12,23, \ldots 1+(\mathrm{N}-1) \times 11\).
}

\section*{MCDESINT \({ }^{1}\)}

\section*{Monte-Carlo simulation of in-flight decay}
\(\mathrm{M} 1 \rightarrow \mathrm{M} 2+\mathrm{M} 3\)
\([\text { INFO, }]^{2} M 2, M 3, \tau 2^{3}\)
[Switch,] ; masses of the two decay products;
\([-] 2 * ,\mathrm{MeV} / c^{2}, \mathrm{~s} \quad[\mathrm{~A} 4] 3 *\), COM lifetime of particle 2
I1, I2, I3
Seeds for random number generators
\(3^{*} \simeq 10^{6}\)
3*I


Particle 1 decays into 2 and 3 ; zgoubi then calculates trajectory of 2 , while 3 is discarded. \(\theta\) and \(\phi\) are the scattering angles of particle 2 relative to the direction of the incoming particle 1. They transform to \(T_{2}\) and \(P_{2}\) in Zgoubi frame.

\footnotetext{
\({ }^{1}\) MCDESINT must be preceded by PARTICUL, for the definition of the mass and lifetime of the incoming particle M1.
\({ }^{2}\) Presence of 'INFO' will cause more info on decay kinematics parameters to be printed zgoubi.res at each decay.
\({ }^{3} \tau 2\) can be left blank, in which case the lifetime of particle 2 is set to zero (it decays immediately, which from a practical point of view means that it is not tracked).
}

\section*{MCOBJET}

BORO
KOBJ

IMAX
\(K Y, K T, K Z, K P\), \(K X, K D^{1}\)
\(Y_{0}, T_{0}, Z_{0}, P_{0}, \quad\) Mean value of coordinates \(\left(D_{0}=B \rho / B O R O\right)\)
\(X_{0}, D_{0}\)

\section*{If \(\mathrm{KOBJ}=\mathbf{1}\)}
\(\delta Y, \delta T, \delta Z, \delta P, \quad\) Distribution widths, depending on \(K Y, K T\) etc. \({ }^{1}\) \(\delta X, \delta D\)
\(N_{\delta Y}, N_{\delta T}, N_{\delta Z}, N_{\delta P}, \quad\) Sorting cut-offs (used only for Gaussian density) \(N_{\delta X}, N_{\delta D}\)
\(N_{0}, C_{0}, C_{1}, C_{2}, C_{3} \quad\) Parameters involved in calculation of P(D)
IR1, IR2, IR3
If \(\mathrm{KOBJ}=2\)
\(I Y, I T, I Z, I P\) \(I X, I D\)
\(P Y, P T, P Z, P P\),
\(P X, P D\)
\(\delta Y, \delta T, \delta Z, \delta P\), \(\delta X, \delta D\)
\(N_{\delta Y}, N_{\delta T}, N_{\delta Z}, N_{\delta P}\), \(N_{\delta X}, N_{\delta D}\)
\(N_{0}, C_{0}, C_{1}, C_{2}, C_{3}\)
\(I R 1, I R 2, I R 3\)

\section*{Monte-Carlo generation of a 6-D object}

\section*{Reference rigidity}

KOBJ=1: window
\(K O B J=2\) : grid
KOBJ= 3 : phase-space ellipses
Number of particles to be generated
Type of probability density

\section*{In a window}

Random sequence seeds
On a grid
Number of bars of the grid
kG.cm
E

1-3
m, rad, m,
6*E
rad, m, no dim.
units of \(\sigma_{Y}, \sigma_{T}, \quad 6 * \mathrm{E}\) etc.
\begin{tabular}{ll} 
no dim. & \(5 * \mathrm{E}\) \\
\(3 * \simeq 10^{6}\) & \(3 * \mathrm{I}\)
\end{tabular}
\(3 * \simeq 10^{6}\)
m , rad, m,
6*E rad, m, no dim.
m, rad, m 6*E rad, m, no dim.
ibidem
6*E
units of \(\sigma_{Y}, \sigma_{T}\), etc. 6*E
no dim.
5*E
\(3^{*} \simeq 10^{6}\)
```

${ }^{1}$ Let $x=Y, T, Z, P$ or $X . K Y, K T, K Z, K P$ and $K X$ can take the values
uniform, $p(x)=1 / 2 \delta x$ if $-\delta x \leq x \leq \delta x$
Gaussian, $p(x)=\exp \left(-x^{2} / 2 \delta x^{2}\right) / \delta x \sqrt{2 \pi}$
: parabolic, $p(x)=3\left(1-x^{2} / \delta x^{2}\right) / 4 \delta x$ if $-\delta x \leq x \leq \delta x$
$K D$ can take the values
1: uniform, $p(D)=1 / 2 \delta D$ if $-\delta D \leq x \leq \delta D$
2: exponential, $p(D)=$ No $\exp \left(C_{0}+C_{1} l+C_{2} l^{2}+C_{3} l^{3}\right)$ if $-\delta D \leq x \leq \delta D$
3 : kinematic, $D=\delta D * T$

```

\section*{If \(\mathrm{KOBJ}=3 \quad\) On a phase-space ellipse \({ }^{1}\). Four lines follow :}
\(\alpha_{Y}, \beta_{Y}, \varepsilon_{Y} / \pi, N_{\sigma_{\epsilon_{Y}}}\)
\(\left[, N_{\sigma_{\epsilon_{Y}}}^{\prime} \text { if } N_{\sigma_{\epsilon_{Y}}}<0\right]^{2}\)
\(\left[, D_{Y}, D_{T}\right]\)
\(\alpha_{Z}, \beta_{Z}, \varepsilon_{Z} / \pi, N_{\sigma_{\epsilon_{Z}}}\)
[, \(N_{\sigma_{\epsilon_{Z}}}^{\prime}\) if \(\left.N_{\sigma_{\epsilon_{Z}}}<0\right]^{2}\)
[, \(D_{Z}, D_{P}\) ]
\(\alpha_{X}, \beta_{X}, \varepsilon_{X} / \pi, N_{\sigma_{\epsilon_{X}}}\)
\(\left[, N_{\sigma_{\epsilon_{X}}}^{\prime} \text { if } N_{\sigma_{\epsilon_{X}}}<0\right]^{2}\)
IR1,IR2,IR3

Ellipse parameters and
emittance, Y-T phase-space ; cut-off ; dispersion and derivative

Ellipse parameters and emittance, Z-P phase-space ; cut-off ; dispersion and derivative

Ellipse parameters and emittance, X-D phase-space ; cut-off

Random sequence seeds
no dim., m/rad,
m , units of \(\sigma\left(\varepsilon_{Y}\right)\);
[, m, rad]
no dim., m/rad,
m , units of \(\sigma\left(\varepsilon_{Z}\right)\)
[, m, rad]
no dim., m/rad, \(\quad 4 * \mathrm{E}[, \mathrm{E}]\) m , units of \(\sigma\left(\varepsilon_{X}\right)\)
\(3^{*} \simeq 10^{6}\)
\(3 * I\)
\({ }^{1}\) Similar possibilities, non-random, are offered with \(O B J E T\), KOBJ=8 (p. 254)
\({ }^{2}\) Works with Gaussian density type only : sorting is within the ellipse frontier \(\left(\frac{1+\sigma_{Y}^{2}}{\beta_{Y}^{2}} Y^{2}+2 \alpha_{Y} Y T+\beta_{Y} T^{2}=\frac{\varepsilon_{Y}}{\pi}\right)\) if \(N_{\sigma_{\epsilon_{Y}}}>0\), or, if \(N_{\sigma_{\epsilon_{Y}}}<0\) sorting is within the annular region \(\left[\left|N_{\sigma_{\epsilon_{Y}}}\right|, N_{\sigma_{\epsilon_{Y}}}^{\prime}\right]\) of that ellipse.


A scheme of input parameters to \(M C O B J E T\) when \(K O B J=2\).
Top : Possible distributions of the \(Y\) coordinate
Bottom : A 2-D grid in \((Y, Z)\) space.

\section*{MULTIPOL}
\begin{tabular}{|c|c|c|c|c|}
\hline & & dim. & data type & \[
\begin{gathered}
\text { FIT } \\
\text { numb. }
\end{gathered}
\] \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I & \\
\hline \(X L, R_{0}, B 1, B 2, \ldots, B 10\), & Length of element ; radius at pole tip ; field at pole tip for dipole, quadrupole, ..., dodecapole components & \(2 * \mathrm{~cm}, 10 * \mathrm{kG}\) & 12*E & \\
\hline \(X_{E}, \lambda_{E}, E_{2}, \ldots, E_{10}\) & \begin{tabular}{l}
Entrance face \\
Integration zone ; fringe field extent : dipole fringe field extent \(=\lambda_{E}\); quadrupole fringe field extent \(=\lambda_{E} * E_{2}\); ... \\
20-pole fringe field extent \(=\lambda_{E} * E_{10}\) \\
(sharp edge if field extent is zero)
\end{tabular} & \(2 * \mathrm{~cm}, 9 *\) no dim. & 11*E & \\
\hline \(N C E, C_{0}-C_{5}\) & same as QUADRUPO & 0-6, 6* no dim. & I, 6*E & \\
\hline \(X_{S}, \lambda_{S}, S_{2}, \ldots, S_{10}\) & \begin{tabular}{l}
Exit face \\
Integration zone ; as for entrance
\end{tabular} & 2*cm, 9*no dim. & \(11 * \mathrm{E}\) & \\
\hline \(N C S, C_{0}-C_{5}\) & & 0-6, 6* no dim. & I, \(6 * \mathrm{E}\) & \\
\hline \(R 1, R 2, R 3, \ldots, R 10\) & Skew angles of field components & \(10 * \mathrm{rad}\) & 10*E & \\
\hline XPAS & Integration step & cm & E & 62 \\
\hline \begin{tabular}{l}
If \(\mathrm{KPOS}=\mathbf{1 - 3}\) \\
KPOS, XCE, YCE, ALE
\end{tabular} & \begin{tabular}{l}
Positioning as follows : \\
\(K P O S=1\) : element aligned ; \(K P O S=2\) : misaligned ; shifts, tilt ; \\
\(K P O S=3\) : effective only if \(B 1 \neq 0\) : \\
entrance and exit frames are tilted wrt. the magnet by an angle of \\
- either ALE if ALE \(\neq 0\) \\
- or \(2 \operatorname{Arcsin}(B 1 X L / 2 B O R O)\) if \(\operatorname{ALE}=0\)
\end{tabular} & \(1-3,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3*E & \\
\hline \begin{tabular}{l}
If \(\mathrm{KPOS}=\mathbf{4}\) \\
KPOS, XS, YS, ZR, ZS, YR
\end{tabular} & X-, Y-shift, Z-rotation, Z-shift, Y-rotation Automatic ALE positioning as \(K P O S=3\), and in addition possible X- or Y- or Z-misalignment or Z-, Y-rotation. (under development). & 4, cm, \(2^{*}(\mathrm{~cm}, \mathrm{rad})\) & I, \(5 *\) E & \\
\hline
\end{tabular}

\section*{OBJET}

BORO
KOBJ[.K2]
If \(\mathrm{KOBJ}=\mathbf{1}[.1]\)
IY, IT, IZ, IP, IS, ID
\(d Y, d T, d Z, d P, d S, d D\)

YR, TR, ZR, PR, \(S R, D R\)

If \(\mathrm{KOBJ}=\mathbf{2}[. \mathbf{1}]\)
IMAX, IDMAX

For \(I=1\), IMAX

Y, T, Z, P, S, D, LET
\(\operatorname{IEX}(I=1, I M A X)\)

If \(\mathrm{KOBJ}=\mathbf{3}[. \mathrm{N}, \mathbf{N}=\mathbf{0}-3]\)

IT1, IT2, ITStep

IP1, IP2, IPStep

YF, TF, ZF, PF,
SF, DF, TF, TAG

YR, TR, \(Z R, P R\),
SR, DR, TR
InitC

FNAME

\section*{Generation of an object}
\begin{tabular}{lll} 
Reference rigidity & kG.cm & E \\
Option index [.More options] & \(1-6\) & I
\end{tabular}
[Non-] Symmetric object
Ray-Tracing assumes mid-plane symmetry. Generated points :
\(\mathrm{IY} * \mathrm{IT} * \mathrm{IZ} * \mathrm{IP} * \mathrm{IS} * \mathrm{ID} \leq 10^{4} \quad 6^{*} 1\)
\(Y R \pm I Y * d Y, T R \pm I T * d T, Z R \pm I Z * d Z, P R \pm I P * d P\)
\([Z R+I Z * d Z, P R+I P * d P\) if KOBJ \(=1.1], S R \pm I S * d S\) and \(D R \pm I D * d D\) coordinates \((I Y \leq 20, \ldots, I D \leq 20)\)

Sampling size in \(Y, T, Z, P, S\) and in relative momentum ( \(d D=\delta B \rho /\) BORO)

Reference trajectory \((D R=B \rho / B O R O)\)
2(cm,mrad), cm, no dim.
6*E
\(2(\mathrm{~cm}, \mathrm{mrad}), \mathrm{cm}\), no dim. \(\quad 6 * \mathrm{E}\)
All the initial coordinates must be entered explicitly
total number of particles ; number of distinct momenta (if IDMAX \(>1\), group particles of same momentum)

Repeat IMAX times the following line
Coordinates and tagging of the IMAX particles ;
If \(K O B J=2.1\) input units are different :
\(\operatorname{IMAX}\) times 1 or -9 . If \(\operatorname{IEX}(I)=1\) trajectory \(I\) is ray-traced, it is not if \(\operatorname{IEX}(I)=-9\).

Reads coordinates from a storage file
\(\mathrm{N}=0\) (default) : [b_]zgoubi.fai style data file FORMAT
\(\mathrm{N}=1\) : read FORMAT is ' \({ }^{\text {READ }}(\mathrm{NL}, *) \mathrm{Y}, \mathrm{T}, \mathrm{Z}, \mathrm{P}, \mathrm{S}, \mathrm{DP}{ }^{\prime}\) '
\(\mathrm{N}=2\) : read FORMAT is \({ }^{`} \mathrm{READ}(\mathrm{NL}, *) \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{PX}, \mathrm{PY}, \mathrm{PZ} \prime^{\prime}\)
\(\mathrm{N}=3\) : read FORMAT is ' \(\operatorname{READ}(\mathrm{NL}, *) \mathrm{DP}, \mathrm{Y}, \mathrm{T}, \mathrm{Z}, \mathrm{P}, \mathrm{S}, \mathrm{TIME}, \mathrm{MASS}, \mathrm{CHARGE}\) ''
Read particles numbered IT1 to IT2, step ITStep \(\geq 1, \geq I T 1, \geq 1\)
(For more than \(10^{4}\) particles stored in FNAME, use 'REBELOTE')

Read particles that belong in pass numbered \(\geq 1, \geq I P 1, \geq 1\) IP1 to IP2, step IPStep

Scaling factor. TAG-ing letter : no effect if \(T A G={ }^{\prime}{ }^{*}\), otherwise only particles with TAG \(\equiv\) LET are retained.

