
1 

PHY 554  
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We are discussing development of accelerators and learning “accelerator slang”. 
The main goal of this brief overview is to introduce you to inventive nature of the 
accelerator physics and engineering: each time there is a “dead-end”, accelerator 

community finds way of gong further.  
It is never an easy path, but so far we were very successful.  
It is for your generation to figure out the next breakthrough. 

 
There are books and long articles written about the history of 

accelerators. Here we are recall some elements of the history as it fit 
the purpose of our course: without any attempt to follow neither the 

historical event nor the importance of the new inventions. 
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To =
C

v
= hRF ⋅TRF = hRF

fRF

Changing the RF frequency is mostly required in hadron synchrotrons, where particles do not reach 
relativistic velocities till very high energies. For example AGS (Alternating Gradient Synchrotron) 
accelerates protons from kinetic energy of 0.2 GeV to 28 GeV – this requires a nearly two-fold 
change of the RF frequency. You would learn later in the course that this is not a trivial but doable.   
Slightly different story is for electrons – it is relatively easy to accelerate electrons to tens of MeV 
before injecting them into a synchrotron. Usually then the available aperture of the vacuum chamber 
is sufficient to accommodate a slight variation of the electrons velocity. This answers the first 
requirements – what about second? 
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But what about longitudinal motion, i.e. a particle slightly out of synchronism or slight off-
energy? Would they survive or disappear? Veksler discovered the phase (auto-focusing) stability in 
circular accelerators by introducing the time of flight dependence of the particles energy (frequently 
called a slip-factor): 
 

η =
d lnTo

d ln E
=

d lnC

d ln E
−

d lnv

d ln E        (2.12) 

 
 

Veksler discovered that proper choice of accelerating (see fig. 2.18) provides for stability of 
longitudinal (phase – means RF phase) motion. It means that a particle with a phase or energy 
deviation will execute stable oscillations, which are called synchrotron oscillations. 

E > Eo 

Ideal, E = Eo 

E <Eo 

ΔErf 

η<0 η>0 

t 
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To =
C

v
= hRF ⋅TRF = hRF

fRF

Thus, longitudinal motion is stable (with an appropriate choice of phase and accelerating rate). What 
about transverse motion? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By 1940s the principle of weak focusing for transverse motion was well know and this was working 
assumption that bending magnets have a gradient of the field splitting focusing between horizontal 
and vertical oscillations.  

E > Eo 

Ideal, E = Eo 

E <Eo 

ΔErf 

η<0 η>0 

t 



Weak (transverse) focusing, plane orbit symmetry 
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To solve this problem let’s expand the equations of motion near the ideal closed orbit: 
 !

r = r̂ ⋅ ρ + x( )+ ŷ ⋅ y;ρ =
pc

eBo

; Bo = By x = 0, y = 0( ) = const;

!
B
!
r( ) ≅ ŷ Bo + r̂

∂Bx

∂x
x +

∂Bx

∂y
y

⎛

⎝
⎜

⎞

⎠
⎟+ ŷ

∂By

∂x
x +

∂By

∂y
y

⎛

⎝
⎜

⎞

⎠
⎟;

Because of the symmetry                          and                   ∂By

∂y
= ∂Bx

∂x
= 0;

 
curl
!
B = 0 ⇒ G =

∂By

∂x
= ∂Bx

∂y

!
B
!
r( ) ≅ ŷ Bo +G r̂y+ ŷx( )+O x2, y2( ); x , y << ρ
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!
v =

d

dt
r̂ ⋅ ρo + x( )+ ŷ ⋅ y( ) = dr̂

dt
⋅ ρ + x( )+ r̂

dx

dt
+ ŷ ⋅

dy

dt
;

dr̂

dt
=ωϕ̂;

dϕ̂
dt

= −ωr̂;        d
2r̂

dt2
= −ω 2r̂

!
vo = ϕ̂ ⋅ωρ;

!
v = ϕ̂ ⋅ω ρ + x( )+ r̂!x + ŷ ⋅ !y

d
"
v

dt
=

d 2r̂

d 2t
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dt
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d 2x
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+ ŷ ⋅

d 2y
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d 2x
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⎧
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⎫
⎬
⎭
+ ŷ ⋅

d 2y

dt2
+ωϕ̂ !x

Since energy is constant in magnetic field 

d
!
p

dt
= γm

d
!
v

dt
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e

c

!
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!
B⎡⎣ ⎤⎦≅

e

c
ϕ̂ ⋅ω ρo + x( )+ r̂!x + ŷ ⋅ !y{ }× ŷ Bo +G r̂y+ ŷx( ){ }⎡⎣ ⎤⎦
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e

c
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⎣

⎤
⎦

d
!
v

dt
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d 2x

dt2
−ω 2 ⋅ ρo + x( ) = −ω eBo

γmc
ρo + x( )+ eG

γmc
ρox

⎡

⎣
⎢

⎤

⎦
⎥+Ο ε 2( )

d 2y

dt2
=ωρo

eG

γmc
y+Ο ε 2( )

y 

φ 

dl = vodt =ωdt ρo + x( )⇒ω =
vo

ρo + x( )
≅

vo

ρo

1−
x

ρo

⎛

⎝
⎜

⎞

⎠
⎟

ωo =
vo

ρo

=
eBo

γmc
⇒ ρo =

poc

eBo

d 2x

dt2
+ωo

2 1− n( ) ⋅ x ≅ 0;      d
2y

dt2
+ nωo

2 = 0;  n = −Gρo

Bo

.

Stability :    0 < n <1;

x = ax cos ν xωot +ϕ x( );   y = ay cos ν yωot +ϕ y( );    ν x = 1− n;ν y = n;

!x =ν xωoax sin ν xωot +ϕ x( );    !y = −ν yωoay sin ν yωot +ϕ y( );   



33 

y 

φ 

Stability :    0 < n <1;

x = ax cos ν xωot +ϕ x( );   y = ay cos ν yωot +ϕ y( );    ν x = 1− n;ν y = n;

!x =ν xωoax sin ν xωot +ϕ x( );    !y = −ν yωoay sin ν yωot +ϕ y( );   

Invariants :εx =
1

γmc
dx dpx;εx =

1

γmc
dydpy!∫!∫ ;  length along trajectory s =ωot;

x = βxεx cos
s

βx

+ϕ x

⎛

⎝
⎜

⎞

⎠
⎟;   y = βyεy cos

s

βy

+ϕ y

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟;    

dx
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= ʹx = −

εx
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s
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⎛

⎝
⎜
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⎠
⎟;   
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εy
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sin
s
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+ϕ y

⎛

⎝
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⎠
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n
> ρo;
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Fig. 2.17. Typical quadrupole magnet. 

 

Physicist new about quadrupoles – magnets, which because of the Maxwell equations focused in one 
direction and defocus in the other: 
 

curl
!
B = ẑ

∂Bx

∂y
−
∂By

∂x

⎛

⎝
⎜

⎞

⎠
⎟= 0 ⇒ Bx =G ⋅ x;By =G ⋅ x

!
F =

e

c

!
v×
!
B⎡⎣ ⎤⎦; 
!
v=ẑv ⇒

!
F =

eG

c
x̂ ⋅ x − ŷ ⋅ y( )

   (2.13) 

 
depending on the sigh of the gradient, G.  
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