Reference. Given the previous line of data, all coordinate \(\mathrm{C}(=\mathrm{Y}, \mathrm{T} .\). ) is transformed to \(\mathrm{C} * \mathrm{CF}+\mathrm{CR}\)

0 : set new \(\vec{R}_{0}=\vec{R}_{0}\) as read, new \(\vec{R}=\vec{R}\) as read;
1: set new \(\vec{R}_{0}=\vec{R}\) as read, new \(\vec{R}=\vec{R}\) as read;
2 : save \(\vec{R}\) as read in new \(\vec{R}_{0}\), set new \(\vec{R}=\vec{R}_{0}\) as read.
File name (e.g., [b_]zgoubi.fai)
A80

If KOBJ \(=\mathbf{5}[. \mathbf{N}, N \geq 1] \quad\) Generation of \(\mathbf{1 1}\) particles, or \(\mathbf{1 1 *} \mathbf{N}\) if \(N \geq 2\) (for use with MATRIX, IORD = 1 )
\(d Y, d T, d Z, d P, d S, d D\)
Sampling size in \(Y, T, Z, P, S\) (unused) and \(D\)
2(cm,mrad), cm, no dim.
6*E
\(Y R, T R, Z R, P R, S R, D R \quad\) Reference trajectory \((D R=B \rho / B O R O ; S R\) is not sused \()\)
\(\diamond\) If \(\mathrm{KOBJ}=5.1\)
\(\alpha_{Y}, \beta_{Y}, \alpha_{Z}, \beta_{Z}, \alpha_{S}, \beta_{S}\), \(D_{Y}, D_{Y}^{\prime}, D_{Z}, D_{Z}^{\prime}\)
\(\diamond\) If \(K O B J=5 . N(N \geq 2)\)
\(Y R, T R, Z R, P R, S R, D R\)
One additional data line :
Initial beam ellipse parameters \({ }^{1}\)
2(cm,mrad), cm, no dim. 6*E
\(\begin{array}{ll}\text { 2(no dim., m), ?, ?, } & 6 * \mathrm{E}, \\ 2(\mathrm{~m}, \mathrm{rad}) & 4 * \mathrm{E}\end{array}\)
\(N\) additional data lines \({ }^{2}\)
Reference trajectory \# i \((D R=B \rho / B O R O ; S R\) is not sused \()\)
2(cm,mrad), cm, no dim. 6*E

\section*{If \(\mathrm{KOBJ}=\mathbf{6}\)}

Generation of 61 particles (for use with MATRIX, \(I O R D=2\) )
\(d Y, d T, d Z, d P, d S, d D \quad\) Sampling size in \(Y, T, Z, P, S\) (unused) and \(D\)
\(Y R, T R, Z R, P R, S R, D R\)
Reference trajectory ; \(D R=B \rho / B O R O\)
2(cm,mrad), cm, no dim.
2(cm,mrad), cm, no dim. 6*E

\section*{If \(\mathrm{KOBJ}=7\)}
\(I Y, I T, I Z, I P, I S, I D \quad\) Number of points in \(\pm Y, \pm T, \pm Z, \pm P, \pm S ; I D\) is not used
\(d Y, d T, d Z, d P, d S, d D\)
Sampling size in \(Y, T, Z, P\) and \(S ; d D=\) kinematic coefficient, such that \(D(T)=D R+d D * T\)

YR, TR, \(Z R, P R, S R, D R\)
Reference \((D R=B \rho / B O R O)\)
\(I Y^{*} I T * I Z * I P * I S \leq 10^{4}\)
2(cm,mrad), \(\mathrm{cm}, \mathrm{mrad}^{-1}\)

2(cm,mrad), cm, no dim. 6*E
If \(\mathbf{K O B J}=\mathbf{8}\)
\(I Y, I Z, I S\)

\(Y_{0}, T_{0}, Z_{0}, P_{0}, S_{0}, D_{0}\)
\(\alpha_{Y}, \beta_{Y}, \varepsilon_{Y} / \pi\)
\(\alpha_{Z}, \beta_{Z}, \varepsilon_{Z} / \pi\)
\(\alpha_{S}, \beta_{S}, \varepsilon_{S} / \pi\)

\section*{Generation of phase-space coordinates on ellipses \({ }^{3}\)}

Number of samples in each 2-D phase-space ;
\(0 \leq I Y, I Z, I S \leq I M A X\), \(3 * I\)
if zero the central value (below) is assigned
\(1 \leq I Y * I Z * I S \leq I M A X\)
2( \(\mathrm{m}, \mathrm{rad}\) ), m, no dim.
no dim., \(m, m\)
no dim., m, m 3*E
no dim., m, m

\footnotetext{
1 They can be transported by using MATRIX.
\({ }^{2}\) The maximum value for \(N\), normally MXREF=999, is hard-coded in obj5.f.
\({ }^{3}\) Similar possibilities, random, are offered with MCOBJET, KOBJ=3 (p. 250).
}
- OBJET, KOBJ=3 recovering from a crash : An example

The job below, a 9 million turn tracking in RHIC, crashed at turn \# 2,217,299. It can be read from the storage file b_zgoubi.fai (or infered as well from the OBJET and CAVITE data), that the reference (synchronous, theoretical) rigidity at the previously saved turn (turn\# 2,217,298, the closest integer multiple of 67 ) was \(B \rho_{\text {ref }}=272.519214209\) T.m (magnet scaling coefficient under SCALING, right column below), which is \(B \rho_{\mathrm{ref}} / B O R O=3.111758007\) (as used in SCALING, CAVITE data, right column), with \(B O R O=87.5772517\) T.m the initial rigidity \((25.33 \mathrm{GeV})\), top of left column.
The right column shows how these informations are transposed to the new tracking run based on \(O B J E T, K O B J=3\), which allows resuming tracking from that last saved turn \#2,217,298.

This 9,000,000-turn job crashed at turn number 2,217,299. Tracking starts from clock'6 IP in RHIC, acceleration (keyword CAVITE) at a rate of \(50 \times \cos (2.1618) \mathrm{kV}\) per turn. Particle coordinates are stored turn-by-turn at SNK1 (keyword FAISTORE), location of the first helical dipole.
```

'OBJET'
87.5772517e3
2 ~ ! ~ D e c l a r e ~ 8 ~ p a r t i c l e s , ~ a l l ~
8 ! on a 21mu_m, norm. vertical invariant.
0. 0. 2.58575455E-01 -1.73487148E-01 0. 1. 'o'
0. 0. 1.82840458E-01 1.21643409E-01 0. 1. 'o'
0. 0. 1.58331802E-17 3.45516907E-01 0. 1. 'o'
0. 0. -1.82840458E-01 3.66991287E-01 0. 1. 'o'
0. 0. -2.58575455E-01 1.73487148E-01 0. 1. 'o'
0. 0. -1.82840458E-01 -1.21643409E-01 0.1. 'o'
0. 0. -4.74995405E-17 -3.45516907E-01 0. 1. 'o'
1 -1 -1 -1 -1 -1 -1 -1 ! on/off switches. Particle 1 selected.
'PARTICUL' ! Particle data needed for spin tracking.
9.382720300E+02 1.602176487E-19 1.792847400 0. 0.
' SPNTRK'
3 ! All initial spins vertical.
'FAISCEAU'
'FAISTORE' ! Storage location in sequence is at SNK1,
b_zgoubi.fai SNK1 ! the first of the two helicoidal snakes.
67 ! Storage (at pass 1 and) every 67 passes.
'SCALING'
1 ! 5 families of magnets ramped.
BEND ! Magnet fields strictly follow cavity kick :
-1 ! (i) NT=-1 can be used, and (ii) CAVITE does
87.5772517 ! not need be declared under SCALING.
MULTIPOL HKIC VKIC
-1
0. ! Zero field in HKIC and VKIC magnet families.
MULTIPOL QUAD
-1
87.5772517
1
MULTIPOL SEXT
-1
87.5772517
1
MULTIPOL MULT
-1
87.5772517
1
'OPTIONS'
1 1
WRITE OFF
'MARKER' MARK RHIC\$START
'MARKER' MARK CLOCK6down

```


This run recovers from the crash, starting at SNK1 (a permutation of the previous data file) with coordinates as read from b_zgoubi.fai (storage file as filled by FAISTORE during the run that crashed). Magnet and cavity data are updated to their values at turn number 2,217,299.
```

'OBJET'
87.5772517e3
3
1 1 ! Will look for stored turn in
2217290 2217299 1 ! range (2217298 is concerned).

1. 2. 3. 4. 0. 1. 0. '*' ! Zero factor to 'S' for correct
0.0.0.0.0.0.0. ! path length/RF phase at CAVITE.
0
b_zgoubi.fai ! The storage file is used to recover
! particle coordinates at pass \# 2217299.
'PARTICUL'
9.382720300E+02 1.602176487E-19 1.792847400E+00 0. 0.
'SPNTRK'
3
'FAISCEAU'
'FAISTORE'
b_zgoubi.fai SNK1
67
'SCALING'
1 6
BEND
BEND
-1
272.519214209
1
MULTIPOL HKIC VKIC
MUL
1.

1
MULTIPOL QUAD
-1
272.519214209
1
MULTIPOL SEXT
-1
272.519214209
1
MULTIPOL MULT
-1
272.519214209
272
CAVITE
2 1. 3.07555022085
1.
'OPTIONS'
1 1
WRITE OFF
'MARKER' SNK1 ! start point changed to SNK1

```

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{OBJETA} & \multicolumn{3}{|l|}{Object from Monte-Carlo simulation of decay reaction} \\
\hline & \multicolumn{3}{|l|}{\(M 1+M 2 \longrightarrow M 3+M 4\) and \(M 4 \longrightarrow M 5+M 6\)} \\
\hline BORO & Reference rigidity & kG.cm & E \\
\hline IBODY, KOBJ & Body to be tracked : \(M 3\) (IBODY=1), M5 (IBODY=2) \(M 6(I B O D Y=3)\); type of distribution for \(Y_{0}\) and \(Z_{0}\) : uniform \((K O B J=1)\) or Gaussian \((K O B J=2)\) & 1-3,1-2 & \(2 * \mathrm{I}\) \\
\hline IMAX & Number of particles to be generated (use ' REBELOTE ' for more) & \(\leq 10^{4}\) & I \\
\hline \(M_{1}-M_{6}\) & Rest masses of the bodies & \(6 * \mathrm{GeV} / \mathrm{c}^{2}\) & 6*E \\
\hline \(T_{1}\) & Kinetic energy of incident body & GeV & E \\
\hline \multirow[t]{2}{*}{\(Y_{0}, T_{0}, Z_{0}, P_{0}, D_{0}\)} & Only those particles in the range
\[
Y_{0}-\delta Y \leq Y \leq Y_{0}+\delta Y
\] & 2(cm,mrad), no dim. & \(5 * \mathrm{E}\) \\
\hline & \begin{tabular}{l}
\[
D_{0}-\delta D \leq D \leq D_{0}+\delta D
\] \\
will be retained
\end{tabular} & & \\
\hline \(\delta Y, \delta T, \delta Z, \delta P, \delta D\) & & 2(cm,mrad), no dim. & \(5 * \mathrm{E}\) \\
\hline XL & Half length of object : \(-X L \leq X_{0} \leq X L\) (uniform random distribution) & cm & E \\
\hline IR1, IR2 & Random sequence seeds & \(2^{*} \simeq 0^{6}\) & \(2 * \mathrm{I}\) \\
\hline
\end{tabular}

\section*{OCTUPOLE}

IL
\(X L, R_{0}, B_{0}\)
\(X_{E}, \lambda_{E}\)

NCE, \(C_{0}-C_{5}\)
\(X_{S}, \lambda_{S}\)
NCS, \(C_{0}-C_{5}\)
XPAS

KPOS, XCE, YCE, ALE

\section*{Octupole magnet}
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length ; radius and field at pole tip of the element
Entrance face :
Integration zone ;
Fringe field extent ( \(\lambda_{E}=0\) for sharp edge)
NCE = unused
\(C_{0}-C_{5}=\) fringe field coefficients
such that: \(G(s)=G_{0} /(1+\exp P(s))\), with \(G_{0}=B_{0} / R_{0}^{3}\)
and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\)

\section*{Exit face :}

Parameters for the exit fringe field ; see entrance

Integration step
\(K P O S=1\) : element aligned, 2 : misaligned ; shifts, tilt.
any, 6*no dim.
\(0-2\left[\times 10^{n}\right], 7\)
\(2 * \mathrm{~cm}, \mathrm{kG}\)
\(2 * \mathrm{~cm}\)
cm
\(1-2,2 * \mathrm{~cm}, \mathrm{rad}\)
I, \(3^{*}\) E


Octupole magnet

\section*{OPTICS}

\section*{Write out optical functions. Log to zgoubi.OPTICS.out}

IOPT[.NLBL], label(s)
[, IMP or 'PRINT']
[, coupled]
\(I O P T=0 / 1:\) Off/On ; NLBL \(=\) number of labels (default is 1 ) ; \(\quad 0-1[.1-\mathrm{NLBL}],-, \quad \mathrm{I}[. I]\), 'label' : can be 'all', 'ALL', or a list of NLBL first label(s) as appearing at one or more elements in zgoubi.dat sequence ; wild card accepted, in the form '*myLabel' or 'myLabel*'. \(I M P=1\), or presence of 'PRINT', will cause storage of optical functions in zgoubi.OPTICS.out ; optical function computation is in coupled hypothesis if specified, uncoupled otherwise.

\section*{- Example}

The following will cause a print of transported optical functions in zgoubi.res, at all optical elements of the zgoubi.dat sequence, as well as their print out in zgoubi.OPTICS.out :
'OPTICS'
1 all PRINT

\section*{OPTIONS Global or special options}


NBOP lines follow. Possible choices:
\begin{tabular}{llll} 
'WRITE', OPT & \begin{tabular}{l} 
OPT = ON/OFF : allows/inhibites (most) write statements \\
to zgoubi.res
\end{tabular} & 'WRITE', 'ON' or 'OFF' & \(2 * \mathrm{~A}\) \\
& & \\
'CONSTY', OPT & OPT = ON : forces constant \(Y\) and \(Z\) across optical elements & 'CONSTY', 'ON'/'OFF' & \(2 * \mathrm{~A}\)
\end{tabular}
- CONSTY: The example below yields (data saved to zgoubi.plt due to \(I L=2\) ) 3-D field components (trivially uniform in that particular case, \(B_{R}=B_{\theta}=0, B_{Z}=B_{0}\) at all \((R, \theta, Z)\) ) on a \(n_{R} \times n_{\theta} \times n_{Z}=(41-1) / 2 \times(R * A T / X P A S) \times(11-1) / 2\) node, uniform 3-D mesh, with \(\Delta R=\delta Y\) in OBJET \(=1 \mathrm{~cm}, \Delta \theta \equiv X P A S / R M=10.471975512 \mathrm{mrd}, \Delta Z=\delta Z\) in \(O B J E T=\) 0.2 cm , across a 60 degree hard-edged sector dipole ( 6 of these make up a uniform field cyclotron).
```

Cyclotron, classical.
Cyclotron, classical.
'OBJET'
1000.e0
1
41 1 11 1 1 1
1.0.0.2 0.0.1.
0.0.0.0.0.1.
'OPTIONS'
1 1
CONSTY ON
'DIPOLES'
2
1 60. 50.
30. 0. 5. 1 0.
0. 0. ! EFB 1 hard-edge
4 . 1455 2.2670 -.6395 1.1558 0.0. 0.
30. 0. 1.E6 -1.E6 1.E6 1.E6
0. 0. ! EFB 2
4..1455 2.2670 -.6395 1.1558 0.0. 0.
-30.0. 1.E6 -1.E6 1.E6 1.E6
0.0. ! EFB 3
0 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.
0 2 KIRD, Resol=IDB
0.523598775598
2 00. 0. 00. 0.
'FAISCEAU'
'END'

```

ORDRE
Taylor expansions order
\(I O \quad \begin{aligned} & \text { Taylor expansions of } \vec{R} \text { and } \vec{u} \text { up to } \vec{u}^{(I O)} \\ & \text { (default is } I O=4 \text { ) }\end{aligned}\)

\section*{PARTICUL Particle characteristics}

\section*{Either :}
\(M, Q, G, \tau, X \quad \begin{aligned} & \text { Mass (or coded, see Note below) ; charge ; gyromagnetic factor ; } \\ & \text { COM life-time ; unused }\end{aligned} \quad \mathrm{MeV} / \mathrm{c}^{2}, \mathrm{C}\), no dim., s, NA \(\quad 5 * \mathrm{E}\)
or :
Type ELECTRON or MUON+, MUON-, PROTON

Note: If \(M\) is of the form \(\begin{cases}\text { M1 } & \text { M2 }\} \text {, then when masses are assigned to particles from a previously defined object, the first half }\end{cases}\) of the particles are given the mass M1, and the second half are given the mass M2.

If \(Q\) is zero, the reference charge is left unchanged.
Only the parameters to be used need their value be specified (for instance \(M, Q\) only when electric lenses are used, \(M, Q, G\) only when tracking spin) ; unused parameters can be set to zero.

\section*{PICKUPS}

Bunch centroid path; orbit
Summation of particles coordinates at pickups may be printed out in zgoubi.PICKUP.out. Pickup contents are zeroed at start of each pass, in multi-turn mode.
\(N\)
0 : inactive
\(\geq 1:\) number of LABELs at which beam centroid is computed \(\geq 0\)

\section*{A list of \(\mathbf{N}\) keywords' labels follows}
\(\begin{array}{ll}\text { LABEL1 [,LABEL2, [...]] } & \begin{array}{l}\text { The N label(s) at which beam data are to be computed/recorded. } \\ \text { If some "LABELi" in this list actually does not appear } \\ \text { in zgoubi.dat optical sequence, then it is peacefully ignored ; } \\ \text { wild card accepted, in the form }{ }^{\prime *} \text { myLabel' or 'myLabel*'. }\end{array} \quad \mathrm{N} \text { string(s) } \quad \text { N*A10 }\end{array}\)

\section*{- Example}

A trick :
'PICKUPS'
1
none labelA labelB...
This is a possible way to inhibit an earlier use of PICKUPS with "labelA, labelB, ..." keyword list. It is sufficient (and necessary) for that, that no keyword in zgoubi.dat data list have "none" as its first LABEL.

To be documented.

\section*{POISSON}

\section*{Read magnetic field data from POISSON output}
\begin{tabular}{|c|c|c|c|}
\hline \(I C, I L\) & \(I C=1,2\) : print the field map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & 0-2; 0-2[×10 \(\left.{ }^{n}\right], 7\) & \(2 *\) I \\
\hline BNORM, XN, YN & Field and X-,Y-coordinate normalization coeffs. & \(3 *\) no dim. & 3*E \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped & & A80 \\
\hline \(I X, I Y\) & Number of longitudinal and transverse nodes of the uniform mesh & \(\leq 400, \leq 200\) & \(2 *\) I \\
\hline FNAME \({ }^{1}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \(\geq-1,2 *\) no dim. \(\mathrm{cm}[, 2 *\) no dim., cm, etc.] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \text { etc. }]}
\end{aligned}
\] \\
\hline IORDRE & Degree of interpolation polynomial as for DIPOLE-M & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, & KKPOS \(=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * E\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) FNAME (e.g., '"outpoi.lis'’) contains the field map data.
These must be formatted according to the following FORTRAN read sequence - details and possible updates are to be found in the source file' fmapw. \(\mathrm{f}^{\prime}\) :
\(\mathrm{I}=0\)
11 CONTINUE
\(\mathrm{I}=\mathrm{I}+1\)
READ(LUN, 101,ERR=99,END=10) K, K, K, R, X(I), R, R, B(I)
101 FORMAT(I1, I3, I4, E15.6, 2F11.5, 2F12.3)
GOTO II
10 CONTINUE
}
where \(X(I)\) is the longitudinal coordinate, and \(B(I)\) is the \(Z\) component of the field at a node \((I)\) of the mesh. \(K\) 's and \(R\) 's are variables appearing in the POISSON output file outpoi.lis, not used here.

\section*{POLARMES}

2-D polar mesh magnetic field map
mid-plane symmetry is assumed
\begin{tabular}{|c|c|c|c|}
\hline IC, IL & \(I C=1,2:\) print the map \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2 ; 0-2\left[\times 10^{n}\right], 7\) & \(2 * I\) \\
\hline BNORM, AN,RN & Field and A-,R-coordinate normalization coeffs. & \(3 *\) no dim. & 3*E \\
\hline TITL & Title. Start with "FLIP" to get field map X-flipped & & A80 \\
\hline \(I A, J R\) & Number of angular and radial nodes of the mesh & \(\leq 400, \leq 200\) & \(2 *\) I \\
\hline FNAME \({ }^{1}\) & File name & & A80 \\
\hline \[
\begin{aligned}
& I D, A, B, C \\
& {\left[, A^{\prime}, B^{\prime}, C^{\prime}\right.} \\
& \left.B^{\prime \prime}, \text { etc., if } I D \geq 2\right]
\end{aligned}
\] & Integration boundary. Ineffective when \(I D=0\). \(I D=-1,1\) or \(\geq 2:\) as for CARTEMES & \(\geq-1,2 *\) no dim., \(\mathrm{cm}\left[, 2^{*}\right.\) no dim., cm, etc.] & \[
\begin{aligned}
& \mathrm{I}, 3 * \mathrm{E} \\
& {[, 3 * \mathrm{E}, \text { etc. }]}
\end{aligned}
\] \\
\hline IORDRE & Degree of interpolation polynomial (see DIPOLE-M) & 2, 25 or 4 & I \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS & as for DIPOLE-M. Normally 2. & 1-2 & I \\
\hline If \(\mathrm{KPOS}=\mathbf{2}\) & & & \\
\hline \begin{tabular}{l}
\(R E, T E, R S, T S\) \\
If KPOS = 1
\end{tabular} & & \(\mathrm{cm}, \mathrm{rad}, \mathrm{cm}, \mathrm{rad}\) & 4*E \\
\hline \(D P\) & & no dim. & E \\
\hline
\end{tabular}

1 FNAME (e.g., spes2.map) contains the field data.
These must be formatted according to the following FORTRAN read sequence - details and possible updates are to be found in the source file 'fmapw.f' :
```

OPEN (UNIT = NL, FILE = FNAME, STATUS = `OLD' [,FORM='UNFORMATTED'])
IF (BINARY) THEN
READ(NL) (Y(J), J=1, JY)
ELSE
READ(NL,100)(Y(J), J=1, JY)
ENDIF
100 FORMAT(10 F8.2)
DO 1 I = 1,IX
IF (BINARY) THEN
READ (NL) X(I), (BMES(I,J), J=1, JY)
ELSE
READ(NL,101) X(I), (BMES(I,J), J=1, JY)
101 FORMAT(10 F8.1)
ENDIF
1 CONTINUE

```
where \(X(I)\) and \(Y(J)\) are the longitudinal and transverse coordinates and BMES is the \(Z\) field component at a node \((I, J)\) of the mesh. For binary files, FNAME must begin with 'B_' or 'b_'. 'Binary' will then automatically be set to '.TRUE.'
\begin{tabular}{llll} 
& \begin{tabular}{l}
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, \\
in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).
\end{tabular} & \(0-2\left[\times 10^{n}\right], 7\) & I \\
IL \(, R_{0}, B_{0}\) & \begin{tabular}{l} 
Length of the element, radius of the circular \\
dipole, field
\end{tabular} & \(2 * \mathrm{~cm}, \mathrm{kG}\) & \(3 * \mathrm{E}\) \\
XPAS & Integration step & cm & E \\
KPOS, XCE, YCE, ALE & KPOS=1 : element aligned, 2 : misaligned ; shifts, tilt. & \(1-2,2 * \mathrm{~cm}\), rad & \(\mathrm{I}, 3 * \mathrm{E}\)
\end{tabular}


Scheme of the PS170 magnet simulation.

\section*{QUADISEX Sharp edge magnetic multipoles}
\(\left.B_{Z}\right|_{Z=0}=B_{0}\left(1+\frac{N}{R_{0}} Y+\frac{B}{R_{0}^{2}} Y^{2}+\frac{G}{R_{0}^{3}} Y^{3}\right)\)

IL
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step,
\(0-2\left[\times 10^{n}\right], 7\) in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).
\(X L, R_{0}, B_{0}\)
Length of the element ; normalization distance ; field
\(2 * \mathrm{~cm}, \mathrm{kG} \quad 3 * \mathrm{E}\)
\(N, E B 1, E B 2, E G 1, E G 2\) Coefficients for the calculation of B.
if \(Y>0: B=E B 1\) and \(G=E G 1\); if \(Y<0: B=E B 2\) and \(G=E G 2\).

XPAS
Integration step
cm
E

KPOS, XCE, YCE, ALE
\(K P O S=1\) : element aligned, 2 : misaligned ; shifts, tilt.
\(1-2,2^{*} \mathrm{~cm}, \mathrm{rad} \quad \mathrm{I}, 3 * \mathrm{E}\)
\begin{tabular}{|c|c|c|c|}
\hline QUADRUPO & Quadrupole magnet & & \\
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline XL, \(R_{0}, B_{0}\) & Length ; radius and field at pole tip & \(2 * \mathrm{~cm}, \mathrm{kG}\) & 3*E \\
\hline \(X_{E}, \lambda_{E}\) & \begin{tabular}{l}
Entrance face : \\
Integration zone extent ; fringe field extent ( \(\simeq 2 R_{0}, \lambda_{E}=0\) for sharp edge)
\end{tabular} & \(2 * \mathrm{~cm}\) & 2*E \\
\hline NCE, \(C_{0}-C_{5}\) & \begin{tabular}{l}
NCE \(=\) unused \\
\(C_{0}-C_{5}=\) Fringe field coefficients such that \(G(s)=G_{0} /(1+\exp P(s))\), with \(G_{0}=B_{0} / R_{0}\) and \(P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}\)
\end{tabular} & any, \(6 *\) no dim. & I, 6*E \\
\hline & Exit face & & \\
\hline \(X_{S}, \lambda_{S}\) & See entrance face & \(2 * \mathrm{~cm}\) & 2*E \\
\hline \(N C S, C_{0}-C_{5}\) & & 0-6, 6* no dim. & I, \(6 * E\) \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, \(3 * E\) \\
\hline
\end{tabular}


Quadrupole magnet


Scheme of the elements QUADRUPO, SEXTUPOL, OCTUPOLE, DECAPOLE, DODECAPO and MULTIPOL
\((O X)\) is the longitudinal axis of the reference frame \((0, X, Y, Z)\) of zgoubi.
The length of the element is \(X L\), but trajectories are calculated from \(-X_{E}\) to \(X L+X_{S}\), by means of automatic prior and further \(X_{E}\) and \(X_{S}\) translations.

\section*{REBELOTE 'Do it again'}

NPASS, KWRIT, K[.n], NPASS : Number of runs ; KWRIT = 1.1 (resp. 0.0) switches [IOPT],
[, Label1 [, Label2]]
arbitrary ; 0-1; \(\quad 3 * \mathrm{I}\) (inhibits) FORTRAN WRITEs to .res and to screen ; \(K\) option : 0, 99 ; [1[.any]] 2A10
\(K=0\) : initial conditions (coordinates and spins)
are generated following the regular functioning
of [MC]OBJET. If random generators are used (e.g. in MCOBJET) their seeds will not be reset. \(K=99\) : coordinates at end of previous pass are used as initial coordinates for the next pass ; idem for spin components.
\(K=99.1\) : Label1 is expected, subsequent passes will start from element with Label1 down to REBELOTE and so forth ; \(K=99.2\) : Label1 and Label2 are expected ; last pass (\# NPASS+1) will end at element with Label2 whereupon execution will jump to the keyword next to REBELOTE and will be carried out down to 'END'. IOPT is optional :
\(I O P T=1\) : will change the value of NPRM different parameters in one or more of optical elements, using the data list in the next line.

\section*{If \(\mathrm{IOPT}=\mathbf{1}^{1}\)}

\section*{NPRM Number of parameters to be changed at each of the NPASS passes.}

NPRM lines with the following sequence (tells parameters concerned, and for each, its successive values) :
LMNT, KPRM, values
LMNT : two possibilities, (i) keyword number in zgoubi.dat \(\quad-,-, \mathrm{NV}^{*} \mathrm{dim}^{2}\) \(2 * \mathrm{I}, \mathrm{NV} * \mathrm{E}\) sequence ; (ii) KEYWORD[, LABEL], i.e., keyword concerned followed optionnally by is label ;
KPRM : parameter number under that keyword (similar nomenclature to FIT[2], see page 232) ;
'values' are the new parameter values. It can take two forms :
- either an explicit list of NPASS values
- or, first_value:last_value (interval will be (first_value - first_value)(npass-1))

\footnotetext{
\(1 I O P T=1\) is compatible with use of the FIT[2] procedure : e.g., allows successive FITs in a single zgoubi run, with successive sets of optical parameter values.
\({ }^{2} V\) is in current zgoubi units in the case of particle coordinates ( \(\mathrm{cm}, \mathrm{mrad}\) ). It is in MKSA units ( m , rad) in the case of matrix coefficients.
}
- Using REBELOTE : An example.

In this example of an energy-recovery electron recirculator based on FFAG arcs, the arguments in the keyword AUTOREF and CAVITE are changed 20 times by REBELOTE, over the 21-pass recirculation process [70]. The role of AUTOREF is to mimic a spreader-recombiner, i.e., re-centering the beam on the design FFAG orbit at the start of each one of the 11 accelerated and 10 decelerated ring turns. The RF voltage in CAVITE is set positive (accelerating, from 7.944 GeV to 21.16 GeV ) during the first 11 passes through the optical structure, and negative (decerating, from 21.16 to 7.944 GeV ) over the remaining 10 passes. The voltage value at each pass is adjusted (for an energy of 1.322 GeV per turn on average) so to compensate the energy lost by synchrotron radiation in the arcs.
```

eRhIC ENERGY RECOVERY LINAC RECIRCULATOR WITH FFAG ARCS.
M ERHIC ENERGY
57.36635309d3
reference rigidity (kG.cm)
l
2000
222211
O. 1 0.
0.1 l 0. 3
123456 234567 345678
'PARTICUL'
'PARTICUL'
',SPNTRK'
', 'SANTRCEAU'
, SRLOSS'
1 srLoss
M Srloss
1, 123456
'SCALING'
1 1 MULTIPOL
-1
57.36635309 57.36635309
'OPTIONS'
ll
WRITE OFF (
M'MARKER'
M'DRIFT'
'MULTIPOL' RBEN BD2
0..Dip
0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.
4.1455
4.1455 2.2670 -.6395 1.1558 0.0. 0.
0.0.0. 0. 0. 0. 0. 0. 0. 0.
\#30|90|30 Dip BD2
3 0.0E+00 4.0704703E-01 -1.5071892929E-03
'DRIFT' DRIF D
29.094362


```
l SCALING'
OO
BD2
. 0.
0. 10. 0. -0.87159105 0. 0. 0. 0. 0. 0. 0.
```

```12
12
```

```
0.MULTIPOL' RBEN QF2
0..Dip 10. 0. 0.86286642 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0. 0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.
4 . 1455 2.2670 -.6395 1.1558 0.0. 0.
0.0. 10.00 4.0 0.800 0.00 0.00 0.00 0.00 0. 0. 0. 0.
4 .1455 2.2670
#.0.0.0.0.0.0.0.0. 0.
#30|110|30 Dip QF2
```



```
'DRIFT' DRIF HD L
14.547181 MARKER' MARK CELLEND
6*138-1 additional such FD cells, simulating a 6 arc
energy recovery ring, 138 cells per arc.
```



```
',MARTIONS'
,OPTIONS'
l l 1 
WRITE ON
'FAISTORE'
1, FAISCEAU'
'CAVITE'
3
0}
0.0
4 . 1
4.1 -5.168354E-01 4.169759E+00 5.38813280E-01
0. -5.168354
'REBELOTE'
20
AUTOREF 11 -4.7493E-01 -4.1290E-01 -3.3292E-01 -2.3684E-01
AUTOREF 11 -4.7493E-01 -4.1290E-01 -3.3292E-01 -2.3684E
```



```
AUTOREF 12 
```



```
AUTOREF 13.615682680 .692552080 .769421480 .84629088
.923160280 1.00002970 ... (a list of 20 values)
```



```
'SRPRNT'
    26
\(\begin{array}{lllrr}\text { CAVITE } 20 & 1.337399 e 9 & 1.33934 \mathrm{e} 9 & 1.34012 \mathrm{e} 9 & 1.34018 \mathrm{e} 9 \\ \cdots & \text { (15 more voltage values) } & \cdots & -1.30660 \mathrm{e} 9 & -1.309577 \mathrm{e} 9 \\ \cdots & \end{array}\) 'SRPRNT'
'END'
```

正

- Combining REBELOTE and FIT : An example is given page 234.

Resets counters involved in CHAMBR, COLLIMA, HISTO and INTEG procedures.

Switches off CHAMBR, MCDESINT, SCALING and SPNTRK options.

SCALING	Power supplies and R.F. function generator		
IOPT, NFAM [, PRINT]	$I O P T=0$ (inactive) or 1 (active) ; NFAM = number of families to be scaled. Occurence of PRINT will cause printing of scaling infos in zgoubi.SCALING.out.	0-1, 1-45 [,-]	I1, I2 [,A]
For NF=1, NFAM :	repeat NFAM times the following sequence :		
NAMEF [, Lbl [, Lbl]]	Name of family (i.e., keyword of concern) ; up to 2 labels, wild card accepted, in the form '*myLabel' or 'myLabel*'.		$\begin{aligned} & \mathrm{A} 10 \text { [,A10[} \\ & \text {,A10]] } \end{aligned}$
$N T$	$\begin{aligned} & N T>0: \text { number of timings; } \\ & N T=-1: \text { field scaling factor updated by CAVITE; } \\ & N T=-2: \text { RF law in CAVITE is read from external data file. } \end{aligned}$	-2, -1 or $1-10$	I
$S C L(I), I=1, N T$	Scaling values, and in particular : a single value if $N T=-1$; unused if $N T=-2$: if $N T=1$ then $S C L(I)=S C L(1)$ whatever the pass number.	relative	NT*E
$T I M(I), I=1, N T$	Corresponding timings, in units of turns (1 if $N T=-1$; unused if $N T=-2$).	turn number	NT* ${ }^{\text {I }}$

SEPARA ${ }^{1} \quad$ Wien Filter - analytical simulation

$I A, X L, E, B$,
$I A=0$: element inactive
$0-2, \mathrm{~m}$,
I, $3 *$ E
$I A=1$: horizontal separation
V/m, T
$I A=2$: vertical separation;
Length of the separator ; electric field ; magnetic field.

Horizontal separation between a wanted particle, (W), and an unwanted particle, (U). (W) undergoes a linear motion while (U) undergoes a cycloidal motion.

[^3]
Sharp edge magnetic multipole

$\left.B_{Z}\right|_{Z=0}=B_{0}\left(\frac{N}{R_{0}} Y+\frac{B}{R_{0}^{2}} Y^{2}+\frac{G}{R_{0}^{3}} Y^{3}\right)$

IL	$I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	$0-2\left[\times 10^{n}\right], 7$	I
XL, R_{0}, B_{0}	Length of the element ; normalization distance ; field	$2 * \mathrm{~cm}, \mathrm{kG}$	3*E
$N, E B 1, E B 2, E G 1, E G 2$	Coefficients for the calculation of B. if $Y>0: B=E B 1$ and $G=E G 1$; if $Y<0: B=E B 2$ and $G=E G 2$.	$5 *$ no dim.	$5 * \mathrm{E}$

SEXTUPOL

IL
$X L, R_{0}, B_{0}$
X_{E}, λ_{E}
$N C E, C_{0}-C_{5}$
X_{S}, λ_{S}
$N C S, C_{0}-C_{5}$
XPAS

KPOS, XCE, YCE, ALE

Sextupole Magnet

$I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length ; radius and field at pole tip of the element

Entrance face :

Integration zone ; fringe field $2 * \mathrm{~cm}$
extent ($\lambda_{E}=0$ for sharp edge)

NCE = unused
any, 6^{*}
I, 6*E
$C_{0}-C_{5}=$ Fringe field coefficients such that
$G(s)=G_{0} /(1+\exp P(s))$, with $G_{0}=B_{0} / R_{0}^{2}$
and $P(s)=\sum_{i=0}^{5} C_{i}(s / \lambda)^{i}$

Exit face :

Parameters for the exit fringe field ; see entrance

Integration step
$1-2,2^{*} \mathrm{~cm}, \mathrm{rad}$
I, $3 * E$

Sextupole magnet

SOLENOID

IL
$X L, R_{0}, B_{0}[, M O D L]$
X_{E}, X_{S}
XPAS
KPOS, XCE, YCE, ALE

Solenoid

$I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step,
$0-2\left[\times 10^{n}\right], 7$
I in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length ; radius ; asymptotic field $\left(=\mu_{0} N I / X L\right) ; M O D L=1$: default, $2 * \mathrm{~cm}, \mathrm{kG}$ [, no dim.] $3 * \mathrm{E}$ r-extrapolation from on-axis field model, $M O D L=2$: elliptic integrals method

Entrance and exit integration zones
Integration step
$K P O S=1$: element aligned, 2 : misaligned; shifts, tilt.
$2 * \mathrm{~cm}$
cm
$1-2,2 * \mathrm{~cm}, \mathrm{rad}$

SPACECHARG

LMNT, model [, PRINT]
λ
$L M N T=$ 'all', 'none',
[optional : print out to
Linear charge density
-, - [,-]
$2 * \mathrm{~A}[, \mathrm{~A}]$
Space charge
LMNT = all', 'none', or keyword ; model : 'KV', '
[optional : print out to zgoubi.SPACECHARG.out].
C / m
E

SPINR

IOPT

If $\mathbf{I O P T}=\mathbf{0}$
X, X

If $\mathbf{I O P T}=1$
ϕ, μ

If $\mathbf{I O P T}=\mathbf{2}$
ϕ, B, B_{0},
$C_{0}, C_{1}, C_{2}, C_{3}$

Spin rotation

Option
0-2

Element inactive
Unused
$2 *$ unused
$2 * \mathrm{E}$

Axis and spin precession angle values.
Angle (in (X, Y) plane) between the X -axis and the spin precession \quad deg, deg $\quad 2 * \mathrm{E}$ axis; spin precession angle around that axis.

Given the spin precession axis direction, ϕ, in the horizontal plane, the spin precession angle follows a function of the Lorentz factor : $\mu(\gamma)=\left(\frac{B}{B_{0}}\right)^{2} \times\left(C_{0}+\frac{C_{1}}{\gamma}+\frac{C_{2}}{\gamma^{2}}+\frac{C_{3}}{\gamma^{3}}\right)$

Angle (in (X, Y) plane) between the X -axis and the spin
deg.; 6*no dim
7*E precession axis; six coefficients that define the spin precession around that axis.

SPNSTORE

FNAME ${ }^{1}$
[,LABEL(s)] ${ }^{2}$

IP

Store spin coordinates every $I P$ other pass

Name of storage file (e.g., zgoubi.spn) [; label(s) of the element(s)
at the exit of which the store occurs (10 labels maximum)].
Store every IP other pass (when using REBELOTE I

SPNPRT [,PRINT]
[,MATRIX]

Print spin coordinates, compute spin matrix

Print spin coordinates in zgoubi.res, at the location where this keyword is introduced in the structure.
A label 'PRINT' is optional, if it appears, then local data are stored in the file zgoubi.SPNPRT.Out. That file is opened at the first occurence of SPNPRT and left open until zgoubi execution is completed.
A label 'MATRIX' is optional, if it appears, then computation of spin rotation matrix is performed. This however assumes appropriate trajectory and spin sampling (see Sec. 5.5.10, p. 175).

[^4]
SPNTRK ${ }^{1}$

KSO [.KSO2]

If $\mathrm{KSO}=\mathbf{1 - 3}$

If $\mathrm{KSO}=4$
S_{X}, S_{Y}, S_{Z}
If $\mathrm{KSO}=4.1$

Spin tracking

$K S O=0$: spin tracking [switched] off ${ }^{2} ; K S O=-1$: spin tracking resumes. Otherwise : as stated below.
-1 or 0 or
I
$1-3$ Or 4[.1] or 5
$K S O=1$ (respectively 2,3) : all particles have their spin automatically set to $(1,0,0)$, longitudinal (respectively $(0,1,0)$, horizontal and ($0,0,1$), vertical)

Repeat IMAX times (corresponding to the IMAX particles in 'OBJET') the following sequence :
X, Y and Z initial components of the initial spin.
X, Y and Z components of the initial spins.
$3 *$ no dim.
These will be assigned to all particles.
File name (under development)
Random distribution in a cone (see figure)
Enter the following two sequences :
Angles of average polarization direction.
$2 * \mathrm{rad}$
$A=$ angle of the cone around $(T O, P O) ; \delta A=$ standard deviation of distribution around A
Random sequence seed
$2 * \mathrm{rad}$
2*E

Option $K S O=5$: spins are distributed at random within an annular strip with standard deviation δA, centered at an angle A with respect to the axis of mean polarization (\vec{S}) defined by T_{0} and P_{0}.
${ }^{2}$ Spin tracking can be switched off at any location in zgoubi.dat data list using $K S O=0$, and further away resumed using $K S O=-1$.
${ }^{3}$ FNAME contains the spin components. Formatting should be has follows :
TXT, SXI, SYI, SZI, SMI,SX, SY, SZ, SM
with TXT a (arbitrary) 3-character string, SXI, SYI, SZI, SMI the initial spin components and their modulus (unused), SX, SY, SZ, SM the current spin components (these will be tracked further) and their modulus(unused).

SRLOSS Synchrotron radiation energy loss

KSR[.i] [,KSOK]	On/off switch ; $i=1$ for info output into zgoubi. SRLOSS. Out ; $\quad 0$ or $1[.1]$ Sokolov-Ternov effect switch, optional ($1 / 0$ for on/off, default is off).	I[.I], I
STR1[\{lblst $\}$] [, STR2 [,List]]	Apply SR loss to STR1 = 'ALL' or 'all' or a particular KEYWORD ; $\{l b l s t\}=\{l b 11, \mid b l 2, \ldots, l b l 5\}:$ a list of up to 5 labels to which this applies. Optional : STR2 = 'scale' will scale fields following energy loss ; List : a list of up to 10 keywords to which this scaling applies.	$\begin{aligned} & \mathrm{A}[1-5 \mathrm{~A}] \\ & {[, \mathrm{A}][, 1-10 \mathrm{~A}]} \end{aligned}$
Option, seed	Option $=0$ or $1:$ SR causes dp only ; $1-3,>10^{5}$ option $=2:$ SR causes dp and angle kick (under development).	$2 *$ I

SYNRAD	Synchrotron radiation spectral-angular densities		
$K S R$	Switch	$0-2$	
	$0:$ inhibit SR calculations		
	$1:$ start		
	$2:$ stop		

If $\mathrm{KSR}=\mathbf{0}$

$D 1, D 2, D 3$
Dummies

If $\mathrm{KSR}=\mathbf{1}$

If $\mathrm{KSR}=\mathbf{2}$

ν_{1}, ν_{2}, N

Frequency range and sampling
$2 * \mathrm{eV}$, no dim. $\quad 2 * \mathrm{E}, \mathrm{I}$
SYSTEM System call
NCMD The number of calls to follow. ≥ 0 I

NCMD lines follow, one command per line.

- SYSTEM : An example (an additional example can be found page 234)

The first occurence of the command (top region in the data list below) allows establishing links from remote folders to the current one (the one in which zgoubi is presently run). These folders happen to contain files appearing in the SCALING command, as well as OPERA field maps of the siberian snakes used in subsequent TOSCA commands.

The second occurence of the command (bottom region in the data list below) allows saving zgoubi.res output file as resulting from the zgoubi run, under a different name.

```
AGS, polarized protons. 2 snakes. t = 145 ms.
AGS, polariz
,OBJET' LBL_OBJfit
7069.3668040036146
. }01\mathrm{ . 01 . 01 . 01 0. . .0001
0. 0. 0. 0. 0. 1. '0'
',FAISCEAU'
'SYST
ln -sf/rap/lattice_tools/zgoubi/AgsZgoubiModel/snakeFieldMaps/TOSC3D/Csnk3D
In -sf/rap/lattice_tools/zgoubi/AgsZgoubiModel/snakeFieldMaps/TOSC3D/Wsnk3D.
'SCALING' LBL_SCLfit
1 21
AGSMM *AF *BF *CF !# of params 2Bchanged. dB0 (FIT#3) dB1 (FIT#4) dB2
-1.00000000 ! (FIT #6) lllllllll
1
AGSMM *AD *BD *CD !# of params 2Bchanged. dB0 (FIT#9) dB1 (FIT#10) dB2
-1 
1.000000 ! (FIT#12)
AGSQUAD QH_* !# of params 2Bchanged. }\begin{array}{ll}{15}&{\begin{array}{l}{\mathrm{ (FIT#15)}}\\{-1}\end{array})}\\{0.0}
1.000000
MGSQUAD QV_* QP_* (# ) \# params 2Bchanged. 
1.000000
MULTIPOL QJUMP_*
-1.06936680E+00
MULTIPOL SXH_*
-1
7.06936680E+00
MULTIPOL SXV_*
-1
7.06936680E+00
AGSMM MM_F08CD MM_F09BF MM_G02BF MM_G03CD MM_G16AD MM_G17CF ! blw1/Gg bump
-1 1 22 -.0762e-99 ! Amp. (FIT #31)
1.0
AGSMM MM_H04CD MM_H05AF MM_H18CF MM_H19BD MM_I12BD MM_I13CF ! blw1 / H11 bump
-1 1 22 -.06093e-99 ! Amp. (FIT #35)
1.0
mUltipol coh1
1.10
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCoRR.scal
144
MUlTIPOL Cov1
./Csnk3D/H1x68.2_Sol42.3/CHREF_+_dipolCORR.scal
1 5
MULTIPOL COH2
1.10
./Csnk3D/H1\times68.2_Sol42.3/CHREF_+_dipolCORR.scal
1 6
MULTIPOL COV2
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCORR.scal
MULTIPOL WOH1
1.10
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCORR.scal_51.8_0.0
14
multIPOL WOV1
1.10
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCORR.scal_51.8_0.0
1 MULTIPOL WOH2
1.10
1.10
./Csnk3D/H1x68
1.10
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCORR.scal_51.8_0.0
ChANGREF WSNKE
1.12
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCoRR.scal_51.8_0.0
1 1 1 3
CHANGREF WSNKo
1.12
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCoRR.scal_51.8_0.0
11 1 12
CHANGREF CSNKE
1.12
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCORR.scal
11 1 1 3
CHANGREF CSNKO
1.12
./Csnk3D/Hlx68.2_Sol42.3/CHREF_+_dipolCoRR.scal
11 12
```


TOSCA

2-D and 3-D Cartesian or cylindrical mesh field map (page 153 in PART A)

$I C, I L$	$I C=1,2:$ print the map $I L=1,2\left[\times 10^{n}\right], 7:$ print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).	0-2; 0-2[×10 $\left.{ }^{n}\right], 7$	$2 * \mathrm{I}$
BNORM, $\mathrm{XN}, \mathrm{YN}, \mathrm{ZN}$	Field and X-,Y-,Z-coordinate normalization coefficients. Convert values as read from map file, to kG and cm or rad.	4*UnitConv.	4*E
TITL	Title. Include "FLIP" to get field map X-flipped. Include "HEADER n" if FNAME starts with $n \geq 1$ header lines. Include "ZroBXY" to force $B_{X}=B_{Y}=0$ at all $\mathrm{Z}=0$ (only applies for $M O D=15$ and $M O D=24$). Include "RHIC_helix" to normalize BNORM to measured value (B versus helix current, in program toscac.f).		A80
$\begin{aligned} & I X, I Y, I Z,{ }^{1} \\ & M O D[. M O D 2[, \mathrm{a}(\mathrm{i}), \mathrm{i}= \\ & \text { 1,MOD2]] } \end{aligned}$	Number of nodes of the mesh in the X, Y and Z directions, $I Z=1$ for a 2-D map ; $M O D$ and MOD2 : field map style, see table next page.	$\begin{aligned} & \leq M X X, \leq M X Y, \\ & \leq I Z,[0-22.1-9],- \end{aligned}$	$\begin{aligned} & 3 * \mathrm{I}, \mathrm{I}[. \mathrm{I} \\ & {[, \text { MOD2*E] }} \end{aligned}$
Next NF lines FNAME ${ }^{3}$	Map file name(s), one line per name. If $M O D=0: N F=1+[I Z / 2]$, the $N F 2$-D maps are for $0 \leq Z \leq$ they are symmetrized with respect to the $Z(1)=0$ plane. If $M O D=1: N F=I Z$, no symmetry assumed ; $Z(1)=Z_{\text {max }}$, $Z(1+[I Z / 2])=0$ and $Z(N F)=-Z_{\max }$. If $M O D=12$: a single FNAME file contains the all 3-D volume. $M O D=15,20-22$, etc. : see table next page.	$Z_{\max }$	A80
$\begin{aligned} & I D, A, B, C\left[, A^{\prime}, B^{\prime}, C^{\prime}\right. \\ & \left.A^{\prime \prime} \text {, etc., if } I D \geq 2\right] \end{aligned}$	Integration boundary. Ineffective when $I D=0$. $I D=-1,1$ or $\geq 2:$ as for CARTEMES	$\begin{aligned} & \geq-1, \mathrm{~cm}, \\ & 2 * \text { no dim. [,idem }] \end{aligned}$	$\begin{aligned} & \mathrm{I}, 3 * \mathrm{E} \\ & {[, 3 * \mathrm{E}, \mathrm{etc} .]} \end{aligned}$
IORDRE	If $I Z=1: 2,25$ or 4 as in CARTEMES ; unused if $I Z \neq 1$.	2, 25 or 4	I
XPAS	Integration step	cm	E
If Cartesian mesh (see MOD) :			
KPOS, XCE, YCE, ALE If polar mesh :	$K P O S=1$: element aligned, 2 : misaligned; shifts, tilt	$1-2,2 * \mathrm{~cm}, \mathrm{rad}$	I, 3 *E
KPOS If $\mathrm{KPOS}=\mathbf{2}$:	as for POLARMES. Normally 2.	1-2	I
$R E, T E, R S, T S$		cm, rad, cm, rad	4*E

$R E, T E, R S, T S \quad \mathrm{~cm}, \mathrm{rad}, \mathrm{cm}, \mathrm{rad} \quad 4 * \mathrm{E}$

[^5]=NL+
ENDDO

```
\({ }^{3}\) For binary files, FNAME must begin with 'B_' or 'b_'.
}

\section*{- The various IZ, MOD and MOD2 possibilities, when using TOSCA.}

IZ : number of nodes of the complete field map along the Z direction ( \(\mathrm{IZ}=1\) for 2D)
MOD, MOD2 : determine the coordinate system, symmetries, reading format and column sequence, etc.
NF : number of field map input data files to be declared. Always include mid-plane map.
Expected columns : formatting of the coordinates and field data columns in the field map data file(s)
'Exemple' example folder : examples of zgoubi runs using field maps can be found in the subfolders of zgoubi-code/exemples/KEYWORDS/TOSCA/cartesian (case MOD \(\leq 19\) ) or
zgoubi-code/exemples/KEYWORDS/TOSCA/cylindrical (case MOD \(\geq 20\) ). The rightmost column below indicates the subfolder of concern, following (IZ, MOD, MOD2) options.

\section*{MOD \(\leq 19\) : Cartesian mesh}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline IZ & MOD & .MOD2 & & NF & Expected columns & Example folder \\
\hline 1 & 0,1 & none or
\[
.1, .2, .3
\] & 2-D map. File contains \(\left.B_{Z}(X, Y)\right|_{Z=0}\), mid-plane antisymmetry assumed. Several different reading formats (see fmapw.f/fmapr3). & 1 & Y, Z, X, BY, BZ, BX & IZ-MOD-.MOD2_1-0-none/ (GSI KAOS spectrometer) \\
\hline 1 & 3 & none or . 1 & 2-D map. Used for AGS main magnet. If MOD2=1, \(B_{Z}(X, Y, Z=0)\) field is perturbed by \(\left(1+n_{1} Y+n_{2} Y^{2}+n_{3} Y^{3}\right)\) factor. & 1 & Special - see example & AGS/usingMainMagnetsMaps (AGS with main magnet maps) \\
\hline 1 & 15 & . \(1-.4\) & 2-D map. Up to 4 files to be combined linearly into a new map : field at all node of new map is \(\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}\). Mid-plane antisymmetry is assumed : each file has to contain \(B_{Z}(X, Y, Z=0)\). & \(1-4\) & Y, Z, X, BY, BZ, BX & IZ-MOD-.MOD2_1-15-.1-. 4 (EMMA FFAG cell) \\
\hline \(>1\) & 0 & none & 3-D map. Files span upper half of magnet, one per \(\left.(\mathrm{X}, \mathrm{Y})\right|_{0 \leq Z \leq Z_{\text {max }}}\) plane including median plane, mid-plane antisymmetry assumed. & 1+IZ/2 & Y, Z, X, BY, BZ, BX & IZ-MOD-.MOD2_gt1-0-none/ (GSI KAOS spectrometer) \\
\hline \[
\begin{aligned}
& 2 \mathrm{p}+1 \\
& p \geq 1
\end{aligned}
\] & 1 & none & 3-D map. Files span full magnet volume, one file per (X,Y) plane, no symmetry assumed. & IZ & Y, Z, X, BY, BZ, BX & \begin{tabular}{l}
IZ-MOD-.MOD2_gt1-1-none/ \\
(AGS warm helix snake)
\end{tabular} \\
\hline \(>1\) & 12 & none & 3-D map. Single file, upper half of magnet, mid-plane antisymmetry assumed. & 1 & & \\
\hline \(>1\) & 12 & . 1 & 3-D map. Single file, whole magnet volume, no symmetry assumed. & 1 & Y, Z, X, BY, BZ, BX & \begin{tabular}{l}
IZ-MOD-.MOD2_gt1-12-.1/ \\
(AGS warm helix snake)
\end{tabular} \\
\hline \(>1\) & 12 & . 2 & 3-D map. Single file, \(1 / 8\) th of the magnet, symmetry wrt. \((X, Y)_{Z=0},(X, Z)_{Y=0},(Y, Z)_{X=0}\) planes. & 1 & & \\
\hline \[
\begin{aligned}
& 2 \mathrm{p}+1 \\
& p \geq 1
\end{aligned}
\] & 15 & . \(1-.4\) & 3-D map. Up to 4 files to be combined linearly into a new map, field at all node of new map is \(\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}\). Each file has to contain \(B_{X, Y, Z}(X, Y, Z)\) data over \(I Z\) equally \(Z\)-spaced \((X, Y)\) planes (no symmetry assumed). & \(1-4\) & & \\
\hline \[
\begin{aligned}
& 2 \mathrm{p}+1 \\
& p \geq 1
\end{aligned}
\] & 16 & . \(1-.4\) & 3-D map. Fields from up to 4 maps to be combined linearly into a new field value at particle location, \(\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}\). Each file has to contain \(B_{X, Y, Z}(X, Y, Z)\) data over IZ equally \(Z\)-spaced \((X, Y)\) planes. & \(1-4\) & UNDER DEVELOPMENT & \\
\hline
\end{tabular}
\begin{tabular}{ccc} 
MOD \(\geq \mathbf{2 0} \boldsymbol{:}\) Cylindrical mesh \\
\hline IZ & MOD & .MOD2 \\
1 & 25 & \(.1-.4\)
\end{tabular}

2-D map. Up to 4 files to be combined linearly into a new map : at all node of new map
\(1-4 \quad \mathrm{Y}, \mathrm{Z}, \mathrm{X}, \mathrm{BY}, \mathrm{BZ}, \mathrm{BX}\)
IZ-MOD-.MOD2_1-15-.1-. 4 \(\vec{B}=\sum_{i=1}^{i=1} M O D 2 a_{i} \vec{B}_{i}\). Each file contains mid-plane \(B_{Z}(X, Y, Z=0)\) data, mid-plane antisymmetry is assumed.
\(>1\) 20, 21 3-D map. Single file. \(\mathrm{MOD}=20: 1 / 4\) magnet, cylindrical symmetry with respect to \((\mathrm{Y}, \mathrm{Z})\) plane and antisymmetry wrt ( \(\mathrm{X}, \mathrm{Y}\) ) plane. \(\mathrm{MOD}=21\) : another type of symmetry (to be documented - see fmapw.f).
\(2 \mathrm{p}+1 \quad 22,23 \quad .1-.4\)

2D or 3-D map. Mid-plane antisymmetry assumed. Up to 4 files can be combined linearly into a
BY, BZ, BX new one, \(Z \geq 0\) half-magnet volume each : field at all node of new map is \(\vec{B}=\sum_{i=1}^{i=M O D 2} a_{i} \vec{B}_{i}\). Each file has to contain \(B_{X, Y, Z}(X, Y, Z)\) data over \(I Z\) equally \(Z\)-spaced \((X, Y)\) planes. MOD \(=23\) : special, test code (see fmapw.f).
3-D map, full volume. No symmetry assumed.
\[
1-4 \quad \mathrm{Y}(r, \theta), \mathrm{Z}, \mathrm{X}(r, \theta),
\]
\(1 \mathrm{Y}(r, \theta), \mathrm{Z}, \mathrm{X}(r, \theta)\),
IZ-MOD-.MOD2_gt1-20 BY, BZ, BX
(KEK 150 MeV FFAG)

\section*{TRANSMAT}

\section*{IORDRE}

XL
For \(I A=1,6:\)

If \(\operatorname{IORDRE}=\mathbf{2}\)
\(T(I A, I B, I C)\),
\(R(I A, I B), I B=1,6 \quad\) First order matrix \(\quad \mathrm{m}, \mathrm{rad} \quad 6\) lines

Following records only if \(\operatorname{IORDRE}=2\)
Second order matrix, six \(6 * 6\) blocks
1-2
m
Length (ineffective, for updating)

6*E each

36 lines
6*E each
\begin{tabular}{ll}
\(T X, T Y, T Z\), & Translations, rotations \\
\(R X, R Y, R Z\) &
\end{tabular} \(3 * \mathrm{~m}, 3 * \mathrm{rad} \quad 6 * \mathrm{E}\)

\section*{TWISS}

KTW[.KTW2], FacD, FacA [, coupled]

\section*{Calculation of periodic optical parameters. Log to zgoubi.TWISS.out}
\(K T W=0 / 1 / 2 / 3:\) Off \(/\) as MATRIX / add computation of chromaticities / add computation of anharmonicities. \(K T W 2\) : default is initial computation of closed orbit coordinates, \(K T W 2=1\) will avoid that.
\(\mathrm{FacD} \times \mathrm{D}=\delta \mathrm{p} / \mathrm{p}\) value applied, with \(D\) the momentum sampling in OBJET ; FacA : unused.
"coupled", in the periodic case, will cause use of coupled formalism.

I1[.I1], \(2 * \mathrm{E}\)
- Example
```

'OBJET'
20015.55 ! 6 GeV electrons.
5 ~ ! ~ W i l l ~ g e n e r a t e ~ 1 1 ~ p a r t i c l e s .
.001 .001 .001 .001 0. .0001 ! Coordinate sampling for matrix computation : $delta_Y,
0.0.0.0.0.1. ! delta_T, delta_Z, delta_P, delta_S (unused), delta_D$.
zgoubi.dat optics list in between
. .
'TWISS'
2 1. 1. ! KTW = 3, FacD = 1
'END'

```
"KTW=3" under TWISS will cause 3 successive executions of zgoubi. dat and will result in delivery (print out to zgoubi.res) of - the on-momentum matrix of the optical structure, - off-momentum matrices at \(\frac{d p}{p}= \pm F a c D * \delta D\),
- the Twiss parameters in the hypothesis of a stable periodic structure,
- the momentum compaction, chromaticities, etc.

Under development, to be documented

\section*{UNIPOT}

IL
\(X_{1}, D, X_{2}, X_{3}, R_{0}\)
\(V_{1}, V_{2}\)

XPAS
KPOS, XCE, YCE, ALE

\section*{Unipotential electrostatic lens}
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length of first tube ; distance between \(5 * \mathrm{~m}\) tubes; length of second and third tubes ; radius

Potentials
Integration step
\(K P O S=1\) : element aligned, 2 : misaligned ; shifts, tilt.
\(2 * \mathrm{~V}\) \(2 * E\)
\(0-2\left[\times 10^{n}\right], 7\)
I
cm
\(1-2,2 * \mathrm{~cm}, \mathrm{rad}\)
E
I, \(3^{*}\) E

\section*{VENUS}

Simulation of a rectangular dipole magnet
\begin{tabular}{|c|c|c|c|}
\hline IL & \(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7). & \(0-2\left[\times 10^{n}\right], 7\) & I \\
\hline \(X L, Y L, B_{0}\) & Length ; width \(= \pm Y L\); field & \(2 * \mathrm{~cm}, \mathrm{kG}\) & 3*E \\
\hline XPAS & Integration step & cm & E \\
\hline KPOS, XCE, YCE, ALE & \(K P O S=1\) : element aligned, 2 : misaligned ; shifts, tilt. & \(1-2,2 * \mathrm{~cm}, \mathrm{rad}\) & I, 3 * \\
\hline
\end{tabular}


Scheme of VENUS rectangular dipole.

\section*{WIENFILT \({ }^{1}\)}

IL
\(X L, E, B, H V\)
\(X_{\mathrm{E}}, \lambda_{E_{E}}, \lambda_{B_{E}}\)
\(C_{E 0}-C_{E 5}\)
\(C_{B 0}-C_{B 5}\)
\(X_{S}, \lambda_{E_{S}}, \lambda_{B_{S}}\)
\(C_{E 0}-C_{E 5}\)
\(C_{B 0}-C_{B 5}\)
XPAS

KPOS, XCE, YCE, ALE

\section*{Wien filter}
\(I L=1,2\left[\times 10^{n}\right], 7:\) print coordinates, fields, etc., step-by-step, in zgoubi.res (1), zgoubi.plt (2), zgoubi.impdev.out (7).

Length ; electric field ; magnetic field ;
option : element inactive \((H V=0)\) horizontal \((H V=1)\) or vertical \((H V=2)\) separation

\section*{Entrance face :}

Integration zone extent ; fringe field \(3 * \mathrm{~cm}\) extents, E and B respectively ( \(\simeq\) gap height)

Fringe field coefficients for \(E\)
Fringe field coefficients for \(B\)

\section*{Exit face :}

See entrance face
\(K P O S=1\) : element aligned, 2 : misaligned ; shifts, tilt.
\(\mathrm{m}, \mathrm{V} / \mathrm{m}, \mathrm{T}\),
3*E, I
0-2 3*E
\(3 * \mathrm{~cm}\)
3*E
6*no dim. \(\quad 6 * \mathrm{E}\)
\(6 *\) no dim.
6*E
cm
E
\(0-2\left[\times 10^{n}\right], 7\)
I
\(\begin{array}{ll}\text { 6* no dim. } & 6 * \mathrm{E} \\ \text { 6* } & \text { no dim. }\end{array} \quad 6 * \mathrm{E}\)
\(1-2,2 * \mathrm{~cm}, \mathrm{rad}\)
I, \(3^{*} \mathrm{E}\)

\footnotetext{
\({ }^{1}\) Use PARTICUL to declare mass and charge.
}

\section*{YMY}

\section*{Reverse signs of \(Y\) and \(Z\) axes}

Equivalent to a \(180^{\circ}\) rotation with respect to \(X\)-axis


The use of \(Y M Y\) in a sequence of two dipoles of opposite signs.

\section*{PART C}

\section*{Examples of input data files and output result files}

\section*{INTRODUCTION}

Several examples of the use of zgoubi are given here. They show the contents of the input and output data files, and are also intended to help understanding some subtleties of the data definition.

Example 1: checks the resolution of the QDD spectrometer SPES 2 of SATURNE Laboratory [62], by means of a Monte Carlo initial object and an analysis of images at the focal plane with histograms. The measured field maps of the spectrometer are used for that purpose. The layout of SPES 2 is given in Fig. 48.

Example 2: calculates the first and second order transfer matrices of an \(800 \mathrm{MeV} / \mathrm{c}\) kaon beam line [63] at each of its four foci: at the end of the first separation stage (vertical focus), at the intermediate momentum slit (horizontal focus), at the end of the second separation stage (vertical focus), and at the end of the line (double focusing). The first bending is represented by its 3-D map previously calculated with the TOSCA magnet code. The second bending is simulated with DIPOLE. The layout of the line is given in Fig. 49.

Example 3: illustrates the use of MCDESINT and REBELOTE with a simulation of the in-flight decay
\[
K \longrightarrow \mu+\nu
\]
in the SATURNE Laboratory spectrometer SPES 3 [34]. The angular acceptance of SPES 3 is \(\pm 50 \mathrm{mrd}\) horizontally and \(\pm 50 \mathrm{mrd}\) vertically; its momentum acceptance is \(\pm 40 \%\). The bending magnet is simulated with DIPOLE. The layout of SPES 3 is given in Fig. 50.

Example 4: illustrates the operation of the fitting procedure: a quadrupole triplet is tuned from \(-0.7 / 0.3 \mathrm{~T}\) to field values leading to transfer coefficients R12=16.6 and R34=-. 88 at the end of the beam line. Other example can be found in [64].

Example 5: shows the use of the spin and multi-turn tracking procedures, applied to the case of the SATURNE 3 GeV synchrotron [7, 10, 65]. Protons with initial vertical spin \(\left(\vec{S} \equiv \vec{S}_{Z}\right)\) are accelerated through the \(\gamma G=7-\nu_{Z}\) depolarizing resonance. For easier understanding, some results are summarized in Figs. 52, 53 (obtained with the graphic post-processor zpop, see Part D).

Example 6: shows ray-tracing through a micro-beam line that involves magneto-electrostatic quadrupoles for the suppression of second order (chromatic) aberrations [6]. The extremely small beam spot sizes involved (less than 1 micrometer) reveal the high accuracy of the ray-tracing (Figs. 54).

Many more examples can be found on the zgoubi development web site [5].

\section*{1 MONTE CARLO IMAGES IN SPES 2}

Former Saclay/SATURNE and CERN QDD mass spectrometer [62].


Figure 48: SPES 2 Layout.
zgoubi data file.
SPES2 QDD SPECTROMETER, USING FIELD MAPS; MONTE-CARLO OBJECT WITH MOMENTUM GRID


Excerpt from zgoubi.res : histograms of initial beam coordinates.


4 HISTO
```

HISTOGRAMME DE LA COORDONNEE PHI
PARTICULES PRIMAIRES ET SECONDAIRES
DANS LA FENETRE : -60.00 / 60.00 (MRD)
NORMALISE

```

\begin{tabular}{lllllll} 
HISTOGRAMME & DE LA & COORDONNEE PHI & & \\
PARTICULES PRIMAIRES & ET & SECONDAIRES & & \\
DANS LA & FENETRE \(:\) & -60.00 & 60.00 & (MRD) \\
NORMALISE & & & & &
\end{tabular}
\begin{tabular}{llll} 
PP & P & P & P \\
\hline
\end{tabular}

 PPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPP PRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPF 0000000000000000000000000000000000000000000000000000000000000000000 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPD PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP


TOTAL COMPTAGE : 10000 SUR 10000
\begin{tabular}{lcccr} 
NUMERO DU CANAL MOYEN & \(:\) & 51 \\
COMPTAGE & AU & n & \(n\) & 0 \\
\hline
\end{tabular}
VAL. PHYS. AU " " : \(3.331 \mathrm{E}-15\) (MRD
RESOLUTION PAR CANAL : 1.50
PARAMETRES PHYSIQUES DE LA DISTRIBUTION :
COMPTAGE \(=10000\) PARTICULES
MIN \(=-50.00, \quad\) MAX \(=49.99 \quad\), MAX-MIN \(=99.99 \quad\) (MRD
MOYENNE \(=0.2838 \quad\) (MRD)
TRAJ 1 IEX, D, Y,T, Z, P, S, time : \(\begin{array}{llllllll}1 & 0.9980 & 0.000 & -30.24 & 0.000 & 44.63 & 0.0000 & 0.0000\end{array}\)

Excerpt from zgoubi.res : the final momentum resolution histogram at the spectrometer focal surface.
```

1 6 HISTO
HISTO OF
HISTOGRAMME DE LA COORDONNEE Y
PARTICULES PRIMAIRES ET SECONDAIRES
NORMALISE

```

```

16
DANS LA FENETRE : -0.5000 / 2.000 (CM)
*

```

```

123456789012345678901234567890123456789012345678901234567890123456789012345678901

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901
NUMERO DU CANAL MOYEN % : % 51
COMPTAGE AU ""
VAL. PHYS. AU " " " CANAL : 0.750 (CM)
PARAMETRES PHYSIQUES DE LA DISTRIBUTION :
    COMPTAGE = 10000 PARTICULES
    MIN = -0.1486 , MAX = 1.652 , MAX-MIN = 1.800 (CM)
    MOYENNE = 0.7576 (CM)
    SIGMA = 0.4621
        (CM)

\section*{2 TRANSFER MATRICES ALONG A TWO-STAGE SEPARATION KAON BEAM LINE}
\(800 \mathrm{MeV} / \mathrm{c}\) kaon beam line at BNL Alternating Gradient Synchrotron [63]. The line includes two separation Wien filters.


Layout of LESB3 beamline


Figure 49: \(800 \mathrm{MeV} / \mathrm{c}\) kaon beam line layout.

\section*{zgoubi data file.}
\(800 \mathrm{MeV} / \mathrm{C}\) KAON BEAM LINE. CALCULATION OF TRANSFER COEFFICIENTS. 'OBJET'

\(2.16 \quad 55 . E 5-.0215576 \quad 2\)
\(\begin{array}{lllll}0.2401 & 1.8639 & -0.5572 & 0.3904 & 0 .\end{array} 0\),
0.241 1.8639 \(-0.5572 \quad 0.3904\) 0. 0.
\(\begin{array}{llllll}20.2401 & 1.8639 & -0.5572 & 0.3904 & 0 . & 0\end{array}\)
\(\begin{array}{llllll}0.2401 & 1.8639 & -0.5572 & 0.3904 & 0 . & 0 .\end{array}\)
1.
    DRIFT
'QUADRUPO' Q3

    \(\begin{array}{lll}40.72 & 15.24 & -6.34\end{array}\)
    \(\begin{array}{lclllll}4 & 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . & 0 .\end{array}\)
    \(\begin{array}{lllllll}40 . & 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . & 0 .\end{array}\)
110.0 .0.
    10.0
    

    0.2490 .0 .0 .0 .0 .0.
    0.0.0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0 .
    . 0. 0. 0. 0. 0.0.0. 0. 0 .
    \(\begin{array}{ll}1 & 0 . \\ \text { DRTFT, }\end{array}\). 0 .
    90.0

TRANSEER COEFFICIENTS
```

' COLLIMA' FIRST VERTICAL FOCUS, 22
$2^{2} 14.6$. $15 \mathrm{E} 10 \quad 0.0$.
'DRIFT'
20.0
'QUADRUPO' Q5
$45.72 \quad 15.24 \quad 10.93$
30. 30
$\begin{array}{llllll}4 & 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . \\ 30.30 . & 0 .\end{array}$
$\begin{array}{lllllll}4 & 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . & 0 .\end{array}$
$\begin{array}{cccc}1.1 \\ 1 & 0 . & 0 . & 0 .\end{array}$
${ }^{1}{ }^{1} 0 .{ }^{\text {DRIFT }}{ }^{0}$
$\begin{array}{ll}\text { 'MULTIPOL' } \\ 0 & \text { COMPENSATION OF } \\ \text { ABERRATIONS AT }\end{array}$
10. 15.24 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.
${ }_{4}^{0 .} \begin{aligned} & 0 . \\ & 0.2490 \\ & 0.0 .0 .0 .0 .0 .0 .0 .0 . ~ \\ & 5.3630\end{aligned}$

```


```

 0.0.0.0.0.0.0.0.
 1 0.0.0.
 DRIFT'
 10.0
'QUADRUPO' $Q 6$
$\begin{array}{lll}45.72 & 15.24 & -11.18\end{array}$
30. 30 .
$\begin{array}{lllllll}4 & 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . & 0 .\end{array}$
$\begin{array}{lllllll}\text { 30. } & 30 . & & \\ 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . & 0 .\end{array}$
10.0 .0.
${ }^{1}{ }^{1} 0.0$.
50.0
, WIENFILT'
SECOND VERTICAL WIEN FILTER
$\begin{array}{cc}0 & \\ 2.16 & -55 . E 5\end{array}$
20.10. 10. $.0215576 \quad 2$
$\begin{array}{llllll}0.2401 & 1.8639 & -0.5572 & 0.3904 & 0 . & 0 .\end{array}$
$\begin{array}{llllll}0.2401 & 1.8639 & -0.5572 & 0.3904 & 0 . & 0 .\end{array}$

```

```

$\begin{array}{llllll}0.2401 & 1.8639 & -0.5572 & 0.3904 & 0 .\end{array}$
${ }^{1 .}$. 0 . 0.0
'DRIFT'
30.0
$\begin{array}{ll}\text { 'QUADRUPO' } & \text { Q7 }\end{array}$
$\begin{array}{lll}45.72 & 15.24 & -6.44\end{array}$
$\begin{array}{llllll}\text { 30. } & 30 . & & & & \\ 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . & 0 .\end{array}$
$\begin{array}{cccccc}\text { 30. } 30.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . & 0 . \\ 4 & 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . \\ \text { 4. } & 0 .\end{array}$
1.10 .0
$\stackrel{1}{1} 0.0$.
25.00000
25.00000
QUADRUPO
'QUADRUPO' Q8
$\begin{array}{lll}45.72 & 15.24 & 8.085\end{array}$
$\begin{array}{lllllll}30 . & 30 . & & & & \\ 4 & 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . & 0 .\end{array}$

4	0.2490	5.3630	-2.4100	0.9870	0.
30. 30.		0.			
4	0.2490	5.3630	-2.4100	0.9870	0.
1.	0.				

 \(\begin{array}{ll}1.1 \\ 1 & 0.0 .0 .\end{array}\)
    ```

```

 40.0
 40.1
'COLLIMA' SECOND VERTICAL FOCUS, 36

```

```

${ }^{2}{ }^{\prime} \mathrm{DRIFT}^{\prime}$
$-25.0 \quad 38$
$\begin{array}{ll}\text { 'DIPOLE-M' } & \text { SIMULATION OF THE MAP } \\ 300 & \text { OF THE SECOND BENDING MAGNET }\end{array}$
$\begin{array}{ll}300 & \text { OF THE SECOND BENDING MAGNET } \\ 150 & 60\end{array}$
$\begin{array}{ccccc}18.999 & 0.0 .0 . & & & \\ 79.3329 & 17.7656 & 140.4480 & 110 . & 170 .\end{array}$
$\begin{array}{llllll}\text { 15. }{ }^{-1} \text {. } & & & & & \\ 4 & .1455 & 2.2670 & -.6395 & 1.1558 & 0 .\end{array} 0.0$.
$\begin{array}{llllllll}4 & .1455 & 2.2670 & -.6395 & 1.1558 & 0 . & 0 . & 0 \\ 0.00 & 21.90 & 1 . E 6 & -1 . E 6 & 1 . E 6 & 1 . E 6 & & \end{array}$
$\begin{array}{llllllll}\text { 15. } & -1 . & .1455 & 2.2670 & -.6395 & 1.1558 & 0 . & 0 .\end{array} 0$.
$\begin{array}{llllll} & .1455 & 2.2670 & -.6395 & 1.1558 & 0 . \\ -43.80 & -21.90 & -1 . E 6 & -1 . E 6 & 1 . E 6 & -1 . E 6\end{array}$
0 . 0 .
$\begin{array}{llllllll}4 & .1455 & 2.2670 & -.6395 & 1.1558 & 0 . & 0 . & 0 . \\ -43.80 & -21.90 & -1 . E 6 & -1 . E 6 & 1 . E 6 & -1 . E 6 & 1 E 6\end{array}$

```


```

2.5
$\begin{array}{llll}2 & & \\ 147.48099 & -0.31007 & 147.48099 & 0.31007\end{array}$

```

```

'DRIFT'
-15.00000
' QUADRUPO'
0
$\begin{array}{llll}\begin{array}{llll}35.56 & 12.7 & -13.69 & -13.91 \\ 30 . & 25.4\end{array} & & \end{array}$
$\begin{array}{lllllll}4 & 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . & 0 .\end{array}$
$\begin{array}{lllllll}\text { 30. } & \begin{array}{ll}25.4 \\ \text { 25 } \\ \text { 4 } & 5.3630\end{array} & -2.4100 & 0.9870 & 0 . & 0 .\end{array}$
$\begin{array}{lllllll}4 & 0.2490 & 5.3630 & -2.4100 & 0.9870 & 0 . & 0 .\end{array}$
10.0 . 0 .

```
'DRIFT'
42
25.00000
35.56 12.7 11.97
30. 25.4
lllllll
30. 25.4
4 0.2490
1.1
M 0. 0. 0. 0.
```

```
200.0
```

200.0
MATRIX'
MATRIX'
M MATRIX
M MATRIX
'END'

```

Excerpt of zgoubi.res : first and second order transfer matrices and higher order coefficients at the end of the line


\section*{3 IN-FLIGHT DECAY IN SPES 3}


Figure 50: Layout of SPES 3 spectrometer.

\section*{zgoubi data file}


Excerpt of zgoubi.res : histograms of primary and secondary particles at focal surface of SPES3.


\section*{4 USE OF THE FITTING PROCEDURE}


Figure 51: Vary B in all quadrupoles, for fitting of the transfer coefficients \(R_{12}\) and \(R_{34}\) at the end of the line. The first and last quadrupoles are coupled so as to present the same value of B.

\section*{zgoubi data file.}

MATCHING A SYMMETRIC QUADRUPOLE TRIPLET
```

'OBJET'
2501.73 RIGIDITY (kG.cm)
5 11 PARTICLES GENERATED FOR USE OF MATRIX
2. 2. 2. 2. 0. . 001
0 0. 0. 0. 0. 1 .
' ESL
200.
'QUADRUPO' 3
40. 15. -7
0 . 0 .
. $.1122 \quad 6.2671-1.4982 \quad 3.5882-2.12091 .723$
$.11226 .2671-1.49823 .5882-2.12091 .723$
5.
10 . 0.0 .
'ESL'
30.
'QUADRUPO' 5
0
40. 15. 3.
0 . 0 .
. $11226.2671-1.49823 .5882-2.12091 .723$
-. $11226.2671-1.49823 .5882-2.12091 .723$
5.
10 . 0.0 .
'ESL'
30.
'QUADRUPO' 7
40. 15. -7.
0.0.
$.11226 .2671-1.49823 .5882-2.12091 .723$
. 0 .
$\begin{array}{lllll}.11226 .2671-1.4982 & 3.5882 & -2.1209 & 1.723\end{array}$
5.
10.0 .0.
' ESL'
200.
'MATRIX, 9
10
'FIT2 \quad VARY B IN QUADS FOR FIT OF R12 AND R34 10
\# OF VARIABLES
127.12 2. SYMMETRIC TRIPLET => QUADS \#1 AND \#3 ARE COUPLED
12 0. 2. PRMTR \#12 OF ELEMENTS \#3, 5 AND 7 IS FIELD VALUE
1.E-10 \# OF CONSTRAINTS, PENALTY
12816.6 1. CNSTRNT \#1 : R12 2 =16.6 AFTER LAST DRIFT (LMNT \#8)
$348-.88$ 1. CNSTRNT \#2 : R34=-.88 AFTER LAST DRIFT
' END'

Excerpt of zgoubi.res : first order transfer matrices prior to and after fitting.

TRANSFER MATRIX WITH STARTING CONDITIONS :
MATRICE DE TRANSFERT ORDRE 1 (MKSA)

| 5.43427 | 17.0254 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1.67580 | 5.43425 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
| 0.00000 | 0.00000 | -1.27003 | -0.974288 | 0.00000 | 0.00000 |
| 0.00000 | 0.00000 | -0.629171 | -1.27004 | 0.00000 | 0.00000 |
| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 |
| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 |

STATE OF VARIABLES AFTER MATCHING :

MATRIX, WITH NEW VARIABLES :

| 5.27056 | 16.6000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1.61443 | 5.27450 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
| 0.00000 | 0.00000 | -1.24205 | -0.880010 | 0.00000 | 0.00000 |
| 0.00000 | 0.00000 | -0.622553 | -1.24620 | 0.00000 | 0.00000 |
| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 |
| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 |

5 MULTITURN SPIN TRACKING IN SATURNE 3 GeV SYNCHROTRON

Figure 52: Tracking over 3000 turns. These simulations exhibit the first order parameters and motions as produced by the multi-turn raytracing.
(A) Horizontal phase-space: the particle has been launched near to the closed orbit (the fine structure is due to $Y-Z$ coupling induced by bends fringe fields, also responsible of the off-centering of the local closed orbit - at ellipse center).
(B) Vertical phase-space: the particle has been launched with $Z_{0}=4.5810^{-3} \mathrm{~m}, Z_{0}^{\prime}=0$. A least-square fit by $\gamma_{Z} Z^{2}+2 \alpha_{Z} Z Z^{\prime}+\beta_{Z} Z^{\prime 2}=$ ε_{Z} / π yields $\beta_{Z}=2.055 \mathrm{~m}, \alpha_{Z}=0.444, \gamma_{Z}=0.582 \mathrm{~m}^{-1}, \varepsilon_{Z} / \pi=1210^{-6} \mathrm{~m}$. rad in agreement with matrix calculations.
(C) Fractional tune numbers obtained by Fourier analysis for $\varepsilon_{Y} / \pi=\varepsilon_{Z} / \pi \simeq 1210^{-6} \mathrm{~m}$. rad: $\nu_{Y}=0.63795, \nu_{Z}=0.60912$ (the integer part is 3 for both).
(D) Longitudinal phase-space (" $\left(D P\right.$, phase)" in Zgoubi notations): particles with initial momentum dispersion of 510^{-4} (1), 10^{-3} (2), 1.6510^{-3} (3) (out of acceptance), are accelerated at $1405 \mathrm{eV} /$ turn ($\dot{B}=2.1 \mathrm{~T} / \mathrm{s}$); analytical calculations give accordingly momentum acceptance of 1.6510^{-3}.

Figure 53: Crossing of $\gamma G=7-\nu_{Z}$, at $\dot{B}=2.1 \mathrm{~T} / \mathrm{s}$.
(A) $\varepsilon_{Z} / \pi=12.210^{-6} \mathrm{~m} . \mathrm{rad}$. The strength of the resonance is $|\varepsilon|=3.310^{-4}$. As expected from the Froissart-Stora formula [66] the asymptotic polarization is about 0.44 .
(B) The emittance is now $\varepsilon_{Z} / \pi=1.210^{-6} \mathrm{~m}$. rad; comparison with (A) shows that $|\varepsilon|$ is proportional to $\sqrt{\varepsilon_{Z}}$.
(C) Crossing of this resonance for a particle having a momentum dispersion of 10^{-3}.
zgoubi data file (beginning and end).
SATURNE. CROSSING GammaG=7-NUz, NUz=3. 60877 (perturbed)

6 MICRO-BEAM FOCUSING WITH $\vec{E} \times \vec{B}$ QUADRUPOLES

Figure 54: Upper plot: 50-particle beam tube ray-traced through a double focusing quadrupole doublet typical of the front end design of micro-beam lines. Initial conditions are : $Y_{0}=Z_{0}=0$, angles T_{0} and P_{0} random uniform within ± 0.2 mrad, and momentum dispersion $\delta p / p$ uniform in $\pm 310^{-4}$.
Lower plot: (D) sub-micronic cross-section at the image plane of a 4000-particle beam with initial conditions as above, obtained thanks to the second-order achromatic magneto-electrostatic quadrupole doublet (the image size would be $\Delta Y \approx \Delta Z \approx \pm 50 \mu \mathrm{~m}$ with regular magnetic quadrupoles, due to the momentum dispersion). Note the high resolution of the ray-tracing which still reveals image structure of nanometric size.

zgoubi data file.

zgoubi.res file.

\qquad

```
    Multiple pass,
        from element # 1 : MCOBJET /labell=RANDOM /labe12=OBJECT to REBELOTE /label1=RANDOM /label2=OBJECT
        ending at pass # 20 at element # 12 : REBELOTE /label1=RUN /label2=AGAIN
    End of pass # 19 through the optical structure
                Total of 3800 particles have been launched
    Next pass is # 20 and last pass through the optical structure
        MCOBJET RANDOM OBJECT
                Reference magnetic rigidity = 20.435 KG*CM
                        Object built up of 200 particles
            Distribution in a Window
            Central values (MKSA units):
            YO, TO, ZO, PO, XO, BR/BORO : 0.000 0.000 0.000 0.0.000 0.000 1.000
            DY, DT, DZ, DP, DX, DBR/BORO : 0.00 2.000E-04 0.00 
            M, Cut-Offs (*+/-Width ) : 
            Type of sorting : Uniform Uniform Uniform Uniform Uniform Uniform
2 PARTICUL PARTICLE MASS
    Particle properties :
                Mass 
            Reference data :
                mag. rigidity (kG.cm) : 20.435000 =p/q, such that dev.=B*L/rigidity
                938.27230
                momentum (MeV/c)
                nergy, total (MeV)
            energy, total (MeV) : 
                                6.1262621
            beta = v/c
            gamma
            6.5291616518E-03
            gamma : 1.000021316
            # : 6.5293008252E-03
electric rigidity (MeV) : 3.9999376635E-02 =T[eV]*(gamma+1)/gamma, such that dev.=E*L/rigidity
```


9 HISTO HISTOGRA

histogramme de la coordonnee y
PARTICULES PRIMAIRES ET SECONDAIRES
DANS LA FENETRE : $-5.0000 \mathrm{E}-06 / 5.0000 \mathrm{E}-06$ (CM)
NORMALISE

PART D

Running zgoubi and
its post-processor/graphic interface zpop

INTRODUCTION

The zgoubi package, including this guide, examples, the zpop graphic/analysis post-processor, is available on web [5].
The zgoubi FORTRAN package is transportable; it has been compiled, linked and executed over the years on several types of systems (e.g. CDC, CRAY, IBM, DEC, HP, SUN, VAX, UNIX, LINUX).

An additional FORTRAN code, zpop, allows the post-processing and graphic treatment of zgoubi output files. zpop has been routinely used on DEC, HP, SUN stations, and is now on UNIX and LINUX systems.

1 GETTING TO RUN zgoubi AND zpop

1.1 Making the Executable Files zgoubi and zpop

1.1. 1 The transportable package zgoubi

Compile and link the FORTRAN source files (normally, just run the Makefile), to create the executable zgoubi.
zgoubi is written in standard FORTRAN, mostly 77, therefore it does not require linking to any library.

1.1.2 The post-processor and graphic interface package zpop

Compile the FORTRAN source files (normally, just run the Makefile).
Link zpop with the graphic library, libminigraf.a [67]. This will create the executable zpop, that is to be run on an xterm type window.

1.2 Running zgoubi

The principles are the following:

- Fill up zgoubi.dat with the input data that describe the problem (see examples, Part C).
- Run zgoubi - no argument needed, default input is zgoubi.dat.
- Results of the execution will be printed into zgoubi.res and, upon options appearing in zgoubi.dat, into several other outputs files (see section 2 below).
- The command zgoubi acccepts the following arguments (see zgobui_main.f source file) :
-fileIn, followed by an input file name,
-fileOut, followed by an output file name,
-fileLog, followed by a log file name,
-saveExec, this will cause saving a copy of zgoubi exec in the local directory,
-saveZpop, this will cause saving a copy of zpop exec in the local directory.

1.3 Running zpop

- Run zpop on an xterm window. This will open a graphic window.
- To access the data plotting sub-menu, select option 7.
- To access the data treatment sub-menu, select option 8.
- An on-line Help provides some information regarding the available post-processing procedures (Fourier transform, elliptical fit, synchrotron radiation, field map contours, tune diagram, etc.).

2 STORAGE FILES

When explicitly requested by means of the adequate keywords, options, or dedicated LABEL's, extra storage files are opened by zgoubi (FORTRAN "OPEN" statement) and filled.

Their content can be post-processed using the interactive program zpop and its dedicated graphic and analysis procedures.

Most of these files are formmatted in columns, plotting their content using 'gnuplot' [71] is straightforward. A library of 'gnuplot' command files can be found in zgoubi sourceForge repository [5].

The zgoubi procedures that create and fill these extra output files are the following (refer to Part A and Part B of the guide):

- Keywords FAISCNL, FAISTORE: fill a '.fai' type file (normally named [b_]zgoubi.fai) with particle and spin coordinates and a lot of other informations.
- Keywords SPNPRNL, SPNSTORE: fill a '.spn' type file (normally named [b_]zgoubi.spn) with spin coordinates and other informations.
- Option $I C=2$, with field map keywords (e.g. CARTEMES, TOSCA) : fill zgoubi.map with 2-D field map.
- Option $I L=2$, with magnetic and electric element keywords: fill zgoubi.plt with the particle coordinates and experienced fields, step after step, all along the optical element.
- Using the keyword MARKER with '.plt' as a second LABEL will cause storage of current coordinates into zgoubi.plt.

Typical examples of graphics that one can expect from the post-processing of these files by zpop are the following (see examples, Part C):

- '.fai' type files

Phase-space plots (transverse and longitudinal), aberration curves, at the position where FAISTORE or FAISCNL appears in the optical structure. Histograms of coordinates. Fourier analysis (e.g., spin motion, tunes, in case of multi-turn tracking), calculation of Twiss parameters from phase-space ellipse matching.

- zgoubi.map

Isomagnetic field lines of 2-D map. Superimposing trajectories read from zgoubi.plt is possible.

- zgoubi.plt

Trajectories inside magnets and other lenses (these can be superimposed over field lines obtained from zgoubi.map). Fields experienced by the particles at the traversal of optical elements. Spectral and angular distributions of synchrotron radiation.

- zgoubi.spn

Spin coordinates and histograms, at the position where SPNPRNL appears in the structure. Resonance crossing when performing multi-turn tracking.

In addition, many routines will deliver execution outcomes in individual output files if requested, usually by initroducing a 'PRINT' command under the keyword of concern. Instances are zgoubi.MATRIX.out (keyword MATRIX), zgoubi.TWISS.out (keyword OPTICS), zgoubi.PICKUP.out (keyword PICKUPS), zgoubi.TWISS.out (keyword TWISS), etc.

References

[1] F. Méot et S. Valéro, Manuel d'utilisation de Zgoubi, Rapport IRF/LNS/88-13, CEA Saclay, 1988.
[2] F. Méot and S. Valéro, Zgoubi users' guide, Int. Rep. CEA/DSM/LNS/GT/90-05, CEA Saclay (1990) \& TRIUMF report TRI/CD/90-02 (1990).
[3] F. Méot and S. Valéro, Zgoubi users' guide - Version 3, Int. Rep. DSM/LNS/GT/93-12, CEA Saclay (1993).
[4] F. Méot and S. Valero, Zgoubi users' guide - Version 4, FNAL Tech. Rep. FERMILAB-TM-2010 (Aug. 1997), \& Int. Rep. CEA DSM DAPNIA/SEA-97-13, Saclay (Oct. 1997).
[5] http://zgoubi.sourceforge.net/
[6] F. Méot, The electrification of Zgoubi, SATURNE report DSM/LNS/GT/93-09, CEA Saclay (1993) ; F. Méot, Generalization of the Zgoubi method for ray-tracing to include electric fields, NIM A 340 (1994) 594-604.
[7] D. Carvounas, Suivi numérique de particules chargées dans un solénoïde, rapport de stage, CEA/LNS/GT, 1991.
[8] F. Méot, Raytracing in 3-D field maps with Zgoubi, report DSM/LNS/GT/90-01, CEA Saclay, 1990.
[9] G. Leleux, Compléments sur la physique des accélérateurs, cours du DEA Grands-Instruments, Univ. Paris-VI, report IRF/LNS/86-101, CEA Saclay, March 1986.
[10] F. Méot, A numerical method for combined spin tracking and raytracing of charged particles, NIM A313 (1992) 492, and proc. EPAC (1992) p. 747.
[11] D. J. Kelliher et al., Muon decay ring study, Procs. EPAC08 Conf., Genoa, Italy (2008).
[12] F. Méot, N. Monseu, Lattice Design and Study Tools Regarding the Super-B Project, Procs. IPAC10 Conf., Kyoto, Japan (2010).
[13] F. Méot, Spin tracking simulations in AGS based on ray-tracing methods, Tech. Note C-AD/AP/452, BNL C-AD (2009) ; F. Méot, Zgoubi-ing AGS : spin motion with snakes and jump-quads, Tech. Note C-AD/AP/453, BNL C-AD (2009).
[14] F. Méot, M. Bai, V. Ptitsyn, V. Ranjbar, Spin Code Benchmarking at RHIC, Procs. PAC11 Conf., New York (2011).
[15] F. Méot, Raytracing Based Spin Tracking, EDM Searches at Storage Rings Workshop, ECT - Center for Studies in Nuclear Physics and related Areas, Trento, Italy (Oct. 1-5, 2012).
[16] V. Bargmann, L. Michel, V.L. Telegdi, Precession of the polarization of particles moving in a homogeneous electromagnetic field, Phys. Rev. Lett. 2 (1959) 435.
[17] S.Y. Lee, Spin dynamics and snakes in synchrotrons, World Scientific, 1997.
[18] S.Y. Lee, private communication, April 2017.
[19] F. Méot and J. Payet, Numerical tools for the simulation of synchrotron radiation loss and induced dynamical effects in high energy transport lines, Report DSM/DAPNIA/SEA-00-01, CEA Saclay (2000).
[20] G. Leleux et al., SR perturbations in long transport lines, IEEE 1991 Part Acc. Conf., San Francisco (May 1991).
[21] P. Lapostolle, F. Méot, S. Valero, A new dynamics code DYNAC for electrons, protons and heavy ions in LINACS with long accelerating elements, 1990 LINAC Conf., Albuquerque, NM, USA.
[22] Electron Lab for Europe, Blue Book, CNRS-IN2P3 (1994).
[23] F. Méot, Benchmarking stepwise ray-tracing in rings in presence of radiation damping, Procs. PAC11 Conf., New York (2011).
[24] V. O. Kostroun, Simple numerical evaluation of modified Bessel functions and integrals [...], NIM 172 (1980) 371-374.
[25] F. Méot, Synchrotron radiation interferences at the LEP miniwiggler, Report CERN SL/94-22 (AP), 1994.
[26] L. Ponce, R. Jung, F. Méot, LHC proton beam diagnostics using synchrotron radiation, Yellow Report CERN-2004-007.
[27] F. Méot, A theory of low frequency far-field synchrotron radiation, Particle Accelerators Vol 62, pp. 215-239 (1999).
[28] Albert Hofmann, The Physics of Synchrotron Radiation, Cambridge University Press, May 13, 2004.
[29] Malek Haj Tahar, Fixed Field Ring Accelerators and ADS-Reactor Application, PhD dissertation, Brookhaven National Laboratory and Grenoble-Alpes University (2016).
[30] B. Mayer, personal communication, CEA Saclay, Laboratoire National SATURNE, 1990.
[31] L. Farvacque et al., Beta user's guide, Note ESRF-COMP-87-01, 1987 ;
J. Payet, IRF/LNS, CEA Saclay, private communication ;
J.M. Lagniel, Recherche d'un optimum, Note IRF/LNS/SM 87/48, CEA Saclay 1987.
[32] Installed by J. S. Berg, BNL (2007). Cf. Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition, C. T. Kelley, Siam J. Optim., Vol. 10, No. 1, pp. 43-55.
[34] F. Méot and N. Willis, Raytrace computation with Monte Carlo simulation of particle decay, internal report CEA/LNS/8818 CEA Saclay, 1988.
[35] E.J. Bleser, The parameters of the bare AGS, Tech. Note AGS/AD?Tech. Note 430, March 15, 1996.
[36] These transfer functions have been copied from the MADX model of the AGS.
[37] H.A. Enge, Deflecting magnets, in Focusing of Charged Particles, ed. A. Septier, Vol. II, pp 203-264, Academic Press Inc., 1967.
[38] P. Birien et S. Valéro, Projet de spectromètre magnétique à haute résolution pour ions lourds, Section IV p.62, Note CEA-N-2215, CEA Saclay, mai 1981.
[39] Files developed by Simon White, January 2012. Including beam-beam spin kick after Ref. [40].
[40] Y. K. Batygin, Spin depolarization due to beam-beam collisions, Phys. Rev. E, Vol. 58, 1, July 1998.
[41] A. Hofmann, S. Myers, Beam Dynamics in a Double RF System, CERN ISR-TH-RF/80-26 (July 1980).
[42] F. Lemuet, F. Méot, Developements in the ray-tracing code Zgoubi for 6-D multiturn tracking in FFAG rings, NIM A 547 (2005) 638-651.
[43] F. Méot, 6-D beam dynamics simulations in FFAGs using the ray-tracing code Zgoubi, ICFA Beam Dyn.Newslett.43:44-50 (2007).
[44] Franck Lemuet, Collection and muon acceleration in the neutrino factory project, PhD thesis, Paris KI University, April 2007.
[45] V. M. Kel'man and S. Ya. Yavor, Achromatic quadrupole electron lenses, Soviet Physics - Technical Physics, vol. 6, No 12, June 1962 ;
S. Ya. Yavor et als., Achromatic quadrupole lenses, NIM 26 (1964) 13-17.
[46] A. Septier, Cours du DEA de physique des particules, optique corpusculaire, Université d'Orsay, 1966-67, pp. 38-39.
[47] S. P. Karetskaya et als., Mirror-bank energy analyzers, in Advances in electronics and electron physics, Vol. 89, Acad. Press (1994) 391-491.
[48] A. Septier et J. van Acker, Les lentilles quadrupolaires électriques, NIM 13 (1961) 335-355;
Y. Fujita and H. Matsuda, Third order transfer matrices for an electrostatic quadrupole lens, NIM 123 (1975) 495-504.
[49] J. Fourrier, F. Martinache, F. Méot, J. Pasternak, Spiral FFAG lattice design tools, application to 6-D tracking in a protontherapy class lattice, NIM A 589 (2008).
[50] F. Méot, Tracking studies regarding EMMA FFAG project, Internal report CEA DAPNIA-06-04 (2006).
[51] J. S. Berg et al., Recent developments on the EMMA on-line commissioning software, Procs. IPAC10 Conf., Kyoto, Japan (2010).
[52] S. Machida et al., Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA, Nature Physics, vol. 8, March 2012.
[53] Installed by Pavel Akishin, JINR, Dubna, 1992.
[54] M.W. Garrett, Calculation of fields [...] by elliptic integrals, J. Appl. Phys., 34, 9, sept. 1963.
[55] P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, pp. 282-283, Springer-Verlag, Berlin, 1954.
[56] Installation by M. Bai, BNL, 2009.
[57] A. Tkatchenko, Computer program UNIPOT, SATURNE, CEA Saclay, 1982.
[58] S.B. Kowalski, H.A. Enge, The ion-optical program raytrace, NIM A258 Vol. 3 (1987) 407.
[59] N. Tsoupas, private communication, Brookhaven National Laboratory, Oct 2015.
[60] J.L. Chuma, PLOTDATA, TRIUMF Design Note TRI-CO-87-03a.
[61] F. Méot et la., A model of the AGS in the ray-tracing code Zgoubi, Tech. Note C-A/AP/***, 2013.
[62] J. Thirion et P. Birien, Le spectromètre II, Internal Report DPh-N/ME, CEA Saclay, 23 Déc. 1975 ;
H. Catz, Le spectromètre SPES II, Internal Report DPh-N/ME, CEA Saclay, 1980 ;
A. Moalem, F. Méot, G. Leleux, J.P. Penicaud, A. Tkatchenko, P. Birien, A modified QDD spectrometer for η meson decay measurements, NIM A289 (1990) 168-175
[63] P. Pile, I-H. Chiang, K. K. Li, C. J. Kost, J. Doornbos, F. Méot et als., A two-stage separated 800-MeV/c Kaon beamline, TRIUMF and BNL Preprint (1997).
[64] F. Méot, The raytracing code Zgoubi, CERN SL/94-82 (AP) (1994), 3rd Intern. Workshop on Optimization and Inverse Problems in Electromagnetism, CERN, Geneva, Switzerland, 19-21 Sept. 1994.
[65] E. Grorud, J.L. Laclare, G. Leleux, Résonances de dépolarisation dans SATURNE 2, Int. report GOC-GERMA 75-48/TP28, CEA Saclay (1975), and, Home Computer Codes POLAR and POPOL, IRF/LNS/GT, CEA Saclay (1975).
[66] M. Froissart et R. Stora, Dépolarisation d'un faisceau de protons polarisés dans un synchrotron, NIM 7 (1960) 297-305.
[67] J.L. Hamel, mini graphic library LIBMINIGRAF, CEA-DSM, Saclay, 1996.
[68] F. Méot e, A. París, Concerning effects of fringe fields and longitudinal distribution of b10 in low- β regions on dynamics in LHC, report FERMILAB-TM-2017, August 23, 1997.
[69] A white paper: The Cornell-BNL FFAG-ERL Test Accelerator, I. Ben-Zvi et al., Dec. 16, 2014.
[70] F. Méot, End-to-end 9-D polarized bunch transport in FFAG eRHIC, EIC14 workshop, http://www.jlab.org/conferences/eic2014/ (2014).
[71] http://www.gnuplot.info/

Index

ALE, 181
acceleration, 77, 103, 207, 270, 273
AGSMM, 89, 181, 182, 193
AGSQUAD, 90, 194
AIMANT, 91, 116, 195

- parameter numbering, 63
alignment (mis-) of optical elements, 181
AUTOREF, 96, 199
backward ray-tracing, 179
beam-beam spin kick, 97, 200
BEAMBEAM, 97, 200
BEND, 27, 98, 201
BINARY, 59, 203
BORO, 50, 53, 57, 103, 210, 249, 253, 256
$B O R O \times D_{\text {ref }}, 82,89,103,106,179,234$
B $\rho_{\text {ref }}, 82,89,103,106,179,234$
BREVOL, 26, 100, 204
CARTEMES, 26, 100, 101, 130, 138, 139, 143, 144, 153, 155, 180, 205, 226, 287, 322
cartesian coordinates, 181
CAVITE, 80, 103, 104, 181, 207
- double RF system, 105, 207
- recovering from a crash, 107

CHAMBR, 77, 79, 108, 108, 208, 272
CHANGREF, 72, 96, 108, 109, 109, 111, 209
checking field, 179
checking trajectories, 179
chromaticity, 170, 171, 291
CIBLE, 71, 111, 210
closed orbit, 14, 67, 103, 177

- computation, 107

COLLIMA, 77, 79, 112, 211, 272
combined with FIT, 78
constraint (FIT, FIT2), 62, 65, 232
coupling, 171, 177
cyclotron, 103, 105, 118
DECAPOLE, 75, 113, 212, 269
DIPOLE, 62, 91, 108, 114, 118, 181, 213, 299

- parameter numbering, 63

DIPOLE-M, 91, 116, 144, 184, 214, 264

- parameter numbering, 63

DIPOLES, 91, 118, 216
DODECAPO, 27, 75, 122, 217, 269
double RF system, 105
DRIFT, 123, 218
droite de coupure: see integration boundary, 101
EBMULT, 27, 28, 75, 124, 219

- parameter numbering, 63

EL2TUB, 26, 125, 221
ELMIR, 126, 222
ELMIRC, 127, 223
ELMULT, 28, 75, 124, 128, 224

- parameter numbering, 63

ELREVOL, 26, 130, 180, 225
EMMA, 131, 226

END, 58, 60, 172, 231
ERRORS, 61, 227
ESL, 72, 123, 218
FAISCEAU, 164, 228
FAISCNL, 164, 180, 228, 322
FAISTORE, 164, 180, 228, 322
FFAG, 103, 105, 118, 131, 132, 132, 134, 229
FFAG magnet

- radial, 118, 132, 229
- spiral, 134, 230

FFAG-SPI, 134, 230
FIN, 60, 231
FIT, 55, 58, 62, 62, 65, 70, 232, 270
FIT and REBELOTE, combined, 68
fit procedure

- constraint, 65, 66, 233
- coupled variables, 65
- max. number of iterations, 68, 232
- options, 68, 70
- penalty, 68, 232
- save variables, 68
- variable range, $\mathbf{6 5}, \mathbf{2 3 2}$

FIT2, 55, 62, 62, 65, 70, 232, 270
FOCALE, 166, 236
FOCALEZ, 167, 236
fringe fields overlapping, 118
GASCAT, 69, 237
GETFITVAL, 58, 70, 238
gnuplot, 322
GOTO, 136, 239
HISTO, 51, 72, 79, 112, 168, 168, 184, 240, 272
IC, 180
ID, 101, 205, 230
IDMAX, 53, 53
IEX, 31, 54, 54, 87, 101, 108, 112, 165, 174, 184
IL, 179
IMAGE, 96, 166, 166, 241
IMAGES, 53, 166, 166, 241
IMAGESZ, 167, 241
IMAGEZ, 167, 241
IMAX, 50, 53, 57, 72, 77, 84, 103, 104, 164, 175, 181, 184
INCLUDE, 137, 242
INTEG, 79, 272
integration boundary, 100, 101, 130, 138, 139, 155, 204-206, 287
integration step size, 184

- coded, 184
- negative, 72, 179

IORDRE, 27, 29, 75, 95, 101, 117, 138, 139, 155
KPOS, 181
LABEL, 262
LABEL, 80, 140, 165, 172, 174, 180, 228, 246, 262, 280, 322
MAP2D, 27, 138, 153, 244

MAP2D-E, 27, 139, 245
maps, summing, 204
MARKER, 140, 246, 322
MATRIX, 55, 56, 62, 65, 96, 156, 170, 171, 199, 247, 254

- beam matrix, 73, 170
- periodic beam matrix, 177
- spin rotation matrix, 175
- transport coefficients, 170

MCDESINT, 51, 53, 58, 71, 72, 77, 79, 168, 248, 272, 299
MCOBJET, 50, 51, 67, 71, 77, 184, 249, 270
misalignment, 181
momentum compaction, 291
Monte Carlo, 50, 57, 71, 77, 184, 249, 256
multi-particle, 77, 184, 270
multi-turn tracking, 50, 58, 77, 77, 80, 103, 179, 181, 270, 299, 312, 322
MULTIPOL, 27, 75, 80, 124, 128, 141, 252, 269

- parameter numbering, 63
negative charge, 50, 53, 184, 249, 253
negative momentum, 50, 53, 184, 249, 253
negative rigidity, $\mathbf{1 8 4}$
NPASS, 77, 103, 165, 168, 174, 181, 184, 228, 270, 280
OBJET, 53, 65, 71, 96, 103, 108, 166, 177, 181, 184, 253
- recovering from a crash, 55, 255

OBJETA, 57, 57, 77, 256
OCTUPOLE, 75, 142, 257, 269
OPTICS, 73, 258
OPTIONS, 74, 259

- CONSTY, 74, 259

ORDRE, 75, 260
outpoi.lis, 143
PARTICUL, 57, 58, 71, 76, 83, 84, 86, 87, 112, 124-128, 130, $149,159,161,248,261$
PICKUPS, 172, 180, 262
PLOTDATA, 173, 263
POISSON, 143, 264
polar coordinates, 184
POLARMES, 144, 184, 265
positioning of optical elements, 181
PRINT

- CAVITE, 107
- MATRIX, 171
- OPTICS, 73
- SPNPRT, 175

PS170, 145, 266
QUADISEX, 26, 27, 146, 267
QUADRUPO, 27, 62, 63, 75, 108, 113, 128, 141, 142, 147, 150, 181, 268, 269

- parameter numbering, 63

REBELOTE, 50, 55, 58, 62, 77, 77, 80, 103, 165, 168, 172, 174, 180, 181, 184, 228, 253, 270, 280, 299 - recovering from a crash, 78
reference rigidity, $50,53,82,103,179$
RESET, 79, 272
SCALING, 79, 80, 80, 103, 104, 180, 181, 207, 272, 273

- parameter numbering, 64
- recovering from a crash, 82

SEPARA, 149, 274
SEXQUAD, 26, 146, 275
SEXTUPOL, 27, 75, 150, 269, 276
SOLENOID, 151, 277
SPACECHARG, 45, 83, 278
spin kick, beam-beam, 97, 200
spin tracking, 35, 77, 84, 109, 157, 163, 168, 174, 184, 240, 270, 281, 299
spin, \vec{n}_{0} vector, 67
SPINR, 152, 279
SPNPRNL, 174, 280, 322
SPNPRT, 86, 175, 280
SPNSTORE, 174, 280, 322
SPNTRK, 58, 77, 79, 84, 184, 272, 281
SRLOSS, 86, 282, 283
SRPRNT, 176, 283
stopped particles, 77, 108, 112, 165, 184, 208, 211
storage files, 321
synchrotron motion, 77, 80, 103, 207, 270, 273
synchrotron radiation, 39,322
synchrotron radiation energy loss, 86, 105, 176

- treatment in CAVITE, 105, 107, 207
synchrotron radiation loss, 282
synchrotron radiation spectra, 87,284
SYNRAD, 87, 284
SYSTEM, 88, 285
system call, 88, 285
tag, symmetry index, 53
tag, tag character, 51, 53, 54, 72, 87, 164, 165, 168, 174
TARGET, 111, 210
time varying fields, 179
TOSCA, 26, 63, 75, 153, 180, 181, 287, 299, 322
- parameter numbering, 63

TRANSMAT, 156, 289
transport coefficients, 170, 247
TRAROT, 99, 157, 290
TWISS, 55, 177, 291
UNDULATOR, 158, 292
UNIPOT, 26, 159, 293
Units in zgoubi, 178
variable (FIT, FIT2), 62, 62, 232
VENUS, 26, 27, 160, 294
WIENFILT, 27, 161, 295
XCE, 181
XPAS

- negative, 72

XPAS, coded, 184
XPAS, negative, 179
YCE, 181
YMY, 99, 162, 296
zgoubi, 321

- running the code, 321
zgoubi.CAVITE.out, 107
zgoubi.dat, 165, 174, 321
zgoubi.f, 321
zgoubi.fai, 164, 165, 174, 228, 253, 322
zgoubi.impdev.out, 180, 180
zgoubi.map, 180, 322
zgoubi.MATRIX.out, 171
zgoubi.OPTICS.out, 73
zgoubi.PICKUP.out, 172
zgoubi.plt, 140, 180, 246, 322
zgoubi.res, 180, 321
zgoubi.spn, 174, 280, 322
zgoubi.SPNPRT.Out, 234, 243, 271
zgoubi.sre, 87
zgoubi.TWISS.out, 177
zpop, 41, 164, 174, 180, 321
- running the code, 321

[^0]: ${ }^{1}$ For instance, a 1 GeV electron will emit about 20.6 photons per radian ; an integration step size $\Delta s=0.1 \mathrm{~m}$ upon $\rho=10 \mathrm{~m}$ bending radius results in 0.2 photon per step.
 ${ }^{2}$ This leads for instance, in the case of electrons, to the classical formula $\lambda / \Delta \theta \approx 129.5 \mathrm{E}(\mathrm{GeV}) / 2 \pi \approx \gamma / 94.9$.

[^1]: ${ }^{3}$ From a practical viewpoint, the value of the magnetic field first computed for a one-step push of the particle (eqs. 1.2.4, 1.2.8) is next used to obtain ρ and perform SR loss corrections afterwards.

[^2]: ${ }^{4}$ These calculations have been installed in the post-processor zpop.

[^3]: ${ }^{1}$ SEPARA must be preceded by PARTICUL for the definition of mass and charge of the particles.

[^4]: ${ }^{1}$ FNAME = 'none' will inhibit printing.
 ${ }^{2}$ If first $L A B E L=$ 'none' then printing will be inhibited.

[^5]: ${ }^{1} M X X, M X Y, I Z$ may be changed, they are stated in the include file PARIZ. H.
 ${ }^{2}$ Case of 2-D field maps : Each file $\operatorname{FNAME}(K)$ contains the field specific to elevation $Z(K)$ and must be formatted according to the following FORTRAN read sequence (that usually fits TOSCA code OUTPUTS - details and possible updates are to be found in the source file' fmapw.f'):

    ```
    DOJF=1,NF
    OPEN (UNIT = NL, FILE = FNAME(JF), STATUS = 'OLD' [,FORM='UNFORMATTED'])
    DO J=1, JY; DO I= 1, IX
        READ(NL,*)Y(J), Z(JF), X(I), BY(J,I), BZ(J,I), BX(J,I) node coordinates, field components at node
        ENDDO; ENDDO
    NL=NL+1
    ENDDO
    BX and BY are assumed zero at all nodes of the 2-D mesh, regardless of BX(J,1,I), BY(J,1,I) values.
    Case of 3-D field maps :
    DO JF = 1,NF
    OPEN (UNIT = NL, FILE = FNAME(JF), STATUS = 'OLD' [,FORM='UNFORMATTED'])
    DO J=1,JY; DO K = =1,KX;DOI= I,IX
        READ(NL,*)Y(J),Z(K),X(I),BY(J,K,I),BZ(J,K,I), BX(J,K,I) node coordinates, field components at node
        ENDDO;ENDDO;ENDDO
    NL```